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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), better known as COVID-19, has become a current threat
to humanity. The second wave of the SARS-CoV-2 virus has hit many countries, and the confirmed COVID-19 cases are
quickly spreading. Therefore, the epidemic is still passing the terrible stage. Having idiopathic pulmonary fibrosis (IPF) and

https://academic.oup.com/


2 Hasan Mahmud et al.

chronic obstructive pulmonary disease (COPD) are the risk factors of the COVID-19, but the molecular mechanisms that
underlie IPF, COPD, and CVOID-19 are not well understood. Therefore, we implemented transcriptomic analysis to detect
common pathways and molecular biomarkers in IPF, COPD, and COVID-19 that help understand the linkage of SARS-CoV-2
to the IPF and COPD patients. Here, three RNA-seq datasets (GSE147507, GSE52463, and GSE57148) from Gene Expression
Omnibus (GEO) is employed to detect mutual differentially expressed genes (DEGs) for IPF, and COPD patients with the
COVID-19 infection for finding shared pathways and candidate drugs. A total of 65 common DEGs among these three
datasets were identified. Various combinatorial statistical methods and bioinformatics tools were used to build the
protein–protein interaction (PPI) and then identified Hub genes and essential modules from this PPI network. Moreover, we
performed functional analysis under ontologies terms and pathway analysis and found that IPF and COPD have some
shared links to the progression of COVID-19 infection. Transcription factors–genes interaction, protein–drug interactions,
and DEGs-miRNAs coregulatory network with common DEGs also identified on the datasets. We think that the candidate
drugs obtained by this study might be helpful for effective therapeutic in COVID-19.

Key words: SARS-CoV-2; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; differentially expressed
genes; gene ontology; protein–protein interaction (PPI); hub gene; drug molecule

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is a novel coronavirus that belongs to the families of Coro-
naviridae and the class of Pisoniviricetes [1–3]. SARS-CoV-2 is
a respiratory disease since it is reported that certain forms of
infection that may cause breathing problems are respiratory
diseases. Respiratory diseases may go through in a severe con-
dition by a continuous lung infection or injury. Moreover, it is
the leading cause of idiopathic pulmonary fibrosis (IPF), chronic
obstructive pulmonary disease (COPD), and COVID-19. Some
common symptoms go through all kinds of respiratory diseases
such as shortness of breath, dry hacking cough, fast and shal-
low breathing, tiredness, aching joints and muscles, and club-
bing (widening and rounding) of the tips of the fingers or toes
[2, 4–9]. Researchers in [4, 6] assume that there could be subtle
associations between these contagious diseases [10–13]. IPF is a
respiratory disease that causes scarring (in medical terms, it is
called fibrosis) of the lungs. It causes severity in the lungs that
originate and makes it difficult to breathe [12]. Furthermore, lung
function abruptly collapses, and it is the execution of respiratory
failure. This is a severe form of the disease that can inflict injury
to the tissue around the alveoli or airbags in the lungs [14]. COPD
is also a respiratory disease, and diagnosed patients with this
disease have a long-term breathing problem and inadequate
ventilation. While smoking is the root cause of this concern,
almost 25% of patients are nonsmokers and have a long-term
lung torment issue [8]. Nevertheless, according to the WHO
records, COPD is ranked 5th for death and 7th for disease burden
in the world.

IPF and COPD infection produce a hostile amount of
angiotensin-converting enzyme 2 or ACE2 that blocks the
airways and is the primary source of intense coughing and
develops into pneumonia. Actually, IPF and COPD are most
common human lung infections that cause shortness of breath.
But COPD and IPF cause different forms of chronic damage to
human lungs. In IPF, lungs become stiff, scarred, and thick, and
the progressive damage isn’t convertible. In COPD, the air sacs
and airways in lungs become congested, but it is possible to
control the symptoms even in complex cases of the disease. Most
common forms of COPD are chronic bronchitis and emphysema.
Authors of this paper [2] demonstrated implicitly that in SARS-
CoV-2 cases, pneumonia occurs for the same explanation as
ACE2 rises in the cell membrane in connection with viral
infections as it is proven that the density level of ACE2 is

extremely progressive in the lungs in both IPF patients and COPD
patients [15, 16]. SARS-CoV-2 is covered with spherical lipid
bilayer along with an eminent fringe and heavily glycosylated
type I glycoprotein spikes, which look like petals and mainly
spike protein. However, the virus enters the lung through the
nose, eye, or mouth mostly. Continuing the infection process,
the virus spike binds to ACE2 (attached to the cell membranes of
cells located in the lungs) and replicates by invading epithelial
cells, introducing new visions to release and infecting the next
target cell [10]. As previously said, the density of the high ranges
of ACE2 causes shortness of breath, and as the consequences,
the patient can die [2, 13].

