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Characterization of genetic subclonal evolution
in pancreatic cancer mouse models
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The KPC mouse model, driven by the Kras and Trp53 transgenes, is well regarded for faithful
recapitulation of human pancreatic cancer biology. However, the extent that this model
recapitulates the subclonal evolution of this tumor type is unknown. Here we report evidence
of continuing subclonal evolution after tumor initiation that largely reflect copy number
alterations that target cellular processes of established significance in human pancreatic
cancer. The evolutionary trajectories of the mouse tumors show both linear and branching
patterns as well as clonal mixing. We propose the KPC model and derivatives have unex-
plored utility as a functional system to model the mechanisms and modifiers of tumor
evolution.
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ARTICLE

ince the introduction of the first genetically engineered

mouse model (GEMM) of pancreatic adenocarcinoma

(PDA) in 20031, GEMMs have proved to be powerful
tools in investigating PDA etiology and development®~4.
Most GEMMs are established by combining pancreas-specific
endogenous expression of a mutant Kras oncogene, which is
mutated in 95% of human PDA cases, in combination with
pancreas-specific endogenous inactivation of one or two tumor
suppressors genes (Cdkn2a, Trp53, Smad4, Tgfbrl, and Tgfbr2)
frequently altered in human PDA. These models have suc-
cessfully yielded insights into the cell of origin>®, role of the
tumor microenvironment”-? and inflammation®!? in PDA,
contribution of pancreatitis>!!112, and diagnostic/therapeutic
possibilities!»8:13:14,

The canonical KPC (LSL-KrasG12P/+; LSL-Trp53R172H/+; pdx]-
Cre)!> mouse model—which combines an activating mutation in
Kras, and a dominant negative mutation in Trp53—is one of the
most-studied GEMMs of PDA and has been shown to closely
recapitulate the biology of human PDA in terms of histopatho-
logical and clinical features®1>16, The KPTC (LSL-KrasG12D/+;
LSL-Trp53R172H/+; Tofpr2flox/+; Ptfla-Cre) model is a variation of
the KPC model that includes a loss of one Tgfbr2 allele. Features
of this model include accelerated carcinogenesis and a lower rate
of distant metastasis than the KPC model, thus showing promise
in phenocopying a subset of PDA patients with oligometastatic
disease!”. The KPTC model has overlapping phenotypic features
with the KPDC model'® in which Smad4 and not Tgfbr2 is tar-
geted for recombination and inactivation.

While GEMMs of PDA have been extensively studied
with respect to biology, detection strategies and therapeutic
response!?20, their genomic landscape beyond the knock-in
transgenic events has remained largely unexplored until recently.
One recent study performed whole exome sequencing of four cell
lines derived from KPC tumors, and found a low mutational
burden and lack of antigenic epitopes indicating a lack of
immunoediting in this model?!. A more complete understanding
of the frequency and nature of these events is important, as these
models are routinely used in preclinical studies of novel ther-
apeutic agents®1422, and a pervasive assumption is that the
tumors are only driven by the Kras and Trp53 transgenes!® or
that non-cell autonomous factors predominate in driving tumor
progression*. However, another recent large-scale sequencing
study of cell lines from 38 KC (LSL-Kras@12P/+; Ptfla-Cre) mice
highlighted the contribution of mutant Kras dosage to tumor
progression and metastatic potential, thereby providing some of
the first evidence of functionally significant genomic events that
occur beyond the conditionally activated alleles?3. To address
this important issue, we utilized whole-exome sequencing, aCGH
and targeted deep sequencing to extensively characterize the
somatic alterations present in a cohort of 12 mice. Moreover,
unlike the prior study that used cell lines, we focused on the
primary tumor tissues, using a multiregion sequencing strategy,
and performed a subclonal phylogenetic reconstruction in
each mouse.

While the role of engineered mouse models for understanding
PDA genetics has been firmly established, the utility of these
models for understanding tumor evolution has not. In this work,
we show that in mouse tumors that are induced experimentally,
the descendant somatic cancer cells are subject to ongoing evo-
lution and accumulation of somatic alterations. This will pave the
way for understanding how different transgenes, modalities of
treatment or microenvironmental factors affect tumor evolution
and genome chaos, as these and other variables can easily be
controlled for in murine models yet are impossible in human
patients.

Results

Somatic alterations are common in mouse PDA. To capture
both clonal and subclonal alterations, each tumor harvested from
the pancreas of each mouse was divided into three distinct tumor
regions in sequential order T1 (left), T2 (middle), and T3 (right)
(Fig. 1a). The two non-adjacent regions of the tumor (samples T1
and T3) and a matched normal sample from the kidney from
each mouse were profiled by whole exome sequencing to a
median sequence coverage depth of 133 x (tumor) and 73 x
(normal), identifying somatic alterations in twelve transgenic
mice (six KPC and six KPTC) (Supplementary Datas 1 and 2).
Multiregion sequencing and copy number analyses of the tumor
tissue from each mouse were applied to enable discovery of
subclonal alterations at greater resolution than would be possible
with single bulk tissue whole-exome sequencing.

We observed an average of 13(+7) mutations per mouse (0.27
Mut/Mb) (Supplementary Data 3). This estimate was lower than
the reported rate in human PDA (~1.0 Mut/Mb2425). However,
the trend is consistent with reports from two recent studies of KP/
KPC cell lines?!23 and in an unpublished study of KPC mice
(described in ref. 2). The lower mutation rate could reflect the small
number of stem cell divisions that occur in the short life span of
KC/KPC mice, a lower mutation rate due to lack of exposure to
mutagens in a controlled environment, or be a result of unknown
differences in the rate of division between mouse and human stem
cells. Of a total 159 validated mutations (Fig. 1b), 116 were
nonsynonymous (103 missense, 5 at/in proximity of a splice site,
and 8 nonsense). No recurrent mutations were observed across the
cohort, similar to findings by Mueller et al.23, Single nucleotide
variant frequencies (e.g., A- > T, C- > G, etc.) were similar in KPC
and KPTC mice (y*> test, Benjamini-Hochberg (BH) corrected
p value >0.10). Comparison of single nucleotide variant frequen-
cies in our cohort with human PDA data?>26 was non-informative,
as we detected the presence of batch effects (y? test, BH-corrected
p value<0.05) between the available human PDA studies;
rendering their observed differences with our data difficult to
interpret (Supplementary Fig. 1).

