Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-(1-Hydroxynaphthalen-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1one

Dongsoo Koh

Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea Correspondence e-mail: dskoh@dongduk.ac.kr

Received 9 February 2013; accepted 12 March 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.187; data-to-parameter ratio = 17.8.

In the title molecule, $C_{22}H_{20}O_5$, the C=C bond of the central enone group adopts an E conformation. The dihedral angle formed by the benzene ring and the naphthalene ring system is $12.6 (4)^{\circ}$. The hydroxy group attached to the naphthalene ring is involved in an intramolecular $O-H \cdots O$ hydrogen bond. In the crystal, weak $C-H \cdots O$ hydrogen bonds link the molecules into chains along [010]. In addition, π - π stacking interactions are present, with centroid-centroid distances of 3.6648 (15) and 3.8661 (15) Å between the benzene and two naphthalene rings.

Related literature

For the synthesis and biological properties of chalcone derivatives, see: Shenvi et al. (2013); Hsieh et al. (2012); Sharma et al. (2012); Sashidhara et al. (2011); Aponte et al. (2010); Hans et al. (2010) Jo et al. (2012). For related structures, see: Park et al. (2013); Fadzillah et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

C22H20O5 $M_r = 364.38$ Monoclinic, $P2_1/n$ a = 9.7919 (12) Å b = 13.7559 (18) Å c = 13.2761 (17) Å $\beta = 96.165 \ (3)^{\circ}$

V = 1777.9 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 200 K $0.36 \times 0.26 \times 0.22 \ \text{mm}$

Data collection

Bruker SMART CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.966, T_{\max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	248 parameters
$wR(F^2) = 0.187$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
4420 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

12937 measured reflections

 $R_{\rm int} = 0.032$

4420 independent reflections

2550 reflections with $I > 2\sigma(I)$

Table 1

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
05−H5····O1	0.84	1.74	2.490 (2)	147
C21−H21····O3 ⁱ	0.95	2.43	3.362 (3)	166

Symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The author acknowledges financial support from Dongduk Women's University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2085).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Aponte, J. C., Castillo, D., Estevez, Y., Gonzalez, G., Arevalo, J., Hammonda, G. B. & Sauvain, M. (2010). Bioorg. Med. Chem. Lett. 20, 100-103.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fadzillah, S. M. H., Ngaini, Z., Hussain, H., Razak, I. A. & Asik, S. I. J. (2012). Acta Cryst. E68, o2911-o2912.
- Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wanc, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942-944.
- Hsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22. 3912-3915
- Jo, G., Sung, S. H., Lee, Y., Kim, B.-G., Yoon, J. W., Lee, H. K., Ji, S. Y., Koh, D., Ahn, J. H. & Lim, Y. (2012). Bull. Korean Chem. Soc. 33, 3841-3844.
- Park, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177.
- Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480-4484
- Sharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343-6346.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435-442.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, o542 [doi:10.1107/S1600536813006843]

(E)-1-(1-Hydroxynaphthalen-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one