In this study, three datasets were used to discover the
biological relationship between IPF, COPD, and COVID-19. Those
datasets were collected from the Gene Expression Omnibus
(GEO) database where GSE147507, GSE52463, and GSE57148 for
COVID-19, IPF, and COPD, respectively. Initially, differentially
expressed gene (DEGs) were identified for datasets and then
found common DEGs genes for three diseases. Here, the
common DEGs are the primary experimental genes for the
whole study. Using these common DEGs, further experiment
and analysis were performed, including pathway analysis and
enrichment analysis, to understand the biological processes of
genome-based expression studies. Extracting hub genes from
common DEGs is an essential part of predicting potential drugs
mainly relying on hub genes. The network of protein–protein
interactions (PPIs) is also designed from common DEGs to
gather hub genes. Herein, transcriptional regulators are also
traced based on the similar DEGs of GSE147507, GSE52463, and
GSE57148. Finally, potential drugs are suggested. The sequential
workflow of our research is presented in Figure 1.

Materials and methods
Datasets employed in this study

To determine shared genetic interrelations among SARS-CoV-
2, IPF, and COPD, we assumed both microarray and RNA-seq
datasets from the GEO database of the National Center for
Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.
gov/geo/) [17]. The GEO accession ID of the SARS-CoV-2 dataset
is GSE147507, which is transcriptional profiling of COVID-19
lung biopsy in response to respiratory infections through high
throughput sequencing Illumina NextSeq 500 platform for
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Figure 1. Schematic illustration of the overall general workflow of this study.

Table 1. Overview of datasets with their geo-features and their quantitative measurements in this analysis

Disease name GEO accession GEO platform Total DEGs count Up regulated DEGs
count

Down regulated
DEGs count

SARS-CoV-2 GSE147507 GPL18573 1184 293 891
IPF GSE52463 GPL11154 1444 783 661
COPD GSE57148 GPL11154 1461 1022 439

extracting RNA sequence [18]. The IPF dataset was (GEO acces-
sion ID: GSE52463) of human lung tissue (differential splicing
events) containing eight IPF lung samples and seven healthy
controls, which was sequenced by a high-throughput sequenc-
ing system called Illumina HiSeq (Homo sapiens) contributed
by Nance et al. [19]. The COPD dataset with GEO accession ID:
GSE57148 were collected from 91 subjects with normal spirom-
etry and 98 COPD subjects [20]. Gene expression was measured
through Cufflinks software, and the RNA isolated from the COPD
samples was performed using HiSeq 2000 with RNA-seq. The
summarized information of the datasets is listed in Table 1.

Identification of DEGs and mutual DEGs among
IPF, COPD, and COVID-19

A gene is characterized as being expressed differently when
there is a statistically significant difference between diverse test
conditions at the transcription level [21]. This analysis’s key role
is to obtain DEGs for the datasets GSE147507, GSE52463, and
GSE57148. The DEGs were identified from the long-expression
values using the LIMMA package with Benjamini-Hochberg cor-
rection to control the rate of false discovery and DESEq2 of
R programming language (v 4.0.2) in multiple testing options.
Cutoff criteria (P-value < 0.05 and |logFC| ≥ 1.0) was applied to
detect significant DEGs from all the datasets. The mutual DEGs
of GSE147507, GSE52463, and GSE57148 was acquired using an
online VENN analysis tool called Jvenn [22].

Gene ontology and pathway enrichment analysis

Gene set enrichment analysis is a significant analytical effort to
classify common biological insights such as biological processes

or chromosomes’ positions associated with different interlinked
diseases [23]. Gene ontology as well as functional enrichment
(biological processes, cellular component, and molecular func-
tions) and pathway enrichment studies were conducted utiliz-
ing EnrichR (https://maayanlab.cloud/Enrichr/)—a comprehen-
sive gene set enrichment web tool [24] to characterize biolog-
ical mechanisms and signaling pathways of shared DEGs. At
this time, we regarded four databases, including KEGG (Kyoto
Encyclopedia of Genes and Genomes), WikiPathways, Reactome,
and BioCarta as origins of pathway classification to specify the
shared pathways among IPF, COPD, and COVID-19. Typically,
the KEGG pathway is known to grasp the metabolic processes
and makes the considerable utility of genomic analysis. The P
value < 0.05 was considered as a standard metric for quantifying
the top listed pathways.