Somatic copy number aberrations are frequent in mouse PDA.
Analysis of somatic copy number aberrations (SCNA) by array
CGH of tumor regions in each mouse revealed a substantial
degree of aneuploidy, consistent with the presence of a Trp53
mutation in both KPC and KPTC genotypes!®. On average 32 *
13% of the genes in each mouse were impacted by copy gains/
losses, with no significant difference between KPC and KPTC
genotypes (KPC: 26 +10%, KPTC: 38 +14%, two-sided ¢ test,
p value: 0.09). The most frequent targets of large-scale copy gain
or losses were chromosomes 5, 6, 8, 12, 19 (gains) and chromo-
somes 4, 9, 11, and 14 (losses) (Fig. 1c, Supplementary Data 4).
These chromosomes harbored mouse orthologs of many key
genes implicated in human PDA: Kras oncogene (chr6), tumor
suppressor genes Cdkn2a (chr4), Tgfbr2 (chr9), and Trp53
(chr11). Notably these gains and losses have also been observed in
Kras-driven GEMMs of lung cancer?’. There was no significant
difference in copy number gains between the KPC and KPTC
genotypes (Fisher’s exact test, two-sided p value>0.05). Copy
number losses on chromosomes 9 and 11 occurred only in KPTC
mice (Fisher’s exact test, two-sided p value: 0.06)—a borderline
significant result, likely due to our small sample size. Com-
plementary to the array data, an analysis of minor allele frequency
of germline heterozygous variants (Supplementary Fig. 2)
revealed an enrichment for allelic imbalance in proximity of
Trp53, Kras, and Tgfbr2 (Supplementary Fig. 3, Supplementary
Data 5).
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Fig. 1 Genomic characterization of six KPC and six KPTC mice. a The tumor tissue collected from the pancreata of each moribund mouse was divided into
three regions designated T1-T3. The DNA from tumor regions T1 and T3 was subject to whole exome sequencing. Candidate somatic mutations identified
by whole exome sequencing were subsequently validated in all three regions, using targeted amplicon sequencing. Array CGH was applied to the DNA
from the three tumor regions. b The frequency of mutations with respect to predicted consequence type in each mouse. Values represent those of all three
samples per mouse tumor. € Somatic copy number profile. The tumor-to-normal copy ratios measured by array CGH were scaled to correct for tumor
purity and rounded up to closest integer level. Gain of chr 5, 6, 8, 12, 19 and loss of chr 4, 9, 11, 14 were the most frequent somatic copy number events.
d The frequency of mutations, focal amplifications and deletions, and large-scale chromosomal gains and losses. Focal and large-scale copy number
aberrations were compared across tumor regions from each mouse to identify unique events.

Genomic segments harboring homozygous deletion or a gain
of at least three copies and less than 5 Mb in size were labeled as
focal somatic copy number aberrations (SCNAs). A total of 43
focal SCNAs containing 137 genes were identified (Fig. 1d), with
the vast majority of SCNAs (39 of 43, 91%) containing 5 genes
or fewer. Genes residing in these regions were screened to
determine candidate targets of deletions and amplifications
(Supplementary Data 6). Three mice harbored focal amplifica-
tions and deletions in well-characterized tumor suppressor
genes (Cdkn2a/b) and oncogenes (Cdk6, Myc) (Supplementary
Data 6). We also identified one statistically significant region of
recurrent alteration present in 9 of 12 mice (75%), correspond-
ing to a focal deletion on chr11.B4 (70.9-71.1 Mb) containing
two paralogs of human NLRPI—NIirplb and Nirp1c?8 (Supple-
mentary Fig. 4a, Supplementary Data 7, Methods). NLRPI is a
member of a family of pattern recognition receptors that are
critical in mediating inflammation and gastrointestinal defense
by innate immunity??-3!. In all but one mouse this deletion was
private to a single region of the tumor indicating it was a
subclonal event (Supplementary Fig. 4b). Focal homozygous
deletion of Nirplb, but not the genes immediately upstream or
downstream, was confirmed in cell lines derived from three mice
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(KPC8, KPC9, and KPTC26) in which it was inferred from
genomic analyses (Supplementary Fig. 5a, b). In a fourth mouse
(KPTC13), Nlrplb was predicted to be focally amplified in
sample T2 yet the gene could not be detected by quantitayive
polymerase chain reaction (qQPCR). In a fifth mouse (KPCS6),
NlIrp1b was inferred to be focally deleted in sample T1 but was
detected in the low passage cell line generated from this tumor,
in this case suggesting the cell line was derived from a different
subclonal population (see following section for further support
of this interpretation). Irrespectively, none of the five cell lines
expressed Nlrplb (Supplementary Fig. 5¢). We also determined
that the human ortholog NLRP1 is somatically altered in human
pancreatic cancers by screening publicly available whole exome
or whole genome sequencing data?6-32.33, We observed that
NLRPI is a target of focal homozygous deletion in 6% of a
previously documented set of 109 microdissected pancreatic
cancers2® (Fig. 2). In six patients NLRP1 deletion was associated
with concurrent deletion of TP53, also located on chromosome
17p. However, in one patient NLRPI was deleted independently,
and in three additional patients CASP1 deletions were identified
that were mutually exclusive with NLRPI deletions. Thus,
our finding of Nirplb deletions in mice appear to reflect a
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Fig. 2 Oncoprint of somatic alterations in TP53, NLRP1, and CASP1 in 109 microdissected human pancreatic cancers (original data from Witkiewicz et al.
Nature Communications 2015). Black arrowhead indicates a tumor with NLRPT deletion that is TP53 wild type. Open arrowheads indicate tumors with

CASP1 deletion that are mutually exclusive with NLRPT deletions.

biologically relevant event in human pancreatic cancer that has
not been previously recognized.

