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Among all cancer types, lung cancer ranks highest worldwide 
in terms of both incidence and mortality. The crosstalk 
between lung cancer cells and their tumor microenvironment 
(TME) has begun to emerge as the “Achilles heel” of 
the disease and thus constitutes an attractive target for 
anticancer therapy. We previously revealed that crosstalk 
between lung cancer cells and endothelial cells (ECs) induces 
chemoresistance in multicellular tumor spheroids (MCTSs). In 
this study, we demonstrated that factors secreted in response 
to crosstalk between ECs and lung cancer cells play pivotal 
roles in the development of chemoresistance in lung cancer 
spheroids. We subsequently determined that the expression 
of hypoxia up-regulated protein 1 (HYOU1) in lung cancer 
spheroids was increased by factors secreted in response to 
crosstalk between ECs and lung cancer cells. Direct interaction 
between lung cancer cells and ECs also caused an elevation 
in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 
expression not only suppressed stemness and malignancy, 
but also facilitated apoptosis and chemosensitivity in 
lung cancer MCTSs. Inhibition of HYOU1 expression also 
significantly increased the expression of interferon signaling 
components in lung cancer cells. Moreover, the activation of 
the PI3K/AKT/mTOR pathway was involved in the HYOU1-

induced aggression of lung cancer cells. Taken together, 
our results identify HYOU1, which is induced in response to 
crosstalk between ECs and lung cancer cells within the TME, 
as a potential therapeutic target for combating the aggressive 
behavior of cancer cells.
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INTRODUCTION

Lung cancer is one of most common cancer types and is 

the leading cause of cancer death worldwide. Because lung 

cancer cells often exhibit abnormally high expression of epi-

dermal growth factor receptor (EGFR) or mutations in the 

EGFR gene, EGFR inhibitors are currently used as the first-line 

treatment for advanced lung cancer (Lynch et al., 2004; Pao 

et al., 2004; Zappa and Mousa, 2016). However, because 

treatment with EGFR inhibitors can lead to the development 

of mutations conferring resistance to such treatments (e.g., 

T790M), these drugs have limited therapeutic efficacy in lung 
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cancer (Camidge et al., 2014; Yu et al., 2013a). Anaplastic 

lymphoma kinase (Della Corte et al., 2018; Shaw and Solo-

mon, 2011), ROS proto-oncogene1 (Joshi et al., 2019; Shaw 

et al., 2019), neurotrophic receptor tyrosine kinases (Farago 

et al., 2018; Laetsch et al., 2018; Roskoski, 2020) and the 

B-Raf proto-oncogene (Baik et al., 2017; Marchetti et al., 

2011) have also emerged as possible therapeutic targets for 

lung cancer, but drugs based on these targets are less com-

mon, and further study of their side effects is still required. 

Hence, the development of targeted drugs has not yet signifi-

cantly improved the prognoses of patients with lung cancer.

	 Recent studies have shown that lung tumor heterogeneity 

is a major cause of treatment failure due to chemoresistance 

(Lim et al., 2019; Zito Marino et al., 2019). In lung cancers, 

tumors develop concurrently with the tumor microenvi-

ronment (TME), which includes the vasculature, infiltrating 

immune cells, stromal fibroblasts, signaling molecules, and 

extracellular matrix surrounding the tumor (Joyce, 2005), as 

evidenced by regions of aberrant angiogenesis, desmoplasia, 

acidosis, and hypoxia (Byun et al., 2020; Wu et al., 2012). 

Within the TME, endothelial cells (ECs) have attracted atten-

tion as a key player in cancer progression due to their associa-

tion with tumor cell angiogenesis, proliferation, and invasion, 

which have all been linked to the EC-mediated expression of 

various angiogenic factor receptors and remodeling of the 

extracellular matrix (Dudley, 2012). In our previous study, we 

elucidated that the direct interaction between lung cancer 

cells and ECs induces chemo- and radioresistance by facili-

tating the endothelial-to-mesenchymal transition (EndMT) in 

lung cancer cells (Choi et al., 2018; Kim et al., 2019; Song et 

al., 2019).

	 Utilizing three-dimensional (3D) multicellular culture sys-

tems and modeling tumor interactions with stromal com-

ponents are essential to establishing more clinically relevant 

tumor models (Hirschhaeuser et al., 2010; Kim et al., 2019; 

Song et al., 2016). Therefore, we used multicellular tumor 

spheroids (MCTSs) to identify factors that induce chemoresis-

tance in response to crosstalk between lung cancer cells and 

ECs.

	 Here, we identified hypoxia upregulated protein 1 

(HYOU1) as a factor secreted in response to crosstalk be-

tween ECs and lung cancer cells, and sought to elucidate its 

functional role in lung cancer chemoresistance and tumor 

growth. HYOU1, also known as oxygen-regulated protein 

150 and glucose-regulated protein 170, is a member of the 

heat shock protein 70 family and play important roles in 

hypoxia/ischemia. HYOU1 is crucial for the processing and 

maturation of vascular endothelial growth factor A during 

angiogenesis. Extracellular HYOU1 from tumor cells acts as 

an immunomodulator in the TME (Park et al., 2006; Wang et 

al., 2003; 2015; Yu et al., 2013b), and expression of HYOU1 

has been correlated with poor prognoses in patients with 

certain cancers, including breast cancer (Stojadinovic et al., 

2007), nasopharyngeal carcinoma (Zhou et al., 2016), renal 

cancer and thyroid cancer (Gao et al., 2010). Further, HYOU1 

upregulation has been linked to chemoresistance in various 

tumors (Fu and Lee, 2006; Gao et al., 2010; Namba et al., 

2007). However, the functions of HYOU1 in lung cancer re-

main largely unknown.

	 In this study, we investigated the effects of HYOU1 upreg-

ulation on the progression and chemoresistance of MCTSs. 

Based on our observations, we also discuss future therapeutic 

opportunities for lung cancer.