Protein–protein interaction network analysis

Proteins conclude their journey into a cell with a similar protein
affiliation formed by a protein–protein network, which indicates
the protein mechanisms. In cellular as well as systems biology,
the assessment and analysis of the PPI network and its func-
tionalities is the foundation and key objective for interpreting
and acquiring insights into cellular machinery operations [25–
27]. We utilized the STRING (https://string-db.org/) (version 11.0)
[25] repository to construct the PPI network of proteins derived
from shared DEGs to portray functional and physical interactions
among IPF, COPD, and COVID-19. STRING envisages expanded
insights into PPI using active channels of interaction, includ-
ing text mining, experimental databases, coexpression, culture,
gene fusion, and cooccurrence under the setting of different

https://maayanlab.cloud/Enrichr/
https://string-db.org/
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categorized confidence scores (low, medium, and high) [25]. This
experiment set the medium confidence score: 0.5 to generate
the PPI network of common DEGs. Then, we consume our PPI
network into Cytoscape (v.3.7.1) for visual representation and
further PPI network experimental studies. Cytoscape (v.3.7.1)—
an open-source network visualization platform—acts as a flexi-
ble tool where several datasets are consolidated to produce an
improved performance for different interactions such as PPIs,
genetic interactions, and protein–DNA interactions, and many
more [28].

Hub gene extraction and submodule analysis

The PPI network consists of nodes, edges, and their connections,
and here the most entangled nodes are considered as hub genes.
Cytohubba (http://apps.cytoscape.org/apps/cytohubba)—a novel
Cytoscape—plugin for ranking and extracting central or poten-
tial or targeted elements of a biological network based on various
network features. Cytohubba has 11 methods for investigating
networks from various viewpoints, and Maximal Clique Central-
ity (MCC) is the best of them [29]. We recognized the top 15
hub genes from the PPI network applying the MCC method of
Cytohubba. We also classified the shortest available paths across
hub genes based on Cytohubba’s close neighborhood ranking
features.

Recognition of transcription factors and miRNAs
engage with common DEGs

Transcription factors (TFs) are the protein that attaches to a
particular gene and governs the rate of transcription of genetic
information; hence, it is essential for molecular insights [30]. We
have utilized the NetworkAnalyst platform to locate topologi-
cally credible TFs from the JASPAR database that tend to bind
to our mutual DEGs. JASPAR is a publicly available resource for
TFs profiles of multiple species within six taxonomic groups
[31]. NetworkAnalyst is a wide-ranging online platform for meta-
analyzing gene expression data and gaining insights into biologi-
cal mechanisms, roles, and interpretations [32]. Further, miRNAs
targeting gene interactions were incorporated to trace miRNAs
that strive to attach with gene transcripts to affect protein
expression [33] adversely. Tarbase and mirTarbase are the major
experimental validity databases for miRNAs–target gene inter-
actions [33, 34]. From the interaction of miRNAs–gene inter-
action via networkAnalyst, we have extracted miRNAs from
both Tarbase and mirTarbase that interact with common DEGs
focused on topological analysis. Both TFs–gene and miRNAs–
gene interaction networks were illustrated in Cytoscape. This
tool helps researchers filter top miRNAs with high degrees and
detect biological functions and features to lead to the effective
biological hypothesis.

Evaluation of applicant drugs

In this research, prediction protein–drug interaction (PDI) or drug
molecules identification is one of the significant parts. Drug
molecule was identified using the Drug Signatures database
(DSigDB) via Enrichr based on the DEGs of COVID-19, IPF, and
COPD. Enrichr is a popular web portal with a vast array of
diverse gene-set libraries to explore gene-set enrichment across
a genome-wide scale [24]. DSigDB is the global archive for rec-
ognizing targeted drug substances linked to DEGs [35]. This
database has 22 527 gene sets, and an accessible way of DSigDB
database is through Enrichr under the Diseases/Drugs function.

Gene–disease association analysis

DisGeNET is a comprehensive database of gene–disease associ-
ations that synchronize relationships from several origins fea-
turing various biomedical aspects of illnesses. It emphasizes
the emerging insight into human genetic disorders [36]. We also
examined the gene-disease relationship via NetworkAnalyst to
uncover associated diseases and their chronic complications
with common DEGs.