Somatic alterations and critical cellular processes in PDA.
While Kras and Trp53 transgene mutations are sufficient to
induce PDA with high penetrance, a subset of the inactivating
somatic mutations (2 of 10, 20%) and focal SCNAs (6 of 43, 14%)
in KPC and KPTC mice were predicted to have a functional
impact on mouse PDA biology by affecting genes previously
implicated in key cellular processes?>3* (Supplementary Fig. 6,
Supplementary Datas 8 and 9). Included in this subset were focal
amplifications and deletions, mutations at splice site and non-
sense mutations. KPTC mice harbored more somatic alterations
of all kinds than KPC, but the difference was not statistically
significant (Fisher’s exact test, p >0.05). Three mice (1 KPC, 2
KPTC) had mutations or amplification/deletion in genes involved
in various stages of DNA damage response; from recognition
(splice donor mutation in Msh3), to cell cycle control (nonsense
mutation in Trp53, amplification of Myc), and to cellular recovery
after DNA damage (Mastl amplification). One KPTC mouse
harbored amplification of Acer2, potentially impacting cell
adhesion and the integrin signaling pathway>. G1 to S phase
transition was impacted in one KPC and two KPTC mice. In all
three, at least one functional focal SCNA was present (Cdk6
amplification in KPC5, Myc amplification in KPTC9, and Cdkn2a/
b deletion and Jun amplification in KPTCI11). KPTCI1 also had
two Trp53 tetramerization domain mutations (p.K316N and p.
K318*) in cis with the engineered mutant allele in the DNA
binding domain p.R172H. Furthermore, this mouse, which har-
bored pancreas-specific loss of a Tgfbr2 copy, had homozygous
loss of Cdkn2b, which is an effector of cell cycle arrest by the
TGF-beta pathway3°. The Wnt/Notch signaling pathway was
affected in two mice by focal copy number alterations (amplifi-
cation of Cdkl4 and Fzdl in KPC5 and a deletion of MIilt3 in
KPTC11).

Collectively, these findings indicate that the genomic instability
in KPC and KPTC transgenic mice may impact known PDA
cancer genes, most often by copy number alterations and to a
lesser extent by single-nucleotide substitutions.

Mouse tumors show evidence of ongoing subclonal evolution.
Comparative analysis of the somatic alterations across the three
tumor regions from each mouse was used to quantify the extent
of spatial heterogeneity and reconstruct the evolutionary history
of each PDA. To assess spatial heterogeneity of mutations, we
followed the convention used for human solid tumors and cate-
gorized them as ubiquitous, partially shared and private?’,
excluding the initiating knock-in transgene mutations. The frac-
tion of ubiquitous, shared and private mutations varied widely
across the mice (Fig. 3a), which could be the result of different
evolutionary trajectories. In one mouse (KPC6), there were no
ubiquitous mutations nor mutations shared by tumor regions T1
and T3, indicating the presence of two independent primary

tumors that collided in region T2. The transgenic genotype
(KPC vs. KPTC) was not associated with the extent of spatial
heterogeneity of mutations (¢ test, two-sided p value: 0.47).

Next, we modeled the ordering of mutations across tumor
regions, based on the estimated proportion of cancer cells
harboring each mutation or its cancer cell prevalence. Under the
infinite sites assumption, commonly used to make this modeling
problem tractable®®, ancestral mutations are expected to
have higher cancer cell prevalence than their descendants.
Prevalence was estimated by considering a mutation’s variant
allele frequency, copy number of its genomic position, and
tumor purity (Methods, Supplementary Data 10). Clustering
mutations based on cancer cell prevalence, across the three
regions of each tumor, yielded distinct mutation groups, which
were hypothesized to have appeared at a similar evolutionary
time point and to co-localize in the same cells. Two to seven
mutation groups were observed in each mouse, with no apparent
association between genotype (KPC or KPTC) and number of
groups. Mutation groups with the maximum possible cancer cell
prevalence across the three regions as well as those at
intermediate to very low prevalence were also identified (Fig. 3b).
Intermediate to very low prevalence groups serve as markers of
subclones, i.e., cellular populations sharing the same mutations,
some of which were not present in the initiating clonal
expansion driving the tumor. The existence of these groups
supports the presence of subclonal evolution subsequent to the
original transgenic events in these mouse tumors. We recon-
structed the tumor phylogeny of each mouse tumor by Subclonal
Hierarchy Inference from Somatic Mutations (SCHISM) analy-
sis>%, and observed a similar frequency of linear (5) and
branched (7) evolutionary patterns (Figs. 4 and 5). Both patterns
occurred in KPC and KPTC mice. Mice with linear phylogenies
had a shorter survival (¢ test, two-sided p value: 0.04). Four of
five mice with linear phylogenies had amplifications of known
oncogenes or somatic mutations in known tumor suppressor
genes that likely drove the sequential clonal expansions of the
neoplasm (Fig. 4). We noted Cdk6, CkdI4, and Fzdl amplifica-
tions in KPC5, a subclonal splice site mutation in Msh3 in KPC8,
Jun and Acer2 amplifications followed by two additional Trp53
mutations in KPTCII, and Myc and Mastl amplifications in
association with mutations in Smo and then Bcl9 in KPTC9. In
the case of KPTC9, all 12 somatic mutations were present in all
three tumor regions, suggesting the Smo and Bcl9 mutations
occurred before subclonal sweep caused by the Myc amplifica-
tion (up to 9-fold increased). In KPTC26 linear progression was
also supported by the step-wise accumulation of somatic
mutations although no specific gene could be implicated as
driving the clonal expansion. In mice with branched phylogenies
(Fig. 5), the divergence of tumor lineages occurred either directly
after Cre-lox mediated activation of the mutant alleles, again
consistent with the finding of independent synchronous primary
tumors in KPC6, or after the accumulation of additional somatic
alterations as seen in KPTCI2 and KPTC24.
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Discussion