MATERIALS AND METHODS

Cell line and cell culture
NCI-H460 cells, A549 cells, H1299 cells, and PC9 cells were 

obtained from the Korean Cell Line Bank. Human umbilical 

vein endothelial cells (HUVECs) were obtained from Promo-

Cells (Germany). The cells were maintained at 37°C in a hu-

midified atmosphere of 5% CO2. H460 cells, and H1299 cells 

were cultured in Roswell Park Memorial Institute medium 

(RPMI 1640; Welgene, Korea) supplemented with 10% fetal 

bovine serum (FBS; Gibco, USA), 1% penicillin-streptomycin 

(P/S; Gibco) (complete medium). A549 cells were cultured 

in Dulbecco’s modified Eagle medium (DMEM; Welgene) 

supplemented with 10% FBS and 1% P/S. HUVECs were 

cultured in endothelial basal medium (EBM; PromoCells) sup-

plemented with 10% FBS and 0.5% P/S.

Generation of lung cancer spheroids with conditioned 
medium
HUVECs, lung cancers (NCI-H460 cells or A549 cells), and 

lung cancers with HUVECs were cultured in 2D conditions us-

ing the same number of cells and amount. Conditioned me-

dium (CM) from cultured HUVECs, lung cancers (NCI-H460 

cells or A549 cells), and lung cancers with HUVECs were 

collected when the cells reached 70%-90% confluence, 

and passed through a 0.45-μM pore filter (Millipore, USA) 

to eliminate debris. Lung cancer cells (NCI-H460 cells, A549 

cells, or H1299 cells) were seeded at a density of 6 × 103 

cells/well in 96-well round-bottomed ultra-low attachment 

microplates (Corning, USA) with 80 μl of filtered 2D-CM for 

48 h.

Generation of lung cancer spheroids with HUVECs
Lung cancer cells (NCI-H460 cells or A549 cells) with or with-

out HUVECs at a ratio of 5:5, or 7:3 were seeded at a density 

of 6 × 103 cells/well in 96-well round-bottomed ultra-low 

attachment microplates (Corning) with 80 μl of complete 

medium for 72 h.

siHYOU1 transfection in lung cancer cells
Lung cancer cells (NCI-H460 cells, A549 cells, or H1299 cells) 

were incubated in complete medium when the cells reached 

60%-70% confluence in 100-mm dish (Nunc; Thermo Sci-

entific, USA) at 37°C incubator for 24 h. After washing for 

two times, 6 μM siRNA targeting HYOU1 (Dharmacon, USA) 

and 40 pM lipofectamine RNAiMAX reagent (Invitrogen, 

USA) diluted in Opti-MEM (Gibco) medium were treated in 

fresh medium without supplements at 37°C incubator for 24 

h. After washing for two times, 0.05% trypsin-ethylenedi-

aminetetraacetic acid (EDTA) (Gibco) was treated for 3 min at 

37°C incubator, and then added equal amounts of complete 

medium. The cell suspensions were centrifuged at 1,300 rpm 

for 3 min, and then the cells were counted.
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Cell death detection in spheroid
Non-specific siRNA (siCont) or HYOU1 siRNA (siHYOU1)

transfected for 24 h or 5, 10, 20, or 40 μM of gefitinib and 

cisplatin (all from Sigma-Aldrich, USA) treated for 48 h, lung 

cancer cells (NCI-H460 cells, A549 cells, or H1299 cells) with 

or without HUVECs were seeded at a density of 6 × 103 

cells/well in 96-well round-bottomed ultra-low attachment 

microplates (Corning). After 2 or 3 days, the spheroids cell 

death was detected using the cell-impermeant viability indi-

cator ethidium homodimer-1 (EthD-1; Invitrogen). EthD-1 is 

a high-affinity nucleic acid stain that fluoresces weakly until 

bound to DNA, whereupon it emits red fluorescence (exci-

tation/emission maxima ~528/617 nm). Spheroids were in-

cubated in 4 μM EthD-1 in complete medium for 30 min in a 

37°C incubator, and images were obtained and the intensity 

of EthD-1 fluorescence measured using the Operetta® High 

Content Screening System (Perkin Elmer, USA). Fluorescent 

intensity analysis was performed using the Harmony software 

(Perkin Elmer).

Microarray analysis
Global gene expression analysis was performed using Affy-

metrix GeneChip® Human Gene 2.0 ST Arrays. Total RNA 

from non-specific siRNA (siCont) or HYOU1 siRNA (siHYOU1) 

transfected NCI-H460 cells was isolated using the RNeasy 

Mini kit (Qiagen, Germany). RNA quality was assessed using 

an Agilent 2100 Bioanalyser using the RNA 6000 Nano Chip 

(Agilent Technologies, USA), and the quantity was deter-

mined using a Nanodrop-1000 Spectrophotometer (Thermo 

Scientific). We used 300 μg of each RNA sample as input for 

the Affymetrix procedure, as recommended in the manufac-

turer’s protocol (http://www.affymetrix.com). Briefly, 300 

ng of total RNA from each sample was converted to dou-

ble-stranded cDNA using a random hexamer incorporating a 

T7 promoter, and amplified RNA (cRNA) was generated from 

the double-stranded cDNA template though an in vitro tran-

scription reaction and purified using the Affymetrix sample 

cleanup module. cDNA was regenerated through randomly 

primed reverse transcription using a dNTP mix containing 

dUTP. The cDNA was then fragmented by uracil-DNA gly-

cosylase and apurinic/apyrimidinic endonuclease (APE 1) re-

striction enzymes, and end-labeled via a terminal transferase 

reaction incorporating a biotinylated dideoxynucleotide. Frag-

mented end-labeled cDNA was hybridized to the GeneChip® 

Human Gene 2.0 ST array for 17 h at 45°C and 60 rpm, as 

described in the Gene Chip Whole Transcript Sense Target 

Labeling Assay Manual (Affymetrix). After hybridization, the 

chips were stained and washed in a Genechip Fluidics Station 

450 (Affymetrix) and scanned using a Genechip Array scan-

ner 3000 7G (Affymetrix). The expression intensity data were 

extracted from the scanned images using Affymetrix Com-

mand Console software, version 1.1, and stored as CEL files.