Result
Identification of DEGs and common DEGs among
IPF, COPD, and COVID-19

To examine the interrelationships and implications of IPF and
COPD with COVID-19, we analyzed the human RNA-seq dataset
and microarray datasets from the NCBI to classify the disordered
genes that stimulate COVID-19, IPF, and COPD sequentially. The
RNA-seq and microarray dataset experiments were conducted
in the R language environment featuring DESeq2 and limma
packages with Benjamin-Hochberg false discovery rate. Firstly,
1184 genes were differentially expressed for COVID-19, including
293 up-regulated and 891 down-regulated genes exposure. In the
same way, this analysis selected the most significant DEGs for
IPF and COPD after completing the different process of statistical
analysis. We identified 1444 DEGs (783 up-regulated and 661
down-regulated) in the IPF dataset and 1461 DEGs (1022 up-
regulated and 439 down-regulated) in the COPD dataset. All
significant DEGs are extracted on the basis of P-value < 0.05 and
|logFC| ≥ 1. After performing the cross-comparative analysis on
the Jvenn-a reliable web portal for Venn analysis, we identified
65 common DEGs from IPF, COPD, and SARS-CoV-2 datasets. This
common gene set is employed to accomplish further experi-
ments. These three disorders are related together as they share
one or more common genes with one another [37]. Figure 2
represented the cumulative comparative evaluation of the three
datasets and retrieval of the mutual DEGs.

Gene ontology and pathway enrichment analysis

Gene ontology and pathway enrichment analysis were per-
formed using Enrichr to identify the biological significance and
enriched pathways underlined in this study shared DEGs. Gene
ontology takes consideration of gene functions and their com-
ponents to offer extensive computable knowledge resources. An
ontology defines a body of information—theoretically within
a given context. Both ontology and annotation are meant to
perform a detailed biological structure model that is essentially
assisted in biological applications [38]. The gene ontology
analysis was acquired within three categories (biological
process, cellular component, and molecular function), and the
GO database was selected as an annotation source. The top 10
terms in the biological process, molecular functions, and cellular
components category are summarized in Table 2. Figure 3 has
also characterized the overall ontological analysis linearly in the
bar graph for each category.

Pathways analysis reveals the organism reacts to its inherent
modifications. It is a model technique for demonstrating the
interaction between various diseases through basic molecu-
lar or biological processes [39]. The most impacted pathways
of the common DEGs among IPF, COPD, and COVID-19 were
gathered from four global databases, including KEGG, WikiPath-
ways, Reactome, and BioCarta. Table 3 enlists the top pathways
obtained from the selected datasets. To illustrate more precisely,

http://apps.cytoscape.org/apps/cytohubba
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Figure 2. This study incorporates two microarrays and one RNA-seq dataset

comprising IPF (GSE52463), COPD (GSE57148), and SARS-CoV-2 (GSE147507). This

integrated analysis revealed 65 common DEGs are shared among SARS-CoV-2,

IPF, and COPD.

Figure 4 also represented the pathway enrichment analysis in
the bar graphs.

Classification of hub proteins and submodule

We scrutinized the PPI network from STRING and visualized in
Cytoscape to anticipate common DEGs’ interactions and adhe-
sion pathways. The PPI network of common DEGs consists of
781 nodes and 968 edges and is depicted in Figure 5. At the
same time, most interconnected nodes are acknowledged as hub
genes in a PPI network. From the PPI network analysis incorpo-
rating the Cytohubba plugin in Cytoscape, we listed the top 14
(21.54%) DEGs as the most influential genes. The hub genes are
namely NOTCH4, FLNC, Indian hedgehog (IHH), FOSL1, CXCR4,
PSMB8, DAXX, RASD2, EPN3, DIRAS1, BATF, GDF5, RGS4, and
CD28. These hub genes can be potential biomarkers, which may
also lead to new therapeutic strategies for investigated diseases.
Since hub genes are potential, with the Cytohubba plugin’s aid,
we have also constructed a submodule network (Figure 6) to
deeper understand their near connectivity and proximity. The
expanded network of hub–gene interactions derived from the PPI
network is shown in Figure 6.

Determination of regulatory signatures

To identify substantial changes happening at the transcriptional
level and get insights into the hub protein’s regulatory molecules
or common DEGs, we employed a network-based approach to
decode the regulatory TFs and miRNAs. TFs regulators inter-
action with the common DEGs is pictured in Figure 7. Again,
Figure 8 represents the interactions of miRNAs regulators with
common DEGs. From TFs–genes and miRNAs–gene interaction

network analysis, it has been ascertained that 112 transcrip-
tional factors (TFs) and 68 post-transcriptional (miRNAs) regu-
latory signatures regulate with more than one common DEGs,
which essentially indicates a strong interference between them.

Identification of candidate drugs

Assessment of protein–drug interactions is important to under-
stand the structural features recommended for receptor sensi-
tivity [37, 40]. In the aspects of common DEGs as potential drug
targets in IPF, COPD, and COVID-19, we identified 10 possible
drug molecules using Enrichr based on transcriptome signatures
from the DSigDB database. The top 10 chemical compounds are
extracted based on their P-value. These potential drugs are sug-
gested for the common DEGs; these drugs can be common chem-
ical compounds for three diseases. Table 4 shows the effective
drugs from the DSigDB database for common DEGs.