The KPC mouse modell® is among the most commonly used
model for studying PDA due to its faithful recapitulation of the
neoplastic histology, desmoplastic stroma and aggressive meta-
static spread to regional and distant organs>*8. We now show
that this model and the KPTC derivative accumulate additional
subclonal somatic alterations, predominantly in the form of copy
number alterations that affect core PDA pathways??, including
those targeted by the transgenes themselves (Kras, Trp53). Evi-
dence of clonal heterogeneity in engineered mouse PDAs has
been previously reported, based on studies of diverse protein
expression patterns!> and Confetti fluorescent labeling in KPCX
mice0. However, clonal heterogeneity in these models has not
previously been observed at the genetic level. Moreover, initial
reports of KPC genetics indicated a lack of mutations in PDA
genes beyond those included in the transgenic constructs!® and
unbiased multiregion whole exome sequencing of mouse PDA
tissues has never been performed. Overall our findings are con-
sistent with those of McFadden et al.?’ in which additional
somatic alterations that converge on the initial oncogenic signal
(s) are the most relevant genetic events driving tumor progression
in murine models. By contrast, our analysis did not identify any
instance of chromothripsis affecting the Cdkn2a locus on chro-
mosome 423, likely explained by the limited power for detecting
low frequency events in this cohort size and our experimental

design. Only one of 12 mice in this study had a homozygous
deletion of Cdkn2a (KPTCI1). Consistent with a previous study
highlighting the contingency of Trp53 or Cdkn2a alterations in
mouse PDA, subsequent to KRAS mutation?3, the lack of Cdkn2a
alterations is not surprising.

Because KPC PDAs are initiated at the same time, develop
within the same genetic background, and in the same environ-
ment, they provide unique opportunities to study the evolution of
PDA not otherwise possible in patients. Multiregion sequencing
of these mouse model tumors makes it feasible to model clonal
and subclonal evolution as it occurs in vivo, in an otherwise
controlled setting. While our sample size is small in this study, we
can already draw some conclusions about PDA evolution in
transgenic models. First, these data suggest that evolutionary
trajectories arising in the same setting can undergo linear or
branched evolution with similar frequencies. Second, PDAs that
progress due to linear evolution are associated with shorter life-
spans than mice whose PDA follows a branched evolution pat-
tern. This raises interesting follow-up questions regarding the
extent to which the microenvironment or immune system pose
differences in selective pressure?!, or the extent to which PDAs
progress by way of a genome-based cancer evolution model*2.
Finally, perturbation of a major signaling pathway known to play
a role in PDA biology (TGEp) in KPTC (but not KPC) mice, does
not appear to affect the evolutionary trajectories or mutational
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Fig. 4 Linear tumor phylogeny in KPC/KPTC mice. Mutation cluster cancer cell prevalence was compatible with a linear evolutionary pattern in five mice
based on SCHISM analysis, which reconstructs tumor phylogeny as a hierarchy of mutations acquired by cancer cells during the process of tumorigenesis.
The schematic diagram beneath each tumor phylogeny depicts the hierarchical order of subclones identified.
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Fig. 5 Branched tumor phylogeny in KPC/KPTC mice. Seven mice had mutation cluster cancer cell prevalence values compatible with a branched
evolutionary pattern. For mice KPC6, KPC9, KPTC13, no mutation cluster appeared at high frequency in all three tumor regions, suggesting two synchronous
primary tumors arose in these mice. A mutation cluster consisting of the knock-in tumor initiating mutations was added manually to represent the common
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frequencies of the mouse tumors in a meaningful way. A lim-
itation of our study is that for those tumors where we sequenced
fewer than three regions, our ability to detect subclones and
branched evolution is lower.

While gene discovery was not the purpose of this study we
nonetheless identified a novel homozygous deletion with poten-
tial relevance to human pancreatic cancer. Homozygous deletion
of Nirp1b was found in 75% of mice studied, whereas in humans
NLRPI or its downstream target CASPI is deleted in 9% of
cancers analyzed. We note that NLRP] deletion was not found in
other large scale sequencing studies of pancreatic cancer, poten-
tially because they utilized purified but not microdissected
materials for study3>33 or the sample size was not powered
to detect low frequency events?®>. NLRP1 is a cytosolic sensor
of microbial infection that leads to activation of the pro-
inflammatory protease CASPASE-1; in turn, CASPASE-1 acti-
vation leads to processing and maturation of IL-1p, IL-18, and
pyroptosis*3. Thus, NLRPI deletion in mice and humans links
perturbation of the innate immune system, and by extension the
microbiome, to pancreatic carcinogenesis and progression*4.
Consistent with this notion, Pushalkar et al.*> recently illustrated
the role of the pancreatic cancer microbiome in promoting
oncogenesis by induction of both innate and adaptive immune
mechanisms. Furthermore, Daley et al.4¢ indicated a role for
NLRP3 signaling in macrophages that leads to a tumor promot-
ing immune environment. Collectively, our data not only suggest
that disruption of the NLRP1 inflammasome plays a role in
pancreatic cancer progression, but also indicate that disruption
may occur by genetic mechanisms. Future functional studies
would be needed to confirm this possibility.

