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A B S T R A C T

A visual/smartphone colorimetric system was developed for the sensitive and selective detection of sulfide ion 
(S2− ) using chemical vapor generation (CVG) as a gaseous sampling technique. S2− in samples were converted 
into H2S after the addition of H2SO4, which separated from the solution during CVG process, ensuring high 
efficiency of vapor generation (sensitivity) and eliminated interferences (selectivity). The H2S was subsequently 
reacted with Pb-BTC and PbS was thus formed, causing the test paper turned to black. It was utilized for the 
detection of S2− by visual/smartphone colorimetric system. Detectable limits of 0.05 μg/mL and 0.2 μg/mL were 
obtained under smartphone mode and visual mode, respectively. Furthermore, this colorimetric system was 
successfully used for the analysis of S2− in several beer samples and water samples, with recoveries ranging 97 
%–111 %. This system represents a potential miniaturized, easy used and high-effective method for rapid and on- 
site detection of S2− .

1. Introduction

As a hazardous contaminant, sulfide (S2− ) ion is commonly found in 
industrial processes and biological systems, prevalent in industrialized 
wastewater from oil refineries, food factories and tanneries(Liu et al., 
2019; Rajamanikandan & Ilanchelian, 2022). Excessive sulfide accu
mulation poses environmental and biological hazards, causing irritation 
to respiratory mucous membranes and skin sensitization upon pro
longed exposure(Yin et al., 2022). Furthermore, serious health impli
cations such as Down's syndrome, Alzheimer's disease, cirrhosis of the 
livers and diabetes mellitus have been associated with sulfide exposure 
(Chen et al., 2024). Consequently, the World Health Organization 
(WHO) requires that the level of S2− in water should not exceed 15 μM 
(0.5 μg/mL)(So et al., 2019), underscoring the importance of monitoring 
S2− content in environmental water.

Various methods are available for S2− detection, including gas 
chromatography(Zhang et al., 2014), surface-enhanced Raman 

scattering(Li et al., 2015), electrochemical assays(Chen et al., 2021; Hall 
& Schoenfisch, 2018), fluorescence spectroscopy(Buragohain & Biswas, 
2016; Wang et al., 2018) and ultraviolet-visible spectroscopy(Tang 
et al., 2019). However, these methods often require bulky instruments 
and complicated operations, restricting instruments to laboratory use 
only. As a consequent, there is a critical need for a rapid on-site detec
tion method.

Chemical vapor generation (CVG), including hydride generation and 
photochemical vapor generation etc., as a mature gaseous sample 
introduction technique, offers benefits such as high efficiency of sample 
introduction and efficient sample matrix separation etc. (Campanella & 
D'Ulivo, 2024; Hu et al., 2022). Nowadays, CVG has been combined with 
atomic spectrometry and applied to the determination of elements (Li 
et al., 2023; Wu et al., 2010; Zou et al., 2019; Zou et al., 2020). Color
imetric methods have attracted widespread attention due to its advan
tages of low cost, ease of operation and visualization (Tian et al., 2024). 
The combination of colorimetry and chemical vapor generation has the 
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potential to produce superior results. Currently, this conjunction is 
employed for detection of various analytes(Hu et al., 2019), including 
antimony(Tolessa et al., 2018), selenium(Xiong et al., 2019), nickel 
(Yuan et al., 2022), zinc(Huang et al., 2018) and arsenic(Jiang et al., 
2023; Zou et al., 2023). Notably, CVG-based colorimetric systems also 
can be utilized for S2− analysis. Hou et al. proposed a fluorescence sensor 
for detection of S2− . S2− was converted into gaseous H2S upon addition 
of HCl, and H2S quenched the paper-based fluorescence of CdTe quan
tum dots through a gas-solid reaction(Pan et al., 2021). Additional, 
Zheng et al. proposed a paper-based ratiometric fluorescent sensor for 
field analysis of S2− , constructing by the inner filter effect of CdS 
quantum dots toward carbon dots (C-dots). S2− was converted to H2S 
after the addition of H2SO4, and CdS quantum dots were in-situ formed. 
CdS was acted as an energy accepter to quench the emission of C-dots. 

The increasing concentration of S2− lead to a ratiometric fluorescence 
change to yellow from blue (Lin et al., 2023). Metal organic frameworks 
(MOFs) are porous materials with a wide range of applications, which 
are formed by the coordination of central metal ions and organic li
gands, and take advantages of high porosity, large specific surface area 
and good stability etc. (Li et al., 2020; Yang et al., 2022; Yuan et al., 
2023; Zhang et al., 2023). Thanks to the above-mentioned advantages, 
MOFs can preconcentrate the analyte gas, which not only improves the 
sensitivity and selectivity, but also accelerates the reaction rate. 
Therefore, MOFs are potential colorimetric substrates for elemental 
analysis. However, to date, lead-based MOF has not been reported as a 
substrate for colorimetric analysis of S2− .

In this work, a lead-containing metal organic framework (Pb-BTC) 
was prepared and served as a substrate for S2− analysis by chemical 

Scheme. 1. Schematic diagram of the proposed CVG-colorimetric system.

Fig. 1. Energy-dispersive spectroscopy mapping of Pb-BTC (a-c), XPS data of Pb-BTC: full XPS spectra (d), S (e) and Pb (f).
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vapor generation-colorimetric system. S2− was transformed to H2S gas 
after H2SO4 was added. H2S reacted with