Immunocytochemistry in lung cancer cells co-cultured 
with HUVECs spheroid
HUVECs were stained cell-labeling solution DiD (Molecular 

Probes, USA). DiD allows cell populations to be marked in 

distinctive fluorescent colors for identification, whereup-

on it emits red fluorescence (absorption/emission maxima 

~644/665 nm). HUVECs were incubated at a density of 1.5 × 

105 cells in 1% DiD in complete medium for 20 min in a 37°C 

incubator. To generate spheroids, lung cancer cells (NCI-H460 

cells and A549 cells) cultured with HUVECs at a ratio of 7:3 

were seeded at a density of 6 × 103 cells/well in 96-well 

round-bottomed ultra-low attachment microplates (Corning) 

for 3 days at 37°C in a humidified atmosphere of 5% CO2. 

After 3 days, spheroids were fixed in 4% paraformaldehyde 

(PFA; Biosesang, Korea) for 24 h and washed three times 

with Dulbecco’s Phosphate-Buffered Saline (DPBS; Welgene), 

and then 0.1% Triton X-100 (Sigma-Aldrich) for 30 min at 

room temperature. After washing with DPBS three times, the 

spheroids were incubated with rabbit polyclonal anti-HYOU1 

(1:100; Cell Signaling Technology, USA) in DPBS with 10% 

normal goat serum (Vector Laboratories, USA) for 16 h at 

4°C, and then washed three times for 10 min with DPBS. The 

secondary antibodies used for staining were: goat anti-mouse 

Alexa® Fluor 488 and goat anti-rabbit Alexa® Fluor 546 

(1:200; Invitrogen). Secondary antibodies were incubated in 

1% bovine serum albumin for 1 h at room temperature in 

the dark. After washing with DPBS three times in 5 min, the 

nuclei were stained with Hoechst 33342 (Invitrogen) for 10 

min and then washed three times. Fluorescent images were 

obtained using an Operetta® High Content Screening System 

(Perkin Elmer) with a 10× objective and the merge in 3D 

images were combined 40 images taken at each 5 μm from 

−50 μm until 145 μm to get Z-stack images.

Western blot
2D or 3D cells were lysed using radioimmunoprecipitation 

assay (RIPA) buffer (3 M, Seoul, Korea) and boiled with 5× 

sample buffer (Biosesang) for 10 min. Cell lysates were sepa-

rated by 8% to 15% sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) and transferred to a nitrocel-

lulose (NC) membrane (Pall Corporation, USA). A blocking 

step was performed for 30 min at room temperature with 

5% skim milk in Tris-buffered saline/Tween 20 (TBST) buffer. 

After washing for three times in 10 min with TBST buffer, 

the NC membranes were incubated with mouse monoclonal 

anti-CD133 (W6B3C1; Miltenyi Biotec, Germany), rabbit 

polyclonal anti-Collagen I (Novus Biologicals, USA), mouse 

monoclonal anti-p53 (DO-2; Santa Cruz, USA), mouse mono-

clonal anti-MetRS/MARS (MARSD10B4), rabbit monoclonal 

anti-CARS (EPR7121), mouse monoclonal anti-HIF-1 alpha 

(mgc3), rabbit polyclonal anti-N Cadherin, mouse mono-

clonal anti-Vimentin (RV202), rabbit monoclonal anti-alpha 

smooth muscle Actin (E184) (all from Abcam, UK), rabbit 

polyclonal anti-HYOU1, rabbit monoclonal anti-phospho-Akt 

(Ser473) (D9E), rabbit monoclonal anti-PERK (D11A8), rab-

bit monoclonal anti-ATF-6 (D4Z8V), rabbit monoclonal an-

ti-IRE1α (14C10), rabbit monoclonal anti-cleaved Caspase-3 

(Asp175) (5A1E), rabbit monoclonal anti-cleaved PARP 

(Asp214) (D64E10), rabbit polyclonal anti-phospho-p44/42 

MAPK (Erk1/2) (Thr202/Tyr204) (all from Cell Signaling 

Technology), mouse monoclonal anti-interferon-alpha, goat 

polyclonal anti-interferon-beta, goat polyclonal anti-inter-

feron-gamma (all from R&D Systems, USA), and mouse 

monoclonal anti-β-actin (Sigma-Aldrich) for 16 h at 4°C. 

After washing for three times in 10 min with TBST buffer, 
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the membranes were incubated with horseradish peroxidase 

(HRP)-conjugated secondary antibody (Cell Signaling Tech-

nology), and the specific bands were visualized by enhanced 

chemiluminescence (ECL; Thermo Scientific).

Stem cell spheroid formation in HYOU1 siRNA  transfect-
ed lung cancer cells
Non-specific siRNA (siCont) or HYOU1 siRNA (siHYOU1)

transfected lung cancer cells (NCI-H460 cells, A549 cells, or 

H1299 cells) were seeded in low-attachment 6-well plates 

(Corning) at a density of 3 × 103 cells/well for 7 days. The 

stem cell permission media was composed of DMEM/F12 

(Gibco) supplemented with 1× B27 (Invitrogen), 20 ng/ml 

basic fibroblast growth factor (bFGF; Invitrogen), 20 ng/ml 

epidermal growth factor (EGF; Invitrogen), and 25 μg/ml 

insulin (Sigma-Aldrich). After incubation, the spheroids were 

observed using Operetta HCS system (Perkin Elmer).