Methods
Mouse model generation and tissue collection. To generate 6 KPC (LSL-
KRASG12D/+;LSL-Trp53R172H/+; PtflaCre/+) and 6 KPTC (LSL-KRASG12D/
+; LSL-Trp53R172H/+;Tgfbr2flox/+; PtflaCre/+) transgenic mice (as previously
described 15, 17), the LSL-K-ras G12D, LSL-Trp53R172H/4-(B6;12954-
Trp53tm2Tyj/]), Tgfbr2flox/+(B6.129S6-Tgfbr2tm1HIm) and PtflaCre/
+(Ptflatm1.1(cre)Cvw) mouse strains were used. These strains were first bred to
generate the genotypes, LSL-KRASG12D/+;Trp53R172H/+(KP) and Tgfbr2flox/
+;PtflaCre/+(TC), and then the KP mice were intercrossed with TC mice to
produce the experimental cohorts, LSL-KRASG12D/+;LSL-Trp53R172H/+;
PtflaCre/+(KPC) and LSL-KRASG12D/+; LSL-Trp53R172H/+;Tgfbr2flox/+;
PtflaCre/-+(KPTC)!>17. On average, the KPC/KPTC animals succumbed around
155 + 52 days (Supplementary Data 1), with no significant difference in survival
across the two genotype groups KPC (171 + 66) and KPTC (139 + 30), likely due to
our small sample sizel”. In each mouse, recombination was confirmed by exam-
ining the rearranged mutant allele(s) in the pancreas and matched normal kidney.
The pancreatic tumor tissue harvested from each mouse was grossly macro-
dissected from surrounding normal tissues and divided into three adjacent regions
before immediately snap freezing in liquid nitrogen (Fig. 1a). Histologic review of
the non-adjacent tumor regions in each mouse revealed a wide range of differ-
entiation across the cohort (Supplementary Data 1).

All relevant ethical regulations for animal testing and research have been
complied with. The study received ethical approval by the Johns Hopkins Animal
Care and Use Committee.

Cell Lines. The KPC and KPTC cell lines were established from PDA tumor tissues
derived from KPC and KPTC mice!”. All lines were cultured in DMEM (GIBCO,
Invitrogen Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (FBS), 100 units/ml penicillin, 100 pg/ml streptomycin, and 2 mmol/
L r-glutamine at 37 °C and 5% CO,. All lines were also confirmed mycoplasma free
before use in any experiments.

DNA extraction and quality control. Genomic DNA was extracted from all three
regions of each KPC (n=6) and KPTC (n=6) tumor using a DNeasy Blood &
Tissue Kit (Cat No./ID 69506; Qiagen). Germline DNA was obtained from mat-
ched normal kidney tissue. Extracted DNA was quantified by Nanodrop and Qubit
using standard procedures and the integrity of the genomic DNA was confirmed by
gel electrophoresis.

Whole-exome sequencing. Whole-exome sequencing libraries were prepared
from the genomic DNA isolated from the non-adjacent pieces T1 and T3 and for

matched normal kidney in each mouse, using the Agilent SureSelectXT Mouse All
Exons capture kit, per the manufacturer’s protocol. Paired-end whole exome
sequencing was performed on an Illumina HiSeq 2500 platform. Preprocessing of
sequencing reads from all samples, including de-multiplexing, masking of adaptor
sequences, and alignment to mouse reference assembly GRCm38/mm10 was per-
formed in Hlumina’s CASAVA v1.8.2%, yielding a median sequence coverage
depth of 133 x (tumor) and 73 x (normal), and a minimum coverage depth of 10x
in 93 £5% (tumor) and 86 +7% (normal) of bases in the exome target region.
Sequence alignment (BAM) files were processed according to the Genome Analysis
Toolkit (GATK) best practices guideline*$4°. Duplicate reads were marked and
removed using Picard (v1.11, http://broadinstitute.github.io/picard). Genome
Analysis Toolkit (GATK v3.1.1-g07a4bf8) was used to perform local realignment in
the proximity of candidate positions with insertion/deletion (indels) and around
the set of known polymorphic loci, with indels retrieved from the online catalog of
the Mouse Genome Project (v4.0)°>1. Base quality scores were recalibrated by
GATK, masking out the above set of known polymorphic positions.

Somatic mutation calling, annotation, and prioritization. Somatic mutations in
each tumor sample were identified by processing the matched normal and the
tumor reads with MuTect (v1.1.7)°2, using default parameter settings. The somatic
mutations were annotated according to mutation consequence type (missense,
nonsense, synonymous, splice site, etc.) with the Ensemble Variant Effect Predictor
tool (VEP)°3. Mutations with differing consequence types across multiple tran-
scripts were assigned the most severe consequence type, according to Ensemble,
and Ensemble canonical transcripts were selected when multiple transcripts pro-
duced equally severe consequences (http://ensembl.org/info/genome/variation/
predicted_data.html). Furthermore, we predicted the pathogenicity of mutations
using SIFT4, VEST®%, and REVEL>®. We limited our analysis to mutations in
protein-coding exons with minimum coverage of 10 reads, minimum of 3 variant
allele reads and variant allele frequency (VAF) of at least 1%, with at least one read
mapped to each of the forward and reverse strands. Mutations were visually
inspected in the Integrative Genomics Viewer (IGV v2.3.14)2357:58 to filter out
mutation calls in regions of poor alignment quality, regions with low complexity or
sequence repeats, or those with more than one variant allele read in normal. A
small number of candidate somatic insertions/deletions (indels) were identified in
the tumor samples using Scalpel (v0.3.2);%° However, these candidate positions did
not pass the quality control filters above, and they were mostly located in highly
repetitive regions.

To evaluate the relevance of the observed sequence alterations to human
pancreatic adenocarcinoma, three tiers of annotation were added to the list of genes
harboring somatic mutations. In the first tier, we used our in-house curated
database of genes, which are established human PDA drivers or harbor at least two
deleterious mutations in five sequencing studies of human PDA?25:26:33,3460 The
second tier considered the frequency of gene mutation in three sequenced cohorts
of human PDA?>26:34, Finally, we calculated the number of cases with
nonsynymous mutations in 33 TCGA tumor types.