Identification of disease association

The circumstances in which different diseases can be correlated
or associated are that they must usually have one or more similar
genes [37]. Therapeutic design strategies for disorders initiate
unveiling the relationship between genes and disorders [41].
From the analysis of the gene-disease association by Network-
Analyst, we noticed that rheumatoid arthritis, schizophrenia,
exanthema, atopic dermatitis, and autosomal recessive predis-
position diseases are most coordinated to our reported hub
genes, and even among IPF, COPD, and COVID-19. Schizophre-
nia is a complicated illness including dysregulation of various
paths in its pathophysiology. Glutamatergic, dopaminergic, and
GABAergic neurotransmitter systems are affecting schizophre-
nia disease, and interactions between these receptors contribute
to the disease’s pathophysiology. The pathophysiology of atopic
dermatitis is multifactorial and difficult, involving IgE-mediated
hypersensitivity, elements of barrier dysfunction, alterations in
cell, and environmental factors. The association between gene-
disease is displayed in Figure 9.

Discussion
IPF and COPD are a type of chronic lung disease regarded as a
high-risk factor for COVID-19 infections. If humans’ lung tissue is
affected, then the functionality of the lung decline to its task. The
most common symptoms between these two diseases include
shortness of breath, cough, and chest pain or tightness with
sputum production [42]. People with chronic lung diseases are
at a high possibility of getting infected by the SARS-CoV-2. In
this study, a network-based approach is developed to investi-
gate the gene expression patterns from three RNA-seq datasets
of IPF, COPD, and COVID-19 patients and identified molecular
targets that may help as potential biomarkers of COVID-19. It
could also provide crucial information about their effects on
emerging specific diseases or conditions. Expression profiling by
high throughput sequencing datasets is used in biomedical and
system biology research and has become a significant resource
for identifying biomarker candidates of different diseases [43].
Recently, RNA-Seq, a next-generation sequencing concept, facil-
itates the ability to look at gene fusion, mutations/SNPs post-
transcriptional modifications, and gene expression differences
in different sets or treatments [44]. Here, the analysis of the IPF,
COPD, and SARS-CoV-2 transcriptomics revealed that common
65 DEGs show similar expression patterns in three diseases.
Identified 65 common DEGs were evaluated by Gene Ontology
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Figure 3. The bar graphs of ontological analysis of shared DEGs among SARS-CoV-2, IPF, and COPD performed by the Enricher online tool: here, (A) biological processes,

(B) molecular function, and (C) cellular component.

(GO) pathway analysis functions based on the P-values to acquire
insight into the biological importance in the pathogenesis of IPF,
COPD, and COVID-19.

GO is a gene regulation context based on the generic the-
oretical model that facilitates genes and their internal rela-
tionship. The evolutions gradually did by attaining biological
knowledge regarding gene functions and their regulations on dif-
ferent ontological categories [45]. From the Enrichr, three types

of GO analysis, such as biological process (molecular activities),
cellular component (gene regulates function), and molecular
function (activities of molecular level) were conducted with
the GO database as an annotation source in the ontological
processes [46]. For the biological process, interferon-gamma-
mediated (7 genes) and cytokine-mediated signaling pathway
(15 genes) are among the top GO terms. Interferon-gamma (IFN-
γ ) is a cytokine that plays significant roles in immune responses
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Figure 4. The bar graphs of pathway enrichment analysis of shared DEGs among SARS-CoV-2, IPF, and COPD performed by the Enricher online tool: here, (A) wikipathway,

(B) biocarta pathway, (C) reactome pathway, and (D) KEGG 2019 human pathway.
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Figure 5. PPI network of common DEGs among SARS-CoV-2, IPF, and COPD. In the figure, the circle nodes represent DEGs and edges represent the interactions between

nodes. The PPI network has 781 nodes and 968 edges. The PPI network was generated using String and visualized in Cytoscape.

[47]. IFN-γ signaling is mainly related to inflammation and
cell-mediated immune responses [48]. It also indicates antitu-
mor cytokine, which is responsible for immunosurveillance in
human tumor cells [48]. Several studies disclose a strong con-
nection between interferon-gamma and SARS-CoV virus, where
interferon-gamma inhibits the replication of SARS-associated
coronavirus [45, 46]. In the molecular function experiment, met-
allopeptidase (five genes) and metalloendopeptidase activity
(four genes) are two top GO pathways. Metallopeptidase activity
(MMP group genes) affects respiratory disorders, including ARDS,

acute lung injury, lung cancer, and pulmonary fibrosis. The sig-
nificance of metalloproteinase as a biomarker for infected lung
patients with COVID-19 was investigated in [49, 50]. According
to the cellular component, top GO terms are integral compo-
nents of the luminal side of the endoplasmic reticulum mem-
brane (six genes) and MHC protein complex (five genes). For the
SARS-CoV, the membrane protein, spike glycoprotein, and enve-
lope protein are produced by the ribosome and implanted into
the endoplasmic reticulum membrane during replication SARS-
CoV-2.
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Figure 6. Determination of hub genes from the PPI network by using the Cytohubba plugin in Cytosacpe. The latest MCC procedure of Cytohubba plugin was pursued

to obtain hub genes. Here, the red nodes indicate the highlighted top 14 hub genes and their interactions with other molecules. The network consists of 140 nodes and

275 edges.