Colony formation assay
For colony formation assays, the lung cancer cells were trans-

fected with siCont or siHYOU1. Then, the transfected cells 

were harvested and replaced at a density of 5 × 102 or 1 × 

103 cells/6-well plate (Corning). The medium were changed 

every three days. Two weeks later, the colonies were washed 

with DPBS for two times and fixed in 4% paraformaldehyde 

(Biosesang) for 24 h at 4°C. After washing for two times, 

the colonies were stained with 0.5% crystal violet (Sigma-Al-

drich) in 20% methanol and washed until background ap-

pears light. Subsequently the colonies were photographed by 

an Eclipse TS100 microscope (Nikon, Japan) and counted.

Fig. 1. Crosstalk between ECs and lung cancer cells causes chemoresistance in lung cancer spheroids. (A) Experimental schematic 

of CM obtained from cultured HUVECs (ECs), lung cancer cells (NCI-H460 or A549), and lung cancer cells co-cultured with HUVECs. 

The cells were cultured for 3 days in 2D culture conditions using the same number of cells and the same amount of media. Next, three 

different CM were added to lung cancer cells in 3D culture conditions for 2 days. The spheroids were then treated with drugs for 2 

days, and EthD-1 staining was used to identify dead cells. (B and C) Immunofluorescence images of lung cancer spheroids grown in CM 

obtained from cultured HUVECs, cultured lung cancer cells, or lung cancer cells co-cultured with HUVECs. The cells were treated with 

5, 10, 20, or 40 μM gefitinib (B) or cisplatin (C) for 2 days, and then stained with 4 μM EthD-1. The images were obtained using the 

Operetta® High Content Screening System, and the intensity of EthD-1 staining in lung cancer spheroids relative to controls was analyzed 

using Harmony software. The data shown are the mean ± SD from three independent experiments; *P < 0.05, **P < 0.01, and ***P < 

0.001 compared to the control group.
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Cell migration assay
For cell migration assays, the lung cancer cells (NCI-H460 cells 

and A549 cells) were transfected with non-specific siRNA 

(siCont) or HYOU1 siRNA (siHYOU1). Then, the treated cells 

were harvested and replaced at a density of 7 × 105 cells/6-

well plate (Corning). After 1 day, the cells in the monolayer 

were vertically scratched using a 200 μl tip (Axygen; Corning) 

and incubated at 37°C in a humidified atmosphere of 5% 

CO2. After incubation for 24 or 93 h, images of cell migration 

were obtained by an Eclipse TS100 microscope (Nikon).

Drug treatment in lung cancer cells
Lung cancer cells (NCI-H460 cells and H1299 cells) were 

seeded in complete medium when the cells reached 60%-

70% confluence in 6-well plate (Corning) at 37°C in a hu-

midified atmosphere of 5% CO2 for. The cells were treated 

with 0.1 or 1 μM mTOR inhibitors, Torin2, WYE-125132, and 

PI3K inhibitors, GDC0032, PKI-402 (all from Selleckchem, 

USA). After 1 day, cells were harvested.

Statistical analysis
All experiments were performed at least three times. The 

data are shown as the mean ± SD. A Student’s t-test was 

used to assess statistically significant differences in Prism 8 

software (GraphPad Software, USA). The significances were 

considered respectively with P values of P < 0.05, P < 0.01, P 

< 0.001, and P < 0.0001.

RESULTS

Crosstalk between ECs and lung cancer cells causes che-
moresistance in lung cancer spheroids
We began by investigating whether interactions between ECs 

and lung cancer cells cause chemoresistance in lung cancer 

spheroids. First, we collected conditioned media (CM) from 

three different cell cultures: human umbilical vein endothe-

lial cells (HUVECs/ECs), non-small cell lung cancer (NSCLC) 

cells (NCI-H460 or A549), and lung cancer cells co-cultured 

with HUVECs. We then added the three different CM to lung 

cancer spheroids in 3D cell culture conditions. We next com-

pared the sensitivities of spheroids cultured in each medium 

to two anticancer drugs (gefitinib and cisplatin) (Fig. 1A).

	 To detect cell death in the spheroids, we used the nucleic 

acid stain EthD-1, which emits fluorescence upon binding 

the DNA of dead cells. Treatment with the EGFR inhibitor 

gefitinib significantly reduced cell survival in lung cancer 

spheroids grown in CM from cultured HUVECs or lung cancer 

cells, whereas spheroids grown in CM from lung cancer cells 

co-cultured with HUVECs showed strong resistance to gefi-

tinib (Fig. 1B).

	 We also evaluated the efficacy of cisplatin, a member of 

the platinum-based antineoplastic family of drugs, under 

the same conditions. Cisplatin also sufficiently increased the 

intensity of EthD-1 staining in lung cancer spheroids grown 

in CM from cultured HUVECs or lung cancer cells. However, 

cisplatin did not alter cancer cell viability in spheroids grown 

in CM from lung cancer cells co-cultured with HUVECs (Fig. 

1C).

	 Taken together, these results suggest that factors secreted 

in response to crosstalk between ECs and lung cancer cells 

may play pivotal roles in chemoresistance in lung cancer 

spheroids.

HYOU1 expression is increased by factors secreted in re-
sponse to crosstalk between ECs and lung cancer cells
We next sought to identify the factors inducing chemore-

sistance in lung cancer spheroids grown in CM from lung 

cancer cells co-cultured with HUVECs. To accomplish this, we 

subjected spheroids generated via the procedure shown in 

Fig. 1A to microarray analysis.

Fig. 2. HYOU1 expression is increased by factors secreted in response to crosstalk between ECs and lung cancer cells. (A) A gene 

expression heat map representing fold changes greater than 1.5 in samples from lung cancer spheroids grown in CM from cultured 

HUVECs, cultured NCI-H460 cells, or lung cancer cells co-cultured with HUVECs. (B and C) Categorization of biological pathways (B) 

and biological processes (C) identified by microarray analysis as markedly altered in lung cancer spheroids grown in CM from cultured 

HUVECs, cultured NCI-H460 cells, or lung cancer cells co-cultured with HUVECs. (D) Expression levels of CARS, HYOU1, MARS, and pAKT 

(Ser437) in lung cancer spheroids grown in CM from NCI-H460 cells cultured alone or co-cultured with HUVECs, as assessed by western 

blot analysis.
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	 Analyses of the functional enrichment of genes with an 

absolute change of greater than 2-fold were performed 

using FunRich software. The microarray data revealed that 

42 genes were significantly enriched and 103 genes were 

depleted in lung cancer spheroids grown in CM from lung 

cancer cells co-cultured with HUVECs compared to spheroids 

grown in CM from lung cancer cells or HUVECs alone (Fig. 

