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The morphology of the cervical cell nucleus is the most important consideration for pathological cell
identification. And a precise segmentation of the cervical cell nucleus determines the performance of
the final classification for most traditional algorithms and even some deep learning-based algorithms.
Many deep learning-based methods can accurately segment cervical cell nuclei but will cost lots of time,
especially when dealing with the whole-slide image (WSI) of tens of thousands of cells. To address this
challenge, we propose a dual-supervised sampling network structure, in which a supervised-down sam-
pling module uses compressed images instead of original images for cell nucleus segmentation, and a
boundary detection network is introduced to supervise the up-sampling process of the decoding layer
for accurate segmentation. This strategy dramatically reduces the convolution calculation in image fea-
ture extraction and ensures segmentation accuracy. Experimental results on various cervical cell datasets
demonstrate that compared with UNet, the inference speed of the proposed network is increased by 5
times without losing segmentation accuracy. The codes and datasets are available at https://github.-
com/ldrunning/DSSNet.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introductions

Cervical cancer is the fourth leading malignant tumor that
threatens women’s lives, and the deaths account for about 8% of
all female cancer deaths [1]. It g-enerally takes ten years or more
from precancerous lesions to cervical cancer. During this period,
cervical cytology screening can detect cancerous or precancerous
cells. Thus, cervical cytology screening is an effective way to reduce
the incidence rate and mortality of cervical cancer [2]. redIn cervi-
cal cytology screening, cell classification is mainly based on fea-
tures including the area and color of nucleus, the smoothness of
nuclear membranes and nuclear-cytoplasmic ratio (N/C), and tex-
ture [3–5]. Among them, the cell nucleus is the important consid-
eration for reporting cervical cytology. And a precise nucleus
segmentation determines the performance of the final classifica-
tion for some deep learning-based algorithms [4,6–9] and all clas-
sical approaches [10–13]. So, an accurate and fast segmentation of
the cell nucleus is crucial in the computer-aided diagnosis systems,
but it is still challenging at present. The challenge stems from the
following facts. There are tens of thousands of cervical cells in one
WSI, among which the number of lesion cells ranges from a few to
dozens. The WSI has much poor contrast and uneven staining
regions [14,15], and it is complicated to separate the lesion cells
from the normal cells [6,16]. Moreover, segmenting all cell nuclei
in a WSI for identifying lesion cells is highly time-consuming for
some current state-of-the-art methods.

Numerous methods have been proposed for cell nucleus seg-
mentation. Threshold [5,17] segmentation distinguishes the
nucleus from its surrounding region by finding an appropriate
grayscale threshold and requires image preprocessing and subse-
quent morphological operations to improve the segmentation
accuracy. K-means [7,18] utilizes the grayscale information of cells
and considers factors such as cell color, texture, and gradient
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distribution, which improves the algorithm’s robustness. SVM
[19,20] integrates more texture features such as spectrum, shape,
and gradient features of the image in the process of nucleus seg-
mentation, and can be applied to complex backgrounds. These
algorithms are computationally fast and meet real-time require-
ments. However, these algorithms require stable grayscale, color,
and contrast information of the dataset and are only applicable
in environments where pathological slides’ color and texture styles
differ slightly. Pathological slides have great dispersion in color
style and image quality in the actual diagnosis due to the slicing
process, staining methods, and imaging instruments [21–23]. As
a result, these algorithms still have some difficulties in their actual
use.

In recent years, deep learning-based methods have been pre-
dominant in cell nucleus segmentation. UNet [24] is a widely used
segmentation method, and its network structure has been further-
more developed. PGU-net+ [8] replaces the convolutional module
of UNet with a residual structure, and the model is progressively
trained using multiple scales. UNet++ [25] modifies long-range
skip connection to short-range connection, enabling flexible fea-
ture fusion in the decoder, and its network is designed as a collec-
tion of UNet at different depths. nnUNet [26] automatically
optimizes the network training process and can independently
set the structure and hyperparameters of the network according
to the characteristics of the training datasets. Mask-RCNN + CRF
[9] generates robust but rough cell nucleus segmentation and then
uses the conditional random field to refine the coarse segmenta-
tion. Cellpose [27] has been demonstrated to be a generalist seg-
mentation method that originates from network structure design
and train dataset construction. These methods significantly
improve the segmentation accuracy from highly varied images
due to their efficiency in capturing complex features of the cell
nucleus. However, little attention has been paid to segmentation
speed.