Dongsoo Koh

Comment

Varieties of chalcones have been synthesized and isolated from natural sources, which have been used for evaluation of their pharmaceutical applications. They have showed diverse biological activities including anticancer (Shenvi *et al.* 2013), antidiabetic (Hsieh *et al.* 2012), antimicrobial (Sharma *et al.* 2012), anti-Leishmania (Aponte *et al.* 2010), anti-inflammatory (Sashidhara *et al.* 2011) and antitubercular (Hans *et al.* 2010). In continuation of our research interest to develop benzochalcone derivatives which show broad range of biological activities (Jo *et al.* 2012), titled compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. Chalcone is a family of flavonoid class which has a general C₆—C₃—C₆ carbon framework and that of C₃ is an α,β -unsaturated carbonyl (enone) group. One of the C₆ is substituted with C₁₀ (naphthalene ring) in the benzochalcone, where the titled compound belongs to. The C2=C3 bond of the central enone group adopts a *trans* configuration. The dihedral angle formed by the naphthalene ring system and the benzene ring is 12.6 (4)°. Due to an intramolecular O—H…O hydrogen bond between the hydroxy group of the naphthalene ring and carbonyl (C=O) group, the C1=O1 bond [1.262 (3) Å] is slightly longer than the standard value (Allen *et al.* 1987). In the crystal, weak C—H…O hydrogen bonds link the molecules into one-dimensional chains along [010] (Fig. 2). In addition, intermolecular π – π stacking interactions are present with Cg1…Cg2(1-x, 2-y, -z) = 3.6648 (15)Å and Cg1…Cg3(1-x, 2-y, 1-z) = 3.8661 (15)Å, where Cg1, Cg2 and Cg3 are the centroids of the C4/C5/C7/C8/C10/C12, C13/C14/C15/C20/C21/C22 and C15/C16/C17/C18/C19/C20 rings.

Examples of structures of substituted prop-2-en-1-one compounds have been published (Park *et al.*, 2013; Fadzillah *et al.*, 2012).

Experimental

To a solution of 2,4,5-trimethoxybenzaldehyde (196 mg, 1 mmol) in 10 ml of ethanol was added 1-hydroxy-2-acetonaphthone (186 mg, 1 mmol) and the temperature was adjusted to around 275-276 K in an ice-bath. To the cooled reaction mixture 1 ml of 50% aqueous KOH solution was added, and the reaction mixture was stirred at room temperature for 20 h. This mixture was poured into iced water (30 ml) was acidified (pH = 3) with 6 N HCl solution to give a precipitate. Filtration and washing with water afforded crude solid of the title compound (180 mg, 48%). Recrystallization of the solid from ethanol gave yellow colored crystals (mp: 471–472 K).

Refinement

The H atoms were placed in calculated positions with C—H = 0.95 and 0.98 Å or O—H = 0.84 Å, and refined in a riding-model approximation with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C_{methyl})$ and $U_{iso}(H) = 1.5 U_{eq}(O)$].

Computing details

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular hydrogen bond.

Figure 2

Part of the crystal structure with O—H…O and weak intermolecular C—H…O hydrogen bonds shown as dashed lines.

(E)-1-(1-Hydroxynaphthalen-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one