The frequency of gene mutation in three PDA studies was retrieved using
Supplementary Data 1 from?. TCGA Multi-Center Mutation Calling in Multiple
Cancers (MC3) mutation calls were downloaded from synapse (https://doi.org/
10.7303/syn7214402). The mapping between sample barcodes and tumor type was
retrieved using the package TCGAbiolinks-2.2.10°! in R version 3.3.2, and the
number of cases with nonsynomous mutations across the samples in each tumor
type was reported.

Somatic mutation validation. Targeted amplicon sequencing at candidate
somatically mutated positions that passed the above filtering criteria was performed
on all three tumor regions of each mouse. Amplicons were sequenced in the MSK
Integrated Genomics Operating (IGO) Core using the lon PGM™ system and
aligned to the mouse reference assembly (mm10) using tmap, the manufacturer’s
alignment tool. The resulting sequence alignment files were processed using the
GATK utility, as with the whole exome data, but omitting the duplicate read
removal step. Allele-specific read counts for sequencing reads mapping to forward
and reverse strands were generated by samtools®2. Candidate mutations passing
four filters were marked as validated: (1) minimum variant allele frequency of 1%
in at least one tumor region; (2) minimum variant read count of five in at least one
tumor region; (3) minimum of three reads mapping to the forward strand in at
least one tumor region; and (4) minimum of three reads mapping to the reverse
strand in at least one tumor region. The stricter filtering criteria, compared to
whole-exome sequencing, were motivated by higher sequencing coverage and base
error rate in the amplicon resequencing. The set of validated mutations from all
mice was visually reviewed in the Integrative Genomics Viewer (IGV)>8 to confirm
the quality of filter performance. The validated set included 159 high confidence
mutations, with median sequence coverage of 334 x (MAD = 108). The targeted
sequencing allowed us to identify false positive mutation calls, to screen for
mutations in tumor region T2, for which whole exome sequence was not available,
and to yield higher sequence coverage and more accurate VAF estimates.

Germline variant identification. An initial set of candidate germline single-
nucleotide polymorphisms (SNPs) were identified from the exome data of the
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matched normal (kidney) sample of each mouse using GATK
UnifiedGenotyper*$4%:63, by setting the standard minimum threshold for calling
positions to 30, and down-sampling reads at regions with excessive coverage to
250x. This initial set was filtered to exclude positions with depth of coverage (DP)
less than 20, quality score normalized by allelic depth (QD) less than 2, Fisher’s
strand bias (FS) greater than 60, mapping quality (MQ) less than 40, haplotype
score (HS) greater than 13, MQ rank sum (MQRankSum) less than —12.5, or read
position rank sum (ReadPosRankSum) less than —8.0.

Tumor purity estimation. The fraction of cancer cells in each tumor region
(tumor purity) was determined by a custom-designed real-time PCR-based assay.
The assay is based on a polymerase chain reaction-amplified sequence of 270 bp of
Trp53 LSL cassette, using the primer pair T036 (5'-agc tag cca cca tgg ctt gag taa gtc
tgc a-3’) and T035 (5'-ctt gga gac ata gcc aca ctg-3’). Upon expression of the Cre
recombinase enzyme, the LSL cassette is removed in tumor cells, but not in cells
from non-cancer tissue. Then the PCR assay can determine the abundance of non-
cancer tissue in the KPC and KPTC tumor samples. To calculate the purity, a
standard reference was established by mixing KPC pancreatic cancer cell line
gDNA with that of non-tumor kidney from KPC mice at varying proportions. The
standard categories were set up as 0, 10, 20, 40, 60, 80, and 100% of pancreatic
cancer cells. Genomic DNA from tumor tissues or standards was quantified by
Qubit fluorometer (Invitrogen) and Nanodrop, and 10 ng DNA was subjected to
qPCR in a total volume of 20 ul reaction system, using primers targeting Trp53 LSL
cassette. Primer pair (Forward: 5'-GTAGCCATCCAGGCTGTGCTG-3'; Reverse:
5'-GATGGGCACAGTGTGGGTGAC-3') amplifying 90 bp B-actin genomic
sequence was set up as an internal control to normalize the input amount of gDNA
for qPCR. Cycle threshold (Ct) values from the standard reference experiment
above (performed in triplicate) were used to fit a regression model Y =AX + B,
mapping the purity (X) to the read out Ct value (Y). The fraction of pancreatic
cancer cells in each KPC or KPTC tumor tissue was estimated using the regression
model. The assay was repeated a minimum of three times for each sample per
mouse, and the average of purity estimates was reported (Supplementary Data 11).

Array comparative genomic hybridization. Array comparative genomic hybri-
dization (aCGH) was performed by labeling DNA from each tumor region and
matched normal sample of each mouse with Cy5 or Cy3 fluorescent dyes. The
labeled pool was hybridized to Agilent-014695 Mouse Genome CGH Microarray
244A. The microarray, which is optimized for copy number profiling, includes
more than 235,000 distinct biological features, with median spacing of 6.2 and
15.2 kb in coding, and noncoding genomic sequences, respectively. The arrays were
scanned and preprocessed by Agilent Feature Extraction software following man-
ufacturer’s protocols. Background subtraction and within array normalization
(loess) of intensity values were performed by bioconductor limma package
(v3.22.7)64-66 in R statistical software (v3.2.3)%7. Genome regions with constant
copy number were identified by segmenting the log ratio of tumor to normal
intensities using circular binary segmentation with default parameters imple-
mented in bioconductor DNAcopy package (v1.40.0)%8 in R statistical software
(v3.2.3)%7. To reduce over-segmentation due to noise in data, splits between seg-
ments with mean values within 3 standard deviation of each other were removed by
the “undo” method of the same package. Segment log2 ratio values were corrected
for variable tumor purity in each region. The observed log2 ratio of tumor to
normal signal, in a sample with tumor purity p is