2A, Supplementary Table S1).

	 Further, spheroids grown in CM from lung cancer cells 

co-cultured with HUVECs exhibited a greater than 1.5-

fold increase in the expression of genes involved in gene 

expression, tRNA aminoacylation, and the unfolded protein 

response (UPR), whereas the expression of genes involved in 

the cell cycle and DNA replication were decreased (Fig. 2B). 

In terms of biological processes, we observed the enriched 

expression of genes involved in the protein metabolism and 

energy pathways, whereas we observed decreased expres-

sion of genes involved in cell communication and nucleic acid 

metabolism (Fig. 2C).

	 Thirteen genes (AARS, CARS, CASC5, CENPE, CENPQ, 

CENPU, GFPT1, HYOU1, IARS, MARS, MCM10, SARS, 

SGOL2) were detected in all three analyses performed (DA-

VID, FUNRICH, and GSEA). Because gene expression relat-

ed to tRNA aminoacylation and the UPR was significantly 

enriched in spheroids grown in CM from lung cancer cells 

co-cultured with HUVECs, we focused our efforts on aminoa-

cyl-tRNA synthetase and HYOU1.

	 Western blot analysis showed that aminoacyl-tRNA syn-

thetase protein expression in lung cancer spheroids was not 

changed by factors secreted in response to crosstalk between 

ECs and lung cancer cells. As the PI3K/AKT signaling pathway 

plays a major role in cell proliferation, cell survival, and inva-

sion in cancer, we next investigated the effects of HYOU1 on 

PI3K/AKT pathway components. HYOU1 protein expression 

and AKT phosphorylation at Ser473 were increased in H460 

spheroids grown in CM from lung cancer cells co-cultured 

with HUVECs relative to H460 spheroids grown under nor-

mal conditions (Fig. 2D). This result prompted us to focus on 

functional roles of HYOU1 in TME of lung cancer.

Reciprocal crosstalk between NSCLC cells and HUVECs 
causes increased HYOU1 expression in MCTSs
We further sought to ascertain whether the direct interaction 

between ECs and lung cancer cells affects HYOU1 expression 

Fig. 3. Reciprocal crosstalk between NSCLC cells and HUVECs causes increased HYOU1 expression in MCTSs. (A) Bright-field images 

of 3D spheroids co-cultured with HUVECs and NSCLC cells (NCI-H460 or A549) and spheroids cultured with lung cancer cells alone. The 

images were obtained using the Operetta® High Content Screening System with a 10× objective. (B) Expression levels of ATF6, HYOU1, 

IRE1, and pAKT (Ser473) in spheroids co-cultured with HUVECs and NSCLC cells (NCI-H460 or A549) and spheroids cultured with 

lung cancer cells alone, as assessed by western blot analysis. (C) Multilayer image showing immunofluorescence staining of HYOU1 in 

NSCLC (NCI-H460 or A549) spheroids co-cultured with HUVECs and Hoechst staining of both cell types. (D) Expression levels of cleaved 

caspase-3 and HYOU1 in lung cancer cells transfected with nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1) and co-cultured with 

HUVECs with or without 10 μM or 20 μM gefitinib or cisplatin for 72 h, as assessed by western blot analysis.
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in MCTSs. To accomplish this, we co-cultured lung cancer 

spheroids with ECs and/or lung cancer cells (NCI-H460 or 

A549) in 3D cell culture. Spheroids co-cultured with both ECs 

and lung cancer cells showed enhanced compactness com-

pared to spheroids cultured with lung cancer cells alone (Fig. 

3A). Using the technique described in Fig. 2D, we next esti-

mated HYOU1 expression and PI3K/AKT signaling activation 

in these spheroids. We observed increased HYOU1 expression 

and AKT phosphorylation (Ser473) in spheroids co-cultured 

with ECs and lung cancer cells compared to spheroids cul-

tured with lung cancer cells alone.

	 Because HYOU1 is a well-known component of the endo-

plasmic reticulum (ER) chaperone network, we also explored 

whether induction of HYOU1 is dependent on the canonical 

UPR pathway by inducing ER stress in spheroids co-cultured 

with ECs and lung cancer cells. Unexpectedly, we observed 

decreased expression of the three major ER stress sensor pro-

teins (inositol-requiring enzyme-1 [IRE1], PKR-like ER kinase, 

and activating transcription factor-6 [ATF6]) in spheroids 

co-cultured with ECs and lung cancer cells (Fig. 3B). These re-

sults indicate that the increased HYOU1 expression observed 

in spheroids co-cultured with ECs and lung cancer cells is un-

related to the ER stress response.

	 Next, we investigated which cells express more HYOU1 

upon the co-culture of spheroids with ECs and lung cancer 

cells. To this end, we detected HYOU1 expression and local-

ization via multilayer image acquisition using fluorescence 

microscopy in lung cancer spheroids (NCI-H460 or A549) 

grown with HUVECs. Interestingly, HYOU1 expression was 

only observed in lung cancer spheroids and absent in HUVECs 

(Fig. 3C).

	 Our previous study revealed that crosstalk between NSCLC 

cells and HUVECs induced strong chemoresistance in MCTSs 

(Kim et al., 2019). In the present study, we investigated the 

effects of HYOU1 on the chemoresistance induced by the 

interaction between lung cancer cells and HUVECs in MCTSs. 