The pathway analysis is the best way of reflecting an
organism’s reactions through internal changes. The KEGG
pathway of 65 common DEGs is identified to find a similar
path for IPF, COPD, and COVID-19. Top 10 KEGG Human pathway
includes graft-versus-host disease (GVHD), allograft rejection,
type I diabetes mellitus, autoimmune thyroid disease, viral
myocarditis, intestinal immune network for IgA production, cell
adhesion molecules, human T-cell leukemia virus 1 infection,
and antigen processing and presentation. Here, GVHD is a
common complication mediated by dysregulated inflammatory
cytokines and cytotoxic T-cell effectors [51]. Recently diagnosed

lung injury patients by COVID-19 produce a massive amount of
pro-inflammatory cytokines [52].

Using the DEGs genes, a PPI network was built on under-
standing the biological characteristics of proteins in-depth
and predicting drug targets. Here, we identified hub proteins
based on the topological metric (i.e., degree), which can be
key drug-target or biomarkers in COVID-19 and associate with
various pathological and biological mechanisms. The top hub
proteins indicate different diseases, most risk factors for the
IPF, COPD, and COVID-19. A total of 10 hub-proteins (NOTCH4,
FLNC, IHH, FOSL1, CXCR4, PSMB8, DAXX, RASD2, EPN3, DIRAS1,
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Figure 7. The cohesive regulatory interaction network of DEG–TFs obtained from the Network Analyst. Herein, the square nodes are TFs, and gene symbols interact

with TFs as circle nodes.

BATF, GDF5, RGS4, CD28) identified involved in these diseases.
Here, the cutoff (parameter) of the topological metric for hub
proteins was 15 (degree). The protein NOTCH signaling shows
a vital role in the growth and homeostasis of various organs,
including the lung [53]. Dysregulation of NOTCH4 signaling
causes complex airway epithelial changes that eventually
contribute to airway diseases like IPF and COPD [54]. COPD,
generally caused by smoking, is significantly associated with
the NOTCH4 pathway responsible for the functional mutations
[55]. This gene could be associated with COVID-19 infections
as well. NOTCH4 is one of the possible therapeutic targets for
different cancer. In cancer cells, NOTCH4 inhibition reduced
invasiveness and proliferation, and NOTCH4 overexpression
amplified invasiveness and proliferation. NOTCH4 can minimize
the tumor volume of tumorigenicity animal xenografts. Cancer
cells show a higher frequency of nuclear translocation of

NOTCH4 than other cells. Another hub-protein CXCR4 is a
significant hub gene involved in the COPD high-risk group
of COVID-19, indicating the importance of cytokine signaling
as one of the pathogenesis in COPD patients with COVID-19.
Diabetes and COPD patients with increased pro-inflammatory
immune stage develop the Cytokine-storm of COVID-19 [56].
Furthermore, the COPD expressed genes PSMB8 in ATII cells
linked with antigen processing [57]. Recent studies indicate
a co-relation among three diseases IPF, COPD, and COVID-19,
through the PSMB8 gene [58]. In Tam et al. [59], the research
shows that airway epithelial PTCH1 protein with secreted IHH
ligands up-regulated in COPD epithelium.

Moreover, IHH is a primary receptor, and expressed in the
developmental signaling pathway is up-regulated in IPF [60]. The
molecular pathway analysis shows that both IL6 and FOSL1 are
deregulated genes in COPD patients, and the findings disclose
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Figure 8. The interconnected regulatory interaction network of DEGs–miRNAs. Herein, the octagon node indicates miRNAs and gene symbols interact with miRNAs as

a diamond shape.