e CN; + (1 - p)CN
log, R :10g2<p—T C(NN ?) N), (1)

where CNr and CNy are the integer copy number of the segment in tumor and
normal cells. Since tumor purity p and normal copy number CNy are known, given
an observed value of log2 ratio, we can solve for tumor copy number CN7. CNy
was rounded to the closest integer. Autosomal regions with with CNy= 0 were
labeled as homozygous deletions, and those with a minimum CNy of 5 were called
amplified. Large scale copy gains or losses were defined as alterations spanning at
least 50% of the chromosome. Genomic coordinates from NCBI reference sequence
collection (RefSeq)® in mm9 coordinates were retrieved, and intersected with copy
number segment coordinates to derive the somatic integer copy number of genes in
each tumor region. Focal amplifications and deletions were defined as genomic
segments with homozygous deletion (HD: CNy = 0) or gain of at least three copies
(Amp : CN; > 5), and less than 4 Mb in size. These segments were narrowed
down to those covering at least five array probes and located on autosomes. Focal
aberrations of same class (HD or Amp) were merged if their boundaries were less
than 100 kb apart. To identify the evolutionary status of focal copy number events,
aberrations detected in multiple regions of the same mouse, and sharing an overlap
of at least 50% (overlap/union) were considered to be same events. The segments
were further filtered to only include those which overlap the coding sequence of at
least one gene (RefSeq, mm9) (Table S6).

GISTIC v2.0 was applied with default parameters, and confidence level of 0.9 on
a collection of 12 tumor regions (including the tumor region with highest purity
from each mouse) to assess the genome wide significance of focal copy number
alterations. False-discovery rate (FDR) of 0.05 was used as the significance
threshold (Table S7).

Exome-wide allelic imbalance analysis. By evaluation of minor allele frequencies
(MAFs) along the exome, we screened for candidate genes which harbored allelic
imbalance (including loss of heterozygosity). Genomic coordinates of genes
annotated on reference assembly mm10 were retrieved from UCSC’s refGene table
(including protein-coding and non-protein-coding genes from the NCBI RNA
reference sequences collection, RefSeq)%%70. Allelic imbalance in the region around
each gene was determined by comparison of the MAF of ten germline heterozygous
SNPs closest to the gene mid-point between tumor and matched normal samples in
each mouse as follows. At each position harboring a germline heterozygous SNP,
the number of reads with the reference and alternate alleles in each sample were
recorded using samtools (v0.1.19)6271, Positions with DP below 20 were labeled as
uninformative and excluded from analysis. Because the observed MAF in regions
with one copy loss deviated from the expected value of 0 (due to normal con-
tamination), simulation experiments were performed to identify the optimal MAF
threshold to call allelic imbalance, taking into account the estimated purity and
sequencing coverage in each tumor region. Given the expected value of minor allele
frequency in a region with one copy deletion, in a tumor with purity of p

_(-p
23 @

2-p)

We simulated the reference and alternate read counts for a batch of 10,000
hypothetical SNPs in tumor and normal sample (MAF™™! = (.5), using a binomial
process, with the number of trials set to the sample sequencing coverage. MAF values
were averaged over subsets of size 10, yielding 1000 data points in tumor and normal.
At each threshold level between 0 and 0.50 in increments of 0.01, sensitivity/
specificity/F1-score values for classifying allelic imbalance as below the threshold were
calculated. In each sample, we determined a threshold yielding a sensitivity and
specificity exceeding 0.8. Samples where such threshold could not be found
(commonly due to low tumor purity) were labeled as lacking power for allelic
imbalance analysis (KPC5-T1, KPC9-T3, and KPTC9-T3). In the remaining samples,
the threshold value with maximum F1-score was select as optimal MAF threshold
value of each sample, from the subset of all thresholds satisfying the minimum
sensitivity and specificity criteria. The mid-point for each gene was defined as the
average between the coding sequence start and end coordinates. The MAF values of 10
closest SNPS to each gene (mid-point) were compared between tumor and matched
normal sample using one-tailed ¢ test, and the p values were corrected for multiple
hypothesis testing using Benjamini Hochberg procedure. Genes with mean tumor
MATF below the optimized threshold, and with FDR < 5% were labeled as harboring
allelic imbalance. In each mouse, the set of genes with allelic imbalance was generated
by taking the union of all such genes in tumor regions T1, and T3. Background rates
of gene allelic imbalance were derived for the mice with KPC genotype, those with
KPTC genotype, and the entire cohort. In each gene, the enrichment for allelic
imbalance was assessed using a binomial process and the background rates above.
Benjamini-Hochberg correction was applied to the resulting p values.

MAFtumor

Subclonal hierarchy inference and tumor phylogeny reconstruction. SCHISM>®
was applied to reconstruct the evolutionary history of PDAC in each mouse. For
each somatic mutation in each tumor region, allelic read counts were extracted
from targeted amplicon sequencing. We combined the reference and variant read
counts for each mutation with estimated tumor purity and somatic integer copy
number, to construct a point estimate and confidence interval for the cancer cell
prevalence, in each tumor region. The expected variant allele frequency of a
mutation with cellular prevalence, multiplicity m, and in a genomic region with
tumor copy number CN and normal copy number CNy is