This paper proposes a fast segmentation network named Dual-
Supervised Sampling Network (DSSNet). In the DSSNet, an autoen-
coder structure is adopted to perform supervised dimensionality
reduction on the original image [28]. The original image is encoded
into multiple compressed image blocks for feature extraction,
which vastly reduces the subsequent calculation in the network.
Second, residual blocks are cascaded to extract the image features
without pooling operations. The feature map size remains
unchanged to avoid the loss of spatial information. Finally, the
ground truth boundary of the nucleus is used to supervise the
up-sampling process for recovering the high-resolution informa-
tion of the decoding layer. DSSNet is evaluated on a variety of cer-
vical cell nucleus datasets. The results demonstrate that DSSNet
can improve 5 times segmentation speed with the same level of
segmentation accuracy as UNet.
2. Network structure

The dual supervised sampling network includes supervised
down-sampling module, feature extraction module, and super-
vised up-sampling module, as shown in Fig. 1. In the supervised
down-sampling module, the original image is supervised dimen-
sionality reduction into 30 compressed images with 1/8 original
image size. The down-sampling process is managed by the
super-resolution network. These compressed images are fed into
the feature extraction module for feature extraction. The feature
extraction module consists of 10 cascade residual blocks, in which
there is no down-sampling operation to avoid the loss of feature
information. In the supervised up-sampling module, the edge
detection network is designed to supervise the up-sampling pro-
cess of the decoding layer features for better segmentation. Note
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that both super-resolution and edge detection networks are only
used in training.

2.1. Supervised down-sampling module

The supervised down-sampling module consists of the down-
sampling network and the super-resolution network [29], both
regarded as autoencoder (Fig. 2). Different from the purpose of
down-sampling in existing semantic segmentation networks,
the role of this module is to obtain a set of compressed low-
resolution images to replace the original images for segmenta-
tion. This operation is similar to the reverse process of video
super-resolution [30,31]. The down-sampling network structure
is shown in Fig. 2(a). First, the original image passes through a
convolutional layer to obtain a feature map with a width of
30. Then we use two branches to compress the feature. One
branch adopts maximum pooling to obtain nonlinear compres-
sion features; the other adopts two convolution operations to
obtain linear compression features. We repeat the above opera-
tion three times to get 30 low-resolution images with 1/8 orig-
inal image size, which is the final compressed image block.
The super-resolution network (Fig. 2(b)) includes convolution
layers, residual blocks, and pixel-shuffle layer [32,33]. Its func-
tion is to reconstruct the image from the compressed low-
resolution image block. The reconstrued image is required to
be similar to the original image as much as possible. Based on
this consideration, the loss function to supervise the down-
sampling process is given below.

SSIMðx; yÞ ¼ ð2uxuy þ C1Þð2rxy þ C2Þ
ðu2

x þ u2
y þ C1Þðr2

x þ r2
y þ C2Þ ð1Þ

LossSSIM ¼ 1� SSIMðx; yÞ ð2Þ
where SSIM [34] is the structural similarity that measures the sim-
ilarity between two images, x is the original image, and y is the
image reconstructed by the super-resolution network, ux and uy

are the mean value of the pixel values of the original image and
the reconstructed image, rx and ry are the variance of the original
image and the reconstructed image, and rxy is the covariance of the
two images. C1 and C2 are constant coefficients to avoid zero in the
calculation formula.