Fig. 4. Depletion of HYOU1 inhibits tumor growth in lung cancer cells. (A) Expression levels of HIF1 and HYOU1 in monolayer (2D)- or 

spheroid (3D)-cultured NSCLC cells (NCI-H460, A549, H1299, and PC9), as assessed by western blot analysis. (B) Clonogenic survival in 

NSCLC cells (NCI-H460, A549, and H1299) transfected with nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1), as assessed by colony 

formation assay. (C) Immunofluorescence and bright-field images of lung cancer spheroids (NCI-H460, A549, and H1299) transfected with 

nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1). The spheroids were stained with 4 μM EthD-1. The images were obtained using the 

Operetta® High Content Screening System, and the intensity of EthD-1 staining in lung cancer spheroids relative to controls was analyzed 

using Harmony software. (D) Expression of cleaved caspase-3, cleaved PARP, HIF1, HYOU1, pp38, p53, and pErk1/2 in lung cancer spheroids 

(NCI-H460 and A549) transfected with nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1). The data shown are the mean ± SD from 

three independent experiments; **P < 0.01, ***P < 0.001, and ****P < 0.0001 compared to the control group.
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We generated tumor spheroids with suppressed HYOU1 

expression by co-culturing HYOU1 siRNA-treated (siHYOU1) 

lung cancer cells with HUVECs, and treating the resulting 

spheroids with or without gefitinib or cisplatin. After MCTSs 

were allowed to form for 72 h, we assessed cell viability 

by measuring the levels of the apoptosis marker cleaved 

caspase-3. We observed that the suppression of HYOU1 ex-

pression in lung cancer cells caused an increase in the expres-

sion of cleaved caspase-3 in MCTSs (Fig. 3D). These results 

show that depletion of HYOU1 in lung cancer cells affects the 

drug sensitivity of the TME.

Depletion of HYOU1 inhibits tumor growth, and the 
stemness and expression of EMT-related proteins in lung 
cancer cells
Because HYOU1 is an ER-associated chaperone induced by 

hypoxia (Ikeda et al., 1997; Tamatani et al., 2001; Tsukamoto 

et al., 1996), we investigated its expression in lung cancer 

spheroids, which exhibit hypoxia. Spheroid (3D) cultures 

derived from various lung cancer cells exhibited increased 

expression of HYOU1 relative to monolayer (2D) cultures (Fig. 

4A).

	 According to analysis of data from The Cancer Genome 

Atlas program, HYOU1 is an unfavorable prognostic marker 

in renal and thyroid cancer, but is not prognostic in lung can-

cer. HYOU1 has a low specificity for expression in the lung 

cancer TME. Nevertheless, we examined whether HYOU1 

controls lung cell growth to investigate the potential effects 

of altered HYOU1 expression on lung growth. Clonogenic 

survival was diminished by depletion of HYOU1 in H460 cells 

(40%), A549 cells (64.2%), and H1299 cells (46.2%) (Fig. 

4B).

Fig. 5. Depletion of HYOU1 inhibits stemness and the expression of EMT-related proteins in lung cancer cells. (A) CSC spheroid 

formation of H1299, A549, and NCI-H460 cells transfected with nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1). (B) Expression 

levels of CD133 and HYOU1 in H1299 cells transfected with nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1). (C) Bright-field 

and immunofluorescence images of lung cancer spheroids (NCI-H460 and A549) transfected with nonspecific siRNA (siCont) or HYOU1 

siRNA (siHYOU1) and treated with 20 μM gefitinib. The spheroids were stained with 4 μM EthD-1. The images were obtained using the 

Operetta® High Content Screening System, and the intensity of EthD-1 staining in lung cancer spheroids was analyzed using Harmony 

software. (D) Bright-field images of NSCLC cells (NCI-H460 and A549) transfected with nonspecific siRNA (siCont) or HYOU1 siRNA 

(siHYOU1), as assessed by migration assay. (E) Expression levels of α-SMA, collagen I, HYOU1, N-cadherin, and vimentin in in lung cancer 

spheroids (NCI-H460 and A549) transfected with nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1). The data shown are the mean 

± SD from three independent experiments; *P < 0.05 compared to the control group.

CD133 

HYUO1 

β-actin 

 B A
si

C
on

t 

- 20 µM 

si
H

YO
U

1 

- Gefitinib 

A549 H460 

0
0.5

1
1.5

2
2.5

3

SiCont Si HYOU1

0uM
20uM

* 

Et
hD

-1
 in

te
ns

ity
  

(A
ve

ra
ge

) 
0

0.5

1

1.5

2

SiCont Si HYOU1

0uM
20uM

* 

Et
hD

-1
 in

te
ns

ity
  

(A
ve

ra
ge

) 

A549 

H460 C 

siCont siHYOU1 

0 h 

24 h 

A549 

siCont siHYOU1 

0 h 

93 h 

H460 H460 

N-cadherin 

Snail 

Vimentin 

α-SMA 

Collagen I 

HYUO1 

β-actin 

N-cadherin 

Snail 

Vimentin 

α-SMA 

Collagen I 

HYUO1 

β-actin 

A549 

E D 

siCont siHYOU1 

A
54

9 
 9921

H
 064

H

Scale bar : 200 µm 

20 µM 

0 µM 
20 µM 

0 µM 
20 µM 

siCont      siHYOU1 

siCont      siHYOU1 



58  Mol. Cells 2021; 44(1): 50-62

Functional Roles of HYOU1 in Lung Tumor Microenvironment
Minji Lee et al.

	 To elucidate the functional roles of HYOU1, we next exam-

ined whether HYOU1 controls tumor growth and metastasis 

in a spheroid model similar to the lung cancer TME.