that COVID-19 is similar to an acute mode of COPD produced
by the SARS-CoV-2 infection [61]. A study revealed that DAXX
is directly associated with HDAC2 and found a link with COPD
in lung tissue of patients with increasing clinical stages [62, 63].
Moreover, Fas expression was up-regulated in alveolar epithelial
cells of IPF patients where Fas activates the JNK pathway through
the adaptor protein DAXX. DAXX is correlated to IPF and COPD, so
this gene could be linked to COVID-19 and may disclose essential
information for drug targets. E Fuerst et al. [64] identified the
airway smooth muscle cells of RGS4 in IPF disease. DIRAS1 is
a Protein Coding gene, and DIRAS1 was observed in COPD [65,
66]. Autophagic defects have been found in patients with COPD,
and preclinical evidence provides the advantage of autophagy

activation in IPF, cystic fibrosis, and PAH model [67, 68]. Christa
Gaskill et al. [68] identified the role of the RASD2 in both IPF
and COPD disease. So RASD2 gene could be one of the target
genes for COVID 19 infections. The FLNC gene corresponds to
lung pathologies and vital biomarkers of disease severity in IPF
[69, 70]. Therefore, identified hub–genes can be considered
potential biomarkers or, if the biological insight in COVID-19
is confirmed, as novel drug target.

We also analyze the TFs–gene and miRNAs interaction to
find the transcriptional and post-transcriptional regulators of
the common DEGs. TFs handle the ratio of transcription, and
miRNAs plays a key role in gene regulation and RNA silencing
on the post-transcription level. TFs and miRNAs are significant
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Table 4. List of the suggested drugs for COVID-19

to understand disease development. In this way, our analysis
revealed relationships among the common DEGs, TFs, and
miRNAs. The identified TFs, such as FOSL1, DAXX, HSPB6,
CFB, FLNC, VARS2, TMEM238, PSMB8, EPN3, and DNAAF1, are
associated with diffident types of respiratory diseases. Further,
some miRNAs involve in lung cancer (e.g., miR-146a-5p, hsa-
mir-34a-5p, hsa-mir-873-5p, hsa-miR-195-5p, hsa-mir-335-5p)
[71–75], immunity disorder (e.g., hsa-mir-124-3p, hsa-miR-155-
5p) [76, 77], and different chronic cancer (e.g., hsa-mir-1-3p,
hsa-mir-765, hsa-mir-29a-5p, hsa-mir-142-3p) [78–81]. Gene-TFs
and gene-miRNAs basically target main proteins to change
the appearance in the progress of particular diseases. Hsa-
mir-195-5p, hsa-mir-128-3p, and hsa-mir-129-2-3p target IL6
in these studies [74, 82]. Furthermore, hsa-mir-941, hsa-mir-
374a-5p, hsa-mir-17-3p, and hsa-mir-129-2-3p are targeted by
the FLNC [82, 83]. Remarkably, we also predicted four miRNAs
(hsa-mir-16-5p, hsa-let-7e-5p, hsa-mir-26a-5p, and hsa-mir-
146a-5p) that are associated with different genes of IPF and COPD
[71]. Most of the miRNAs are related to cancer tissue and lead to
the different types of cancer in the human body, especially lung
cancer.

We performed a gene–disease (GD) analysis to predict the
association of significant DEGs and different diseases. The
experiment’s outcome shows the various types of diseases
involved in COVID-19, including the brain, cardiac, blood, liver,

skin, and different kinds of lung cancer. For example, we
found some genes associated with brain diseases, such as
schizophrenia, seizures, and glioma. Schizophrenia is the most
risk factor for dying from COVID-19. Recent research had proved
that persons with a psychiatric disorder, particularly depression
and schizophrenia—a condition that reasons distortions in
thinking and perception—had a high risk of becoming infected
by SARS-CoV-2, the virus that causes COVID-19. We found
multiple myeloma (MM) from our GD network; it is a cancer
of white blood cells and responsible for weakening the immune
system. Recently, the author analyzed the outcome of COVID-
19 infection in MM patients [84]. We also found some skin
diseases such as dermatitis, exanthema, erythema, psoriasis,
and eczema from our network analysis. Recently, skin disease
was reported in Italy with COVID-19 or SARS-CoV-2 infection
in patients [85]. Side effect made by SARS-CoV-2 infection is
a reason for increasing the itch in skin disease [86]. Moreover,
a study reports that 2–11% of COVID-19 patients had primary
chronic liver disease [87]. During the SARS epidemic in 2002–
2004, almost 60% of patients were reported to grow different
stages of liver injury [88]. The involvement of hepatic in COVID-
19 is directly associated with the cytopathic effect of the virus,
an abandoned immune response, drug-induced liver damage.
Based on the clinical bulletin of ACC (American College of
Cardiology), the death ratio of COVID-19 patients is higher
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Figure 9. The gene-disease association network represents diseases associated with mutual DEGs. The disorder depicted by the square node and also its subsequent

gene symbols is defined by the circle node.

with previous disorders such as hypertension (6.0%), cancer
(5.6%), diabetes (7.3%), and cardiovascular diseases (10.5%)
[89–91]. Besides, 16.7% of patients face arrhythmia, and 7.2%
developed acute cardiac problems with COVID 19-associated
complications [89]. Cardiovascular injuries may reason for
various mechanisms, including systemic inflammation and
ischemia [92]. Here, we extracted several potential genes
engaged in various cardiovascular disorders and some potential
genes involved in diabetes mellitus-1. The current report shows
that patients who died with COVID-19 infection were affected
by different diseases such as chronic lung disease, diabetes,
cardiovascular disease, and hypertension [93, 94].