2.2. Feature extraction module

The basic structure of the feature extraction module is the
residual network [35]. We modify the residual structure for better
segmentation. Compared with the current structure [37,36], the
modified residual block has two convolution layers side by side
for increasing the receptive field of the feature layer, named
wide-bottleneck residual block(W-NECK) (Fig. 3). The feature
extraction module consists of a convolutional layer and ten cas-
cade wide-bottleneck residual blocks and has no down-sampling
layer, which avoids the loss of spatial information. The cascaded
residual blocks will transfer spatial information block by block
and increase the semantic information [38,39]. The function of
the cascaded residual blocks is shown in Expression (3). rk repre-
sents the semantic information obtained from the k-th residual
block. /ð�Þ represents the functional expression of the residual
block. We can be seen from Expression (3) that the semantic infor-
mation obtained by the last residual block is the superposition of
the previous semantic information of different depths. Therefore,
using cascade residual blocks for feature extraction can get rich
semantic information.

rk ¼ /ðrk�1Þ þ rk�1 ¼ /ð/ðrk�2Þ þ rk�2Þ þ /ðrk�2Þ þ rk�2 ð3Þ



Fig. 2. Illustration of Supervised Down-sampling Module. (a) is the structure of down-sampling network. (b) is the structure of super-resolution network.

Fig. 1. Schematic diagram of network structure. S is a multiple of the down-sampling of the picture.
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2.3. Supervised up-sampling module

The supervised up-sampling module is the decoding layer of
the network. It includes feature fusion layers (FFM), segmenta-
tion network, and edge detection network [40,41]. Both edge
detection and segmentation networks are composed of convolu-
tion layers (Fig. 4). We can see from the entire network structure
that the input of the feature extraction module has delicate spa-
tial information, and the output has rich semantic information.
The feature fusion module (FFM) is adopted to fuse the two fea-
ture maps, as shown in Fig. 1FFM). We use edge detection to
supervise the fusion process to ensure that the up-sampled
decoding layer contains fine details and rich semantics. The L1
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loss is used to measure edge detection results, and the expression
is as follows (See Fig. 5)

LossED ¼ jhd � gdj ð4Þ

hd presents the manually labeled nucleus contour, and gd presents
the predicted contour. The cross-entropy is used to measure the loss
of segmentation. i presents every pixel in the image, pðiÞ presents
the output expectation, and qðiÞ presents the actual category
distribution.

LossSEG ¼ Hðp; qÞ
¼ �

X

i

ðpðiÞ log qðiÞ þ ð1� pðiÞÞlogð1� qðiÞÞÞ ð5Þ



Fig. 3. Illustration of residual structure. (a) refers to the basic residual structure [35]. (b) refers to the mobile inverted bottleneck structure proposed in MobileNetV2 [36]. (c)
refers to the bottleneck residual structure proposed in WDSR [37]. (d) refers to the W-NECK.

Fig. 4. Detailed design of the Edge Head and the Seg Head.
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Fig. 5. Influence of different residual blocks on network accuracy.

D. Luo, H. Kang, J. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 4360–4368

4363
2.4. Loss function

The loss function is divided into the structural similarity loss of
super-resolution reconstruction, the L1 loss of edge detection, the
cross-entropy loss of the segmentation result. The structural simi-
larity loss ensures that the down-sampled feature blocks can
recover the original image, which plays the same role in feature
extraction for segmentation as the original image. The L1 loss
ensures that the up-sampled feature layer has delicate boundary
information and can restore high-resolution target contours. The
cross-entropy loss is to supervise the feature extraction of the
whole network. The hyperparameters k1 and k2 are set to be 0.25
and 0.4 in our analysis. The total losses are given below.