Crystal data	
$C_{22}H_{20}O_5$	F(000) = 768
$M_r = 364.38$	$D_{\rm x} = 1.361 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3912 reflections
a = 9.7919 (12) Å	$\theta = 2.5 - 28.2^{\circ}$
b = 13.7559 (18) Å	$\mu=0.10~\mathrm{mm^{-1}}$
c = 13.2761 (17) Å	T = 200 K
$\beta = 96.165 \ (3)^{\circ}$	Block, red
$V = 1777.9 (4) Å^3$	$0.36 \times 0.26 \times 0.22 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART CCD	12937 measured reflections
diffractometer	4420 independent reflections
Radiation source: fine-focus sealed tube	2550 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\rm max} = 28.3^\circ, \ \theta_{\rm min} = 2.1^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 12$
(SADABS; Bruker, 2000)	$k = -17 \rightarrow 18$
$T_{\min} = 0.966, \ T_{\max} = 0.979$	$l = -12 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.187$	neighbouring sites
S = 1.10	H-atom parameters constrained
4420 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0702P)^2 + 1.1296P]$
248 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.40 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3412 (2)	0.91056 (17)	0.00657 (18)	0.0317 (5)
O1	0.22475 (17)	0.94630 (13)	-0.02165 (13)	0.0404 (4)
C2	0.4142 (3)	0.93980 (17)	0.10242 (18)	0.0345 (5)
H2	0.5043	0.9158	0.1210	0.041*
C3	0.3569 (2)	1.00024 (17)	0.16584 (18)	0.0338 (5)
Н3	0.2662	1.0212	0.1439	0.041*
C4	0.4152 (2)	1.03710 (17)	0.26228 (18)	0.0320 (5)
C5	0.3361 (2)	1.09604 (17)	0.32022 (18)	0.0336 (5)
O2	0.20245 (17)	1.11129 (14)	0.27987 (14)	0.0450 (5)
C6	0.1146 (3)	1.1618 (2)	0.3405 (2)	0.0518 (7)
H6A	0.1132	1.1282	0.4054	0.078*
H6B	0.0214	1.1639	0.3052	0.078*
H6C	0.1485	1.2283	0.3525	0.078*
C7	0.3909 (2)	1.13575 (18)	0.41125 (19)	0.0356 (6)
H7	0.3356	1.1760	0.4486	0.043*
C8	0.5259 (2)	1.11725 (18)	0.44823 (18)	0.0346 (5)
O3	0.59060 (18)	1.15449 (14)	0.53450 (14)	0.0454 (5)
C9	0.5169 (3)	1.2224 (2)	0.5899 (2)	0.0528 (8)
H9A	0.4829	1.2757	0.5451	0.079*
H9B	0.5782	1.2485	0.6467	0.079*
H9C	0.4391	1.1895	0.6159	0.079*
C10	0.6075 (2)	1.05692 (17)	0.39235 (19)	0.0341 (5)
O4	0.74055 (18)	1.04546 (13)	0.43608 (13)	0.0437 (5)
C11	0.8242 (3)	0.9805 (2)	0.3870 (2)	0.0468 (7)
H11A	0.7824	0.9157	0.3840	0.070*
H11B	0.9156	0.9773	0.4250	0.070*