pmC

o = pONy + (1 pIONy o

multiplicity m € [1, CN;] is the number of mutation copies present in a tumor cell.
The variant read count r, is modeled as number of successes in a binomial process
where the number of trials 7., is equal to the DP, and the probability of success is
Vexp- Given CNr, we constructed the confidence interval over C for each possible
value of m by normalizing the binomial probability over a grid of cancer cell
prevalence values p between 0 and 1, with 0.01 increments. For mutations located
in regions with CN € [1, 2] only one value of multiplicity (m = 1) is plausible. The
prevalence of mutations in regions with copy gain was treated as a missing value,
unless deductive reasoning could rule out all but one multiplicity value. Examples
include cases where certain values of m resulted in cellular prevalence exceeding 1,
or cases where the mutation was absent in a tumor region and the point estimate of
cellular prevalence was at 0.0 regardless of value of m (Table S9). A statistical
hypothesis test was applied to assess the potential temporal ordering of each pair of
mutations. Clustering mutations based on similar cancer cell prevalence across
tumor regions yielded mutation groups expected to have originated at the same
evolutionary time point and to occur in the same cells. Clustering was performed
with DBSCAN72 (Scikit-learn v0.14.173, and the number of mutation groups was
selected by comparison of silhouette coefficients, and the final solution was visually
examined for quality control (Fig. 3b). In three mice (KPC9, KPTCI2, KPTC13)
where DBSCAN was unable to find high quality solutions, and affinity propaga-
tion”# (Scikit-learn v0.14.0) was applied as a secondary clustering approach.
SCHISM v1.1.1 was run with default parameter settings to yield the phylogenetic
trees representing tumor evolutionary histories (Figs. 4 and 5). Tumor regions T1
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and T2 from KPC5, T3 from KPTCI1, and T2 from KPTC26 were excluded from
SCHISM analysis due to low variant allele frequency (£0.02) across all mutations,
or unavailability of a copy number profile (KPTC26-T2).

Cell lines. The establishment of KPC and KPTC cell lines has previously been
described!”. Briefly, cell lines were passaged at least five times to remove all non-
neoplastic elements, then genotyped by PCR to confirm they contain the recom-
bined alleles. Cells were implanted both subcutaneously and orthotopically to
confirm tumorigenicity in CD1™%/2% mice, All lines were cultured in DMEM
(GIBCO, Invitrogen Life Technologies, Carlsbad, CA, USA) supplemented with
10% FBS, 100 units/ml penicillin, 100 pg/ml streptomycin, and 2 mmol/L L-gluta-
mine at 37 °C and 5% CO,. All lines were also confirmed mycoplasma free before
use in any experiments.

gqPCR for validating a deletion on Chr11.B4 (70.9-71.1 Mb). Genomic DNA
(gDNA) were extracted from cells using a DNeasy Blood & Tissue Kit (Cat No./ID
69506; Qiagen). gDNA obtained from tumor-free kidney tissue were used as wild-
type control of chrll: 70.9-71.1 Mb locus. Extracted DNA was quantified by
Nanodrop and Qubit using standard procedures, and 10 ng of gDNA was subjected
to gPCR analysis. The following primer pair amplifying a 190 bp fragment located
at the up-stream of Nlrplb gene within the deleted locus was used for this assay:
forward, 5'-ggagatcgcatagctcagttg-3' (CHR_CAST_EI_MMCHRI11_CTG4:
71,065,735-71,065,757); reverse, 5'-gtgtccaacagcccagaaata-3’ (CHR_CAS-
T_EI_MMCHRI11_CTG4: 71,065,904-71,065,926). Primer pairs targeted against
three different genes flanked 70.9-71.1 Mb region were also included into the gPCR
assay: Forward 5'-gatgtggcge cacagetget c-3’ and reverse 5'-ctggtccttctctctgegttg-3’
for Derl2; Forward 5’-ccacagactt gectgetgag g-3' and reverse 5'-ctgctectctaattctg-
caag-3’ for Mis12; Forward 5’'-ctagagct gtgctaccga age-3’ and reverse 5'-
cagggccteccatatgagattc-3' for Nlrplb-1c-ps. Primer pair (Forward: 5'-gtagccatc-
caggctgtgctg-3'; Reverse: 5'-gatgggcacagtgtgggtgac-3') amplifying 90 bp B-actin
genomic sequence was set up as an internal control to normalize the input amount
of gDNA for qPCR. Real-time quantitative PCR analysis was performed using an
automated sequence detection instrument (7300 Real Time PCR System, Applied
Biosystems, CA, USA) for the real-time monitoring of nucleic acid green dye
fluorescence (SYBR®Green, Invitrogen Inc, CA, USA). Relative fold-changes of the
target locus compared to B-actin locus were determined by calculation of the 284Ct,
All analyses were performed in triplicate at least two times.

Real time qRT-PCR. Total RNA was extracted from KPC and KPTC cells using
RNeasy mini Kit (Cat. No. 74104; Qiagen). RNA was treated with DNase I
(Invitrogen) to digest remnant genomic DNA. cDNA was synthesized from 0.5 pg
of total RNA by the High-Capacity cDNA Reverse Transcription Kits (Applied
Biosystems) according to the protocol recommended by the manufacturer. Real-
time quantitative RT-PCR analysis was performed using an automated sequence
detection instrument (7300 Real Time PCR System, Applied Biosystems, CA, USA)
for the real-time monitoring of nucleic acid green dye fluorescence (SYBR’Green,
Invitrogen Inc., CA, USA). Relative fold-changes of analyzed gene expression
compared to the housekeeping gene B-actin were determined by calculation of the
2AACt ANl analyses were performed in triplicate at least two times. Primer
sequences will be provided upon request.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Whole-exome and targeted sequence data of the KPC (n = 6) and KPTC (n = 6) tumor
samples are available on the NCBI Short Read Archive database (Accession #
PRJNA546566). Array CGH data of the same sample sets is available on the Gene
Expression Omnibus database (Accession # GSE132235). All processed data relevant to
this work are available in the Supplementary Files (Supplementary Information,
Description of Additional Supplementary Files and Supplementary Datas 1-11). All
other relevant data are available upon request.

Code availability
All bioinformatics methods employed in the analyses are publicly available and
referenced under Methods.
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