Loss ¼ k1 � LossSSIM þ k2 � LossED þ LossSEG ð6Þ
3. Experiments

3.1. Dataset introduction

The datasets used in the experiments are shown in Table 1. The
private datasets TJ_sparse and TJ_dense are provided by Tongji
Hospital and cropped from WSIs. In both TJ_sparse and TJ_dense
datasets, the nucleus is divided into two categories. The former is
the negative nucleus and positive nucleus whose shape is large
and deformed, and the latter is the negative nucleus and positive
glandular nucleus. This classification is to test the ability of DSSNet
in detecting a specific type of positive nucleus. Mendeley-LBC [42]
is collected from 460 participants and contains four classes of cer-
vical cells. We select Low squamous intraepithelial lesion (LSIL)
and Negative intraepithelial malignancy (NIL) from four classes
for segmentation. ISBI2014 [43,44] is a part of the ISBI Cervical Cell
segmentation challenge, and all those images are grayscale images
with annotated nuclei. DIC–HeLa [45] is HeLa cell on a fjat glass
recorded by differential interference contrast (DIC) microscopy,
and it’s a part of the ISBI cell tracking challenge.

3.2. Network implementation details

We conduct all experiments on PyTorch 1.6.0 with Nvidia
GeForce GTX 1080Ti. We use mini-batch stochastic gradient des-



Table 1
The image segmentation datasets used in our experiments.

Dataset Property Image channels Image size Classes of nucleus Train Test

TJ_sparse private 3 512 � 512 2 3200 400
TJ_dense private 3 512 � 512 2 1200 200

Mendeley-LBC public 3 2048 � 1536 1 600 126
ISBI2014 public 1 512 � 512 1 45 900
DIC–HeLa public 1 512 � 512 1 84 84
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cent (SGD) with momentum 0.9, weight decay 5e-4. The batch size
is set to 4, and the training epoch is set to 400. The initial learning
rate is 0.001, and it is decayed by cosine annealing with a period of
400.
3.3. Ablation experiment

Ablation experiments are performed on TJ_sparse. In the train-
ing and testing phases, the input size of the image is 512 � 512.
The running speed of the network is calculated from the average
FPS rate of 1000 iterations measured on one GPU card. The evalu-
ation index of the network is mIoU. mIoU represents the average
IoU for all classes. IoU¼ P\G

P[G. P represents the actual segmentation
area of one class of object, and G represents the area of ground
truth. The IoU coefficient represents the ratio of the intersection
of the areas overlapped by the actual segmentation area and the
ground truth area to their union.
3.3.1. Influence of down-sampling feature layer width on network
accuracy

We quantify the effect of down-sampling feature layer width on
network accuracy. Down-sampling feature layer width refers to
the number of feature channels that are the output of the down-
sampling network (Fig. 2). It can be regarded as the number of
low-resolution images that replace the original image for segmen-
tation. In the experiments, the down-sampling feature layer ranges
from 9 to 36, while other network structures are unchanged. SSIM
measures the similarity between the original image and its corre-
sponding image reconstructed from the low-resolution images.
The high SSIM suggests that the group of low-resolution images
recover their corresponding original image well and thus can
replace the original image for segmentation. This viewpoint is ver-
ified in Table 2. Both SSIM and mIoU increase then keep stable as
the number of low-resolution images increases. Namely, the group
of low-resolution images has a more substantial capacity to repre-
sent the original image. A small number of low-resolution images
(<15) cannot well reconstruct the original image, which behaves
as the low SSIM (<90%) and thus results in low mIoU (<76%).
The prediction speed of the network changes relatively slowly
because other layers are fixed and independent of the down-
sampling feature layer. The down-sampling feature layer width is
Table 2
Influence of different feature layer widths on network accuracy.

Width of feature layer SSIM(%) FPS mIoU(%)

36 92.92 145 78.97
33 92.90 151 79.14
30 92.82 156 79.23
27 92.61 159 79.05
24 92.48 161 78.65
21 92.12 164 78.53
18 92.11 166 78.16
15 90.02 169 77.58
12 88.75 171 75.64
9 86.25 173 74.73
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set to 30 for better prediction accuracy in all experiments, consid-
ering speed and accuracy.