H11C	0.8323	1.0037	0.3181	0.070*
C12	0.5528 (2)	1.01849 (17)	0.30251 (18)	0.0336 (5)
H12	0.6084	0.9780	0.2657	0.040*
C13	0.3995 (2)	0.83943 (16)	-0.05961 (17)	0.0286 (5)
C14	0.3299 (2)	0.81550 (16)	-0.15212 (17)	0.0293 (5)
O5	0.20698 (16)	0.85556 (12)	-0.18480 (13)	0.0366 (4)
Н5	0.1858	0.8966	-0.1422	0.055*
C15	0.3832 (2)	0.74664 (17)	-0.21887 (17)	0.0306 (5)
C16	0.3122 (3)	0.72114 (18)	-0.31235 (19)	0.0373 (6)
H16	0.2270	0.7516	-0.3340	0.045*
C17	0.3644 (3)	0.65246 (19)	-0.3731 (2)	0.0435 (6)
H17	0.3151	0.6351	-0.4361	0.052*
C18	0.4906 (3)	0.6082 (2)	-0.3416 (2)	0.0441 (6)
H18	0.5263	0.5606	-0.3835	0.053*
C19	0.5629 (3)	0.63260 (19)	-0.2518 (2)	0.0418 (6)
H19	0.6491	0.6025	-0.2325	0.050*
C20	0.5116 (2)	0.70218 (17)	-0.18647 (18)	0.0331 (5)
C21	0.5822 (3)	0.72680 (19)	-0.0915 (2)	0.0389 (6)
H21	0.6679	0.6969	-0.0702	0.047*
C22	0.5289 (2)	0.79279 (18)	-0.03049 (18)	0.0361 (6)
H22	0.5783	0.8084	0.0329	0.043*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0357 (13)	0.0287 (12)	0.0309 (12)	-0.0018 (10)	0.0048 (10)	0.0028 (9)
01	0.0385 (10)	0.0434 (10)	0.0383 (10)	0.0090 (8)	-0.0004 (8)	-0.0037 (8)
C2	0.0345 (13)	0.0341 (13)	0.0343 (13)	-0.0023 (10)	0.0006 (10)	-0.0004 (10)
C3	0.0358 (12)	0.0315 (12)	0.0336 (13)	-0.0068 (10)	0.0009 (10)	0.0007 (10)
C4	0.0352 (12)	0.0284 (12)	0.0326 (12)	-0.0061 (9)	0.0044 (10)	0.0005 (9)
C5	0.0302 (12)	0.0354 (13)	0.0349 (13)	-0.0018 (10)	0.0022 (10)	-0.0005 (10)
O2	0.0339 (9)	0.0566 (12)	0.0439 (11)	0.0061 (8)	0.0016 (8)	-0.0103 (9)
C6	0.0406 (15)	0.067 (2)	0.0478 (16)	0.0113 (14)	0.0061 (13)	-0.0046 (15)
C7	0.0331 (12)	0.0386 (13)	0.0360 (13)	0.0004 (10)	0.0081 (10)	-0.0055 (10)
C8	0.0353 (13)	0.0353 (13)	0.0332 (13)	-0.0057 (10)	0.0033 (10)	-0.0069 (10)
O3	0.0399 (10)	0.0559 (12)	0.0397 (10)	-0.0011 (9)	0.0007 (8)	-0.0197 (9)
C9	0.0534 (17)	0.0592 (18)	0.0459 (16)	-0.0023 (14)	0.0053 (13)	-0.0252 (14)
C10	0.0292 (12)	0.0365 (13)	0.0361 (13)	-0.0016 (10)	0.0011 (10)	-0.0015 (10)
O4	0.0367 (10)	0.0513 (11)	0.0419 (10)	0.0065 (8)	-0.0013 (8)	-0.0126 (8)
C11	0.0413 (14)	0.0516 (17)	0.0468 (16)	0.0090 (13)	0.0008 (12)	-0.0044 (13)
C12	0.0351 (12)	0.0319 (12)	0.0339 (13)	-0.0026 (10)	0.0049 (10)	-0.0021 (10)
C13	0.0261 (11)	0.0303 (11)	0.0289 (12)	-0.0017 (9)	0.0006 (9)	0.0032 (9)
C14	0.0266 (11)	0.0270 (11)	0.0337 (12)	-0.0021 (9)	0.0008 (9)	0.0041 (9)
O5	0.0327 (9)	0.0403 (10)	0.0361 (9)	0.0061 (7)	0.0004 (7)	-0.0037 (7)
C15	0.0304 (12)	0.0290 (12)	0.0326 (12)	-0.0027 (9)	0.0036 (9)	0.0005 (9)
C16	0.0351 (13)	0.0382 (14)	0.0376 (14)	-0.0025 (10)	-0.0001 (10)	-0.0033 (11)
C17	0.0514 (16)	0.0403 (15)	0.0387 (14)	-0.0050 (12)	0.0043 (12)	-0.0099 (11)
C18	0.0446 (15)	0.0415 (15)	0.0467 (16)	0.0035 (12)	0.0083 (12)	-0.0089 (12)
C19	0.0380 (14)	0.0378 (14)	0.0499 (16)	0.0058 (11)	0.0061 (12)	-0.0014 (12)
C20	0.0326 (12)	0.0306 (12)	0.0363 (13)	-0.0013 (10)	0.0047 (10)	0.0019 (10)