Before, several chemical agents and drugs have been used
as potential therapeutic against COVID-19. As an example,
chloroquine and remdesivir have been testified to prevent SARS
virus and COVID-19 [95]. Furthermore, favipiravir performed
well to protect against Japanese flu and indicated a significant
protective effect against COVID-19 [96]. Moreover, a clinical
trial indicated a significant effect of hydroxychloroquine and

azithromycin against COVID-19 by stopping the genomic
replication [97, 98]. We identified Curcumin, which is used for
disease relating to inflammation. The inflammation indicates
the body mechanisms of protection against infections, toxins,
and injuries [99]. The human body releases some chemicals from
the immune system to protect the damaged cells.

Another extracted drug was Chromium, which is applied for
controlling blood sugar with prediabetes in people, diabetes-1,
and 2 [100]. The drug toxin that can be reason lung cancer and
skin diseases. Another identified drug is Triclosan, which is an
antifungal and antibacterial agent [101]. Moreover, Ellipticine,
Tamoxifen, and Deguelin are also found as potential drugs in this
study. Ellipticine is isolated from plants and shows promising
performances for handling the different types of cancer, such
as breast cancer, brain tumors, blood cancer (acute myeloblastic
leukemia), and kidney cancer [102, 103]. Tamoxifen [104, 105]
and Deguelin [106, 107] also used to decrease the chances of
cancer in risk patients. The medication of those drugs can block
the development of cancer. Besides respiratory disease, a wide
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range of diseases is involved in COVID-19 infection, includ-
ing renal, blood-related problems, cardiac [108, 109], brain, and
different types of cancer [110]. Therefore, those can be treated for
COVID-19 infection.

Conclusions
Our study has summarized the relations among these three
disease genes in the context of transcriptomic analysis on
IPF, COPD, and COVID-19. We have done DEGs among three
datasets and identify the common genes and find out the
disease responses between IPF, COPD, and SARS-CoV-2 affected
lung cells. The bioinformatics analysis discloses that the IPF
and COPD patients have a high risk to infect by SARS-CoV-
2. So we have faced 65 common interrelated genes of these
datasets. Then the common 65 genes were utilized obtained
the PPI network, and we identified the 10 most significant
hub genes from the PPI network. Multiple drug molecules and
drug-target interactions are suggested from hub genes retrieve
through the DSigDB database. Analyses among IPF, COPD, and
COVID-19 indicate a way of identifying infections for various
diseases. Therefore, it is possible to mitigate IPF and COPD
patients’ risk of being affected by SARS-CoV-2. COVID-19 is a
recently discovered disease; there have not much research on
the risk factors and disease. Adequate analysis of COVID-19
is more important with the availability of the above datasets.
Currently, there is some vaccine available for the prevention
of COVID-19. But these vaccines are not showing effective in
some cases, especially for different variants of SARS-CoV-2. Still,
the scientific community is focusing on developing a more
effective vaccine for the treatment of COVID-19. Therefore,
we implemented transcriptomic analysis to detect common
pathways and molecular biomarkers in IPF, COPD, and COVID-
19 that help understand the linkage of SARS-CoV-2 to the IPF
and COPD. Ten hub proteins were identified as involved in
these diseases. All these hub genes play vital roles in different
functional mutations. The identified TFs and miRNAs are
associated with diffident types of respiratory diseases. So, our
identified genes can be a novel therapeutic target for COVID-19
vaccine development.

Key Points
• The IPF and COPD had some significant common

genes compared with the COVID-19 to assess the
distinct genetic mechanism involved.

• Gene set enrichment–based analysis predicts Gene
ontology terms for among IPF, COPD, and COVID-19–
affected lung cells, and hub gene identification makes
the prediction of drug compounds even more useful.

• Protein–protein interactions network-based analysis
helps determine the definite genes related to IPF,
COPD, and COVID 19. It can lead us to their coexpres-
sion partners about normal and disease states and
assess risk factors.

• TFs–genes interaction and DEGs–miRNAs coregula-
tory network with common DEGs also identified on
the datasets to find the transcriptional and post-
transcriptional regulators of the common DEGs.

• The protein–drug interactions suggested 10 potential
chemical compounds against COVID-19.
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