3.3.2. Influence of the depth of the DSSNet on network accuracy
In the Dual Supervised Sampling Network, the cascade residual

blocks are designed to extract the features of the group of down-
sampled images. Here, the number of these residual blocks is
regarded as the depth of DSSNet. In Table 3, as DSSNet depth
increases, the segmentation accuracy of DSSNet strictly increases
and then keeps stable. At the same time, the network’s speed is
slowing down rapidly. It indicates that the depth of the network
needs to be set in an appropriate range. Based on the tradeoff
between inference speed and accuracy, the number of cascade
residual blocks is set to 10 in all experiments.

3.3.3. Segmentation performances of different residual structures
We use W-NECK, WDSR-B, BottleNeck, and basic residual block

as the residual structure of the feature extraction module, respec-
tively, and compare the segmentation performances of four mod-
ules on TJ_sparse dataset. W-NECK can be regarded as the
modified WDSR-B. Both WDSR-B and W-NECK adopt expansion
and squeeze block, and can realize the regularization of features,
contributing to higher segmentation accuracy than the other two
residual blocks. In W-NECK, the semantic information of the orig-
inal feature is extracted using 1 � 1 and 3 � 3 convolution opera-
tions, while only 1 � 1 convolution operation in WDSR-B. W-NECK
is easier to obtain sparse and non-sparse features and has a larger
receptive field. W-NECK can provide more accurate segmentation
results in comparing WDSR-B and thus employed in the DSSNet.

3.4. Effectiveness of supervising modules in networks

We verify the advantages of supervised down- and up-sampling
processes. The experiments are performed on four cervical data-
sets, including two private and two public datasets. The backbone
network and the backbone network with supervised down-
sampling and the backbone network with both supervised down-
and up-sampling are denoted by SOLO, SOLO + SR, SOLO + SR + E
D, respectively. SOLO + SR + ED provides the best segmentation
results on these four testing datasets (Table 4). To verify the effec-
tiveness of the supervising module in the network structure, we
Table 3
Influence of the number of residual blocks on network accuracy.

Number of blocks Parameters (M) FPS mIoU(%)

13 1.93 141 79.17
12 1.79 145 79.11
11 1.66 150 78.89
10 1.53 156 79.23
9 1.39 160 78.75
8 1.26 166 78.68
7 1.12 172 77.69
6 0.99 177 76.56
5 0.85 184 75.15
4 0.72 192 73.25



Table 4
Accuracy of the network under different structures.

Dataset SOLO(mIoU) SOLO + SR(mIoU) SOLO + SR + ED(mIoU)

TJ_sparse 75.97 ± 1.01 78.05 ± 0.67 79.23 ± 0.54
TJ_dense 66.28 ± 1.96 68.32 ± 0.63 69.27 ± 0.53

Mendeley-LBC 72.62 ± 2.09 74.02 ± 0.82 74.58 ± 0.63
ISBI2014 82.07 ± 1.34 83.42 ± 0.83 84.45 ± 0.75
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use four cervical datasets to compare the accuracy of the network
segmentation under different structures. We can see from Table 4
that supervised sampling provides more accurate and stable seg-
mentation. The super-resolution network improves the accuracy
of the backbone network by 2%, and the edge detection network
can further enhance the accuracy by 1%. These results suggest that
SR can effectively supervise the down-sampling process, ensuring
that the down-sampling operation can compress the original
image and retain enough spatial information of the original image.
It is also proven that ED can guide the pixel filling in the up-
sampling process and ensure that the feature layer has delicate
boundary information. These results indicate that the dual super-
vised sampling is valuable for cell nucleus segmentation.
3.5. Comparative experiments between DSSNet network with other
networks