	 The siRNA-mediated depletion of HYOU1 significantly 

increased cell death in H460, A549, and H1299 spheroids 

(Fig. 4C). Expression of two apoptosis markers, cleaved PARP 

and cleaved caspase-3, were measured in H460 and A549 

spheroids following HYOU1 depletion. The p38 MAPK is re-

lated to hypoxia-induced apoptosis (Chae et al., 2001; Park 

and Rongo, 2016) and ERK/MAPK is involved in resistance to 

apoptosis under hypoxic conditions (Hartel et al., 2010; Liu 

et al., 2010). Inhibition of HYOU1 expression induced p38 

activation, but attenuated ERK activation, in H460 and A549 

spheroids. However, suppressing HYOU1 expression did not 

alter the activation of p53 or HIF1 (Fig. 4D).

	 To identify the possible effects of HYOU1 on cancer stem 

cell (CSC) populations of lung cancer cells, HYOU1-depleted 

lung cancer cells were cultured under spheroid-forming con-

ditions, and the resulting spheroid number and size were an-

alyzed (Fig. 5A). Inhibition of HYOU1 significantly attenuated 

the spheroid-forming capacity of lung cancer cells. As CD133 

expression plays a critical role in the maintenance of stem-like 

properties in lung cancer (Ghosh and Parida, 2016; Thon et 

al., 2014), depletion of HYOU1 decreased the expression of 

CD133 in lung cancer cells (Fig. 5B). These results show that 

HYOU1 may also be involved in the propagation of CSCs in 

lung cancer.

	 Because CSCs have been associated with tumor initiation, 

therapeutic resistance, and metastasis, we next sought to 

determine whether inhibition of HYOU1 expression sensitizes 

lung cancer cells to anticancer therapies and thus enhanc-

es their efficacy. After lung cancer spheroids (NCI-H460 or 

A549) with or without siHYOU1 were subjected to gefitinib 

treatment, the intensity of EthD-1 staining in spheroids was 

measured. Depletion of HYOU1 expression markedly en-

hanced lung cancer spheroid chemosensitivity to gefitinib (Fig. 

5C). To investigate the effects of HYOU1 on cell migration, 

we also performed wound healing assays following HYOU1 

depletion in lung cancer cells and found that lung cancer cell 

migration was attenuated by HYOU1 depletion (Fig. 5D). We 

next measured the expression of epithelial-to-mesenchymal 

transition (EMT)-related proteins in HYOU1-depleted lung 

cancer cells. Expression of N-cadherin, α-SMA, vimentin, and 

collagen I were all decreased in HYOU1-depleted lung cancer 

cells (Fig. 5E). These results demonstrate that HYOU1 plays a 

pivotal role not only in inhibition of tumor growth and stem-

ness but also in enhancing the anticancer efficacy of the lung 

cancer TME.

HYOU1 controls tumor growth via the alteration of inter-
feron signaling in lung cancer cells
To reveal the molecular mechanism by which HYOU1 affects 

lung tumor growth, we performed gene expression profi ling 

on the HYOU1-depletion system in H460 cells. Using a fold 

difference cutoff of greater than 2.5-fold, we identifi ed 44 

genes that were differentially expressed between HYOU1-de-

pleted H460 cells and normal H460 cells (Supplementary 

Tables S2 and S3). According to the Reactome Pathway Da-

tabase, HYOU1 is functionally involved in the UPR, chromatin 

organization, and interferon (IFN) signaling (Fig. 6A). It is 

noticeable that expression of IFN-type I (IFN-α, β) were more 

increased than IFN-type II (IFN-γ) by depletion of HYOU1 ex-

Fig. 6. HYOU1 controls tumor growth via the regulation of IFN signaling in lung cancer cells. (A) Target pathways identified by 

microarray analysis as markedly altered in NCI-H460 cells transfected with siHYOU1. (B) Expression levels of IFN-α, and IFN-β in NSCLC 

cells (NCI-H460 and A549) transfected with nonspecific siRNA (siCont) or HYOU1 siRNA (siHYOU1).
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pression. IFN-α, β have been found to be effective in reduc-

ing the growth of various tumor (Ghosh and Parida, 2016). 

Western analysis also showed that expression of IFN-type I 

(IFN-α, β) were increased by inhibition of HYOU1 expression 

during process of cell death in lung cancer cells (Fig. 6B).

HYOU1 expression is downregulated by the inhibition of 
the PI3K/AKT/mTOR pathway
Although HYOU1 is a larger protein than GRP78, its overall 

structure is highly homologous to that of GRP78. Because 

the inhibition of the PI3K/AKT/mTOR signaling pathway sup-

presses GRP78 expression (Pfaffenbach et al., 2012; Thon 

et al., 2014), we evaluated the effect of activating the PI3K/

AKT/mTOR pathway on HYOU1 expression. Treatment with 

the mTOR inhibitors Torin2 and WYE-132, and the potent 

PI3K inhibitors GDC-0032 and PKI-402, significantly inhibited 

HYOU1 expression in H460 and H1299 cells (Fig. 7A).

	 Because mTOR inhibitors could decrease an HYOU1 ex-

pression in H460 and H1299 cells, we next examined wheth-

er mTOR controls HYOU1 expression by using siRNAs for 

mTOR and HYOU1 in H460 and H1299 cells. Western blot 

analysis revealed that siRNA against mTOR efficiently deplet-

ed HYOU1 expression, whereas the inhibition of HYOU1 did 

not affect mTOR expression (Fig. 7B) and H1299 cells. These 

results suggest that mTOR could regulate the expression of 

HYOU1 in lung cancers.

DISCUSSION

ECs are the most frequently studied components of the TME. 

Generally, ECs undergo a phenotypic transformation to acti-

vated myofibroblast-like cells through the EndMT (Kim et al., 

2019). Cancer cells stimulate the activation of the EndMT in 

ECs, and transformed ECs support cancer progression by se-

creting diverse cytokines, growth factors, and proteins of the 

ER membrane protein complex. Secretomics—the analysis of 

the secretome (all the secreted proteins of a cell, tissue, or or-

ganism)—is important to the discovery of cancer biomarkers 

because secreted proteins facilitate communication between 

distinct cells in multicellular organisms and control a broad 

range of physiological functions (Meissner et al., 2013). 