supplementary materials

C21 C22	0.0309 (12) 0.0341 (13)	0.0419 (14) 0.0394 (14)	0.0432 (14) 0.0340 (13)	0.0042 (11) -0.0008 (10)	0.0000 (11) -0.0004 (10)	0.0009 (11) 0.0005 (10)
Geome	etric parameters (Å	Î, °)				
$\overline{C1}$)1	1.262 (3))	04—C11		1,417 (3)
C1 - C	22	1 448 (3))	C11—H11A) 9800
C1 - C	213	1 470 (3))	C11—H11B		0.9800
$C^2 - C$	23	1 347 (3))	C11—H11C		0.9800
C2—F	12	0.9500)	C12—H12		0.9500
C3 - C	74	1 437 (3))	C12 - C12		1 379 (3)
C3—F	13	0.9500)	C13 - C22		1 436 (3)
C4 - C	15 75	1 406 (3))	C13 - C22		1 352 (3)
C4 = C	C12	1 418 (3))	C14 - C15		1.332(3)
C_{5})2	1 376 (3))	05—H5		0.8400
C5-C	77	1 381 (3))	C15-C16		1 401 (3)
0^{2}	76	1.501 (5))	C15 - C20		1.401 (3)
C6—F		0.9800)	C16 - C17		1.422 (3)
	16R 16R	0.9800		C16—H16		0.9500
	10D 16C	0.9800		C10 - 110 C17 - C18		1 400 (4)
C7 - C	78	1 383 (3))	С17—Н17		0 9500
C7—F	47	0.9500)	C18 - C19		1 362 (4)
$C_8 - C_8$)3	1 349 (3))	C18H18		0.9500
	710	1.549 (3))	C_{10} C_{10} C_{20}		1 419 (3)
03 - 0	79	1 432 (3))	C19—H19		0.9500
	10Δ	0.9800)	C_{20}		1 412 (3)
	19R 19R	0.9800		$C_{20} - C_{21}$		1.412 (3)
C9_F	19C	0.9800		C21—C22		0.9500
C10_	C12	1 361 (3))	С21 1121 С22_Н22		0.9500
C10	-04	1.301 (3))	022-1122		0.9500
010	04	1.578 (5))			
01-0	C1—C2	119.8 (2))	O4—C11—H11B		109.5
01-0	C1—C13	118.6 (2))	H11A-C11-H11	В	109.5
С2—С	C1—C13	121.6 (2))	04—C11—H11C		109.5
С3—С	C2—C1	121.5 (2))	H11A-C11-H11	С	109.5
С3—С	С2—Н2	119.3		H11B—C11—H11	С	109.5
C1—C	С2—Н2	119.3		C10—C12—C4		121.9 (2)
С2—С	С3—С4	128.5 (2))	C10—C12—H12		119.1
C2—C	С3—Н3	115.8		C4—C12—H12		119.1
C4—C	С3—Н3	115.8		C14—C13—C22		118.1 (2)
С5—С	C4—C12	117.1 (2))	C14—C13—C1		120.3 (2)
С5—С	С4—С3	120.1 (2))	C22—C13—C1		121.6 (2)
C12—	-C4—C3	122.8 (2))	O5—C14—C13		121.7 (2)
02—0	С5—С7	123.0 (2))	O5—C14—C15		116.21 (19)
02—0	C5—C4	115.6 (2))	C13—C14—C15		122.0 (2)
С7—С	C5—C4	121.4 (2))	С14—О5—Н5		109.5
С5—С	D2—C6	117.6 (2))	C16—C15—C20		119.9 (2)
02—0	С6—Н6А	109.5		C16—C15—C14		122.3 (2)
02—0	С6—Н6В	109.5		C20—C15—C14		117.8 (2)
H6A-	-C6—H6B	109.5		C17—C16—C15		120.7 (2)