We compare the segmentation performance of DSSNet and
some segmentation networks on four cervical datasets and DIC–
Hale dataset (Table 5). The input size of the network on the
TJ_sparse, TJ_dense, and DIC–HeLa is 512 � 512. On Mendeley-
LBC and ISBI2014, the network crops and scales the original image;
the final input size are 1024 � 768 and 768 � 768, respectively.
The accuracy refers to the accuracy of the network on the test
set. The network speeds in Table 5 are obtained by calculating
the inference time with the input size of 512 � 512. DSSNet has
the same level of inference speed as DFANet [48] and is much fas-
ter than other segmentation networks. Like the real-time segmen-
tation networks, DSSNet has a small size of network parameters,
which is far lower than other generic semantic networks. In the
accuracy comparison, DSSNet behaves best among these real-
time segmentation networks, i.e., ERFNet [47], DFANet. The accu-
racy of DSSNet has the same as UNet and its modified versions,
but the speed is improved by 5 times. These results conclude that
DSSNet is a competitive method for segmenting the nucleus.

We also show some segmentation results derived from DSSNet
and UNet. In TJ_sparse dataset, we select two images in which
nucleus regions are polluted (Fig. 6a&6b). DSSNet identifies the
polluted nucleus and segments them while UNet fails. Red and
blue represent the positive and negative nucleus, respectively. In
the ISBI2014 dataset, it is demonstrated that DSSNet is superior
to UNet in some low-contrast nucleus segmentation (Fig. 6c&6d).
Table 5
Speed and accuracy comparison of DSSNet and others segmentation networks on five dat

Network Parameters
(M)

FP
S*

TJ_sparse

PSPNet[[46]] 67.45 1 81.86 ± 0.28 72
UNet[[24]] 31.03 31 77.93 ± 0.48 69

UNet++[[25]] 36.63 14 79.57 ± 0.39 69
PGU-net

+[[8]]
14.84 37 78.76 ± 0.59 68

ERFNet[[47]] 2.06 83 78.03 ± 0.86 69
DFANet[[48]] 2.02 120 77.37 ± 0.91 68

DSSNet 1.53 156 79.23 ± 0.54 69
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These results suggest that DSSNet can access plenty of semantic
information for nucleus segmentation.

3.6. Networks test on WSIs

We evaluate the segmentation of DSSNet and UNet on WSIs.
100 WSIs collected from Tongji Hospital are used for testing. The
inference time of DSSNet on one WSI is about 190s versus 900s
for UNet. DSSNet segments all nuclei in the whole slice (Fig. 7a),
and identifies the positive nucleus with large size and deformed
shape (red label in Fig. 7b). We enlarge the subregions of the image
in Fig. 7b and their corresponding nucleus segmentation. DSSNet
accurately segments positive nucleus and negative cervical nuclei
under the interference of mucus and inflammatory nucleus. In
addition, we randomly select 8000 regions with a size of
700 � 700 from these 100WSIs as the test set, and resize them into
512 � 512 images. We manually diagnosed and labeled all nuclei
in the test set. There are 1197 positive nuclei, and the rest are neg-
ative. We calculate the segmentation accuracy of the two net-
works. DSSNet achieves 76.26 mIoU versus 75.15 mIoU for UNet.
Meanwhile, we calculate the classification accuracy of the two net-
works on the negative and positive nuclei as independent
instances. The results are shown in Table 6. The precision of
DSSNet is much higher than that of UNet when the recall of DSSNet
and UNet is close.The test results show that DSSNet can accurately
segment nuclei even in complex environment, and has higher clas-
sification accuracy. At the same time, it is better than UNET in seg-
mentation speed.

3.7. Robustness experiments

We evaluate the robustness of DSSNet on some different smear
slice images. We select four datasets from different medical insti-
tutes or laboratory, and the datasets are TJ_sparse, WN, UN, and
HB. TJ_sparse comes from Tongji Hospital, WN comes from Wuhan
National Laboratory for Optoelectronics-Huazhong University of
Science and Technology, UN comes from Wuhan Union Hospital
of China, and HB comes from Hubei Provincial Women and Chil-
dren’s Hospital. The WN slice was prepared and stained by our-
selves, following the standard protocols, and the cell suspension
we used came from the remaining samples after the completion
of their diagnosis and treatment process in Tongji Hospital. The
four datasets are produced in with three common sedimentation
methods. Among them, TJ and HB are prepared with the membrane
sediment method, UN is prepared with the natural sediment
method, and WN is prepared with the centrifugal sediment
method. The size of each image in the four datasets is 512 � 512.
And the nuclei in the datasets are manually labeled into two cate-
gories: the negative nucleus and the positive nucleus whose shape
is large and deformed. TJ_sparse contains 3200 training sets and
400 test sets. The other three kinds of datasets only include 400
asets.