Because CM obtained from the co-culture of lung cancer 

cells and HUVECs promoted robust chemoresistance in lung 

cancer spheroids (Fig. 1), we ascertained that the paracrine 

effects of ECs on lung cancer chemoresistance should be 

further investigated in 3D culture conditions to identify the 

chemoresistance-inducing factor(s) present in the co-cultured 

CM.

	 Expression of many genes, especially genes related to 

tRNA aminoacylation and the UPR, was highly increased in 

Fig. 7. HYOU1 expression is downregulated by the inhibition of the PI3K/AKT/mTOR pathway. (A) Expression levels of HYOU1 in 

NSCLC cells (NCI-H460 and H1299) treated with 0.1 μM or 1 μM of an mTOR inhibitor (Torin2 or WYE-125132) or a PI3K inhibitor 

(GDC0032 or PKI-402). (B) Expression levels of HYOU1 and mTOR in NSCLC cells (NCI-H460 and H1299) transfected with nonspecific 

siRNA (siCont), HYOU1 siRNA (siHYOU1), or mTOR siRNA (simTOR). The data shown are the mean ± SD from three independent 

experiments; *P < 0.05 compared to the control group.
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lung cancer spheroids following treatment with CM from 

co-cultured lung cancer cells and HUVECs (Supplementary 

Table S1). In the present study, we focused specifically on the 

functional roles of HYOU1 in lung cancer cells.

	 HYOU1, which is a well-characterized ER chaperone and 

the largest glucose-regulated protein, has an ADP-ATP ex-

change function via its interaction with GFP78 (Andreasson 

et al., 2010), enabling it to protect cancer cells from cell 

death by delaying the onset of the UPR and binding to ER 

stress sensors. HYOU1 has also been linked to cancer devel-

opment and progression through its facilitation of chemore-

sistance, tumor invasion, and angiogenesis in various tumor 

types. Conversely, HYOU1 has been shown to have potent 

antitumor effects in vivo dependent on cytotoxic CD8+ T cells, 

so it may be an effective target in a new vaccine platform 

to generate a therapeutic antitumor response (Wang et al., 

2015). Given these conflicting data, the functions of HYOU1 

remain controversial and must be studied in the TME.

	 In our study, hypoxia increased the expression of HIF1 

and HYOU1 in lung tumor spheroids, whereas silencing of 

hypoxia-induced HYOU1 suppressed tumor growth (Fig. 4). 

CSC populations can cause tumor recurrence, metastasis, 

and treatment failure in patients with lung cancer. Hypoxia 

stimulates the propagation of CSC populations and triggers 

increased expression of HYOU1 (De Francesco et al., 2017). 

In the present study, depletion of HYOU1 expression not 

only suppressed the propagation of CSCs via the inhibition 

of CD133 expression but also regulated metastasis and che-

moresistance in lung cancer cells (Fig. 5). Hence, we consider 

HYOU1 to be an attractive target for lung cancer therapeu-

tics.

	 IFN-α, β induced apoptotic cell death in various tumors and 

also in triggering the anti-tumor immune response in humans 

(Ghosh and Parida, 2016; Hobeika et al., 1997; Makowska 

et al., 2018; Nair et al., 1994; Yasuoka et al., 2001). In lung 

cancer cells, inhibition of HYOU1 increased the expression 

IFN-α and IFN-β during cell death (Fig. 6). Although GRPs are 

mainly induced in response to ER stress, induction of HYOU1 

in spheroids co-cultured with ECs and NSCLC cells was not 

dependent on the ER stress response (Fig. 3B). Because GRPs 

are also mediated by PI3K/AKT/mTOR signaling (Dai et al., 

2010; Lee, 2014; Thon et al., 2014), we tested the effects 

of mTOR and PI3K inhibitors on the expression of HYOU1 

in lung cancer cells. Inhibition of PI3K/AKT/mTOR signaling 

inhibited HYOU1 expression in lung cancer cells (Fig. 7). In-

creases in both HYOU expression and pAKT (Ser473)/mTOR 

occurred simultaneously in H460 spheroids grown in CM 

from lung cancer cells co-cultured with ECs and in MCTSs 

co-cultured with ECs and NSCLC cells (Figs. 2D and 3B). We 

showed that induction of HYOU1 via the activation of PI3K/

AKT/mTOR signaling facilitates tumor malignancy in lung 

cancer. HYOU1 also promotes cell growth and metastasis by 

modulating the PI3K/AKT pathway in epithelial ovarian can-

cer (Li et al., 2019). Several mTOR-targeted agents are under 

clinical development for the treatment of lung cancer (Ekman 

et al., 2012).

	 In this study, we sought to elucidate the mechanisms un-

derlying HYOU1-induced chemoresistance in MCTSs co-cul-

Fig. 8. Schematic diagram of 

HYOU1 regulation in spheroids 

c o - c u l t u r e d  w i t h  H U V E C s 

and NSCLC cells. Cell growth, 

chemoresistance, and migration 

in lung cancer spheroids are up-

regulated by co-culturing with 

HUVECs (ECs) and lung cancer 

(NSCLC) cells.

Lung cancer 

Endothelial cells 



Mol. Cells 2021; 44(1): 50-62  61

Functional Roles of HYOU1 in Lung Tumor Microenvironment
Minji Lee et al.

tured with ECs and NSCLC cells. Our study demonstrated 

that depletion of HYOU1 suppresses tumor growth, chemo-

resistance, and migration via inhibiting CSC populations by 

increasing the expression of IFN-α and IFN-β in lung cancer 

cells. Expression of HYOU1 is modulated by the activation 

of the PI3K/AKT/mTOR pathway (Fig. 8). Hence, selective 

inhibitors of HYOU1 expression could represent promising 

therapeutic targets for overcoming chemoresistance and tu-

morigenesis in lung cancer.

Note: Supplementary information is available on the Mole-

cules and Cells website (www.molcells.org).
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