O2—C6—H6C	109.5	C17—C16—H16	119.6
H6A—C6—H6C	109.5	C15—C16—H16	119.6
H6B—C6—H6C	109.5	C16—C17—C18	119.7 (2)
C5—C7—C8	120.3 (2)	C16—C17—H17	120.1
С5—С7—Н7	119.9	C18—C17—H17	120.1
С8—С7—Н7	119.9	C19—C18—C17	120.9 (2)
O3—C8—C7	125.1 (2)	C19—C18—H18	119.6
O3—C8—C10	115.3 (2)	C17—C18—H18	119.6
C7—C8—C10	119.6 (2)	C18—C19—C20	121.1 (2)
C8—O3—C9	117.9 (2)	C18—C19—H19	119.4
О3—С9—Н9А	109.5	С20—С19—Н19	119.4
O3—C9—H9B	109.5	C21—C20—C19	122.4 (2)
H9A—C9—H9B	109.5	C21—C20—C15	119.9 (2)
O3—C9—H9C	109.5	C19—C20—C15	117.7 (2)
H9A—C9—H9C	109.5	C22—C21—C20	120.7 (2)
Н9В—С9—Н9С	109.5	C22—C21—H21	119.7
C12—C10—O4	126.2 (2)	C20—C21—H21	119.7
C12—C10—C8	119.7 (2)	C21—C22—C13	121.5 (2)
O4—C10—C8	114.1 (2)	C21—C22—H22	119.2
C10—O4—C11	116.46 (19)	C13—C22—H22	119.2
O4—C11—H11A	109.5		
O1—C1—C2—C3	4.1 (4)	C2-C1-C13-C14	-177.7 (2)
C13—C1—C2—C3	-175.7 (2)	O1—C1—C13—C22	-177.4 (2)
C1—C2—C3—C4	-179.1 (2)	C2-C1-C13-C22	2.5 (3)
C2—C3—C4—C5	-176.7 (2)	C22—C13—C14—O5	179.5 (2)
C2—C3—C4—C12	4.6 (4)	C1—C13—C14—O5	-0.3 (3)
C12—C4—C5—O2	-178.9 (2)	C22—C13—C14—C15	-0.3 (3)
C3—C4—C5—O2	2.3 (3)	C1—C13—C14—C15	179.9 (2)
C12—C4—C5—C7	1.4 (3)	O5-C14-C15-C16	-0.6 (3)
C3—C4—C5—C7	-177.4 (2)	C13-C14-C15-C16	179.2 (2)
C7—C5—O2—C6	-6.7 (4)	O5—C14—C15—C20	-179.3 (2)
C4—C5—O2—C6	173.6 (2)	C13-C14-C15-C20	0.5 (3)
O2—C5—C7—C8	179.6 (2)	C20-C15-C16-C17	0.8 (4)
C4—C5—C7—C8	-0.7 (4)	C14—C15—C16—C17	-177.9 (2)
C5—C7—C8—O3	178.0 (2)	C15—C16—C17—C18	-0.6 (4)
C5—C7—C8—C10	-0.3 (4)	C16—C17—C18—C19	-0.3 (4)
С7—С8—О3—С9	-3.4 (4)	C17—C18—C19—C20	1.1 (4)
C10—C8—O3—C9	174.9 (2)	C18—C19—C20—C21	178.1 (3)
O3—C8—C10—C12	-177.8 (2)	C18—C19—C20—C15	-1.0 (4)
C7—C8—C10—C12	0.6 (4)	C16-C15-C20-C21	-179.0 (2)
O3—C8—C10—O4	0.5 (3)	C14—C15—C20—C21	-0.3 (3)
C7—C8—C10—O4	178.9 (2)	C16-C15-C20-C19	0.0 (3)
C12—C10—O4—C11	-6.0 (4)	C14—C15—C20—C19	178.8 (2)
C8—C10—O4—C11	175.8 (2)	C19—C20—C21—C22	-179.1 (2)
O4—C10—C12—C4	-178.0 (2)	C15—C20—C21—C22	-0.1 (4)
C8—C10—C12—C4	0.1 (4)	C20—C21—C22—C13	0.2 (4)
C5-C4-C12-C10	-1.1 (3)	C14—C13—C22—C21	-0.1 (4)
C3—C4—C12—C10	177.6 (2)	C1—C13—C22—C21	179.7 (2)

O1—C1—C13—C14 2.4 (3)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H···A
05—H5…O1	0.84	1.74	2.490 (2)	147
C21—H21···O3 ⁱ	0.95	2.43	3.362 (3)	166

Symmetry code: (i) -x+3/2, y-1/2, -z+1/2.