mIoU (%)

TJ_dense Mendeley-
LBC

ISBI2014 DIC–HeLa

.43 ± 0.25 76.33 ± 0.47 – –

.14 ± 0.51 74.21 ± 0.55 84.24 ± 0.66 88.68 ± 0.58

.36 ± 0.47 74.68 ± 0.45 84.32 ± 0.62 88.63 ± 0.54

.89 ± 0.74 74.37 ± 0.67 83.83 ± 0.86 88.07 ± 0.87

.09 ± 1.23 74.51 ± 1.36 83.45 ± 0.78 88.12 ± 1.45

.27 ± 0.85 73.55 ± 0.93 82.78 ± 0.75 86.86 ± 0.97

.27 ± 0.63 74.58 ± 0.69 84.45 ± 0.75 87.55 ± 0.98



Fig. 6. Qualitative examples of the segmentation produced by DSSNet compared to the ground truth labels and UNet. From left to right: Input image, local magnification,
ground-truth label, prediction of DSSNet, and prediction of UNet. Images of a and b come from the TJ_sparse test set. Images of c and d come from the ISBI2014 test set.

Fig. 7. A schematic diagram of network segmentation on WSI. a is one of the cervical cytology slides. b is a large field selected in a. c and d are two small regions in b.

Table 6
Classification accuracy comparison of DSSNet and UNet on WSI.

Network Total positive Return positive True positive Precision
(instance)

Recall
(instance)

DSSNet 1197 1216 1175 96.63% 98.16%
UNet 1197 1307 1159 89.29% 96.83%

Total positive refers to the total number of positive nuclei in the test data set. Return positive refers to the number of positive nuclei judged by the network. True positive
refers to the number of true positive nuclei in the positive nuclei judged by the network.
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test sets. The two models are trained on the TJ_sparse training set
and tested on four test sets, respectively. The images from the four
test sets are shown in Fig. 8. In the images, red and blue represent
the positive with large size and deformed shape and negative
nucleus, respectively. Four datasets have color style and image
4366
quality dispersion due to the different preparation methods. There
are obvious differences in contrast between nucleus and cytoplasm
and the background color of the whole image. The test results are
shown in Table 7. The speed is the actual inference time of the net-
work on the test set. We can see from the table that the segmenta-



Fig. 8. Four different styles of cervical cell datasets. Images of a-d are from TJ_sparse, WN, HB, and UN datasets, respectively. The images of the first line represent the original
images (Img), and the images of the second line represent their corresponding ground-truth label (GT).

Table 7
Segmentation accuracy comparison of DSSNet and UNet on different datasets.

Network FPS mIoU (%)

TJ_sparse WN HB UN

UNet 31 77.93 77.15 76.24 72.97
DSSNet 156 79.23 78.43 78.28 75.16
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tion accuracy of the models on the other three untrained data is
close to that on TJ_sparse. The loss of segmentation accuracy is less
than 5%. The results show that the trained segmentation model is
robust to some untrained cervical data.

4. Conclusions

In this paper, we propose a dual-supervised network for the
segmentation of cervical nuclei. The supervised down-sampling
can significantly improve the model segmentation speed, and the
supervised up-sampling can improve the final segmentation accu-
racy. The dual-supervised approach is a generic architecture, and it
can be extended to detection and instance segmentation tasks. The
experimental results show that compared with mainstream net-
works, our method considers both speed and accuracy, and has
an excellent practical application prospect in the field of medical
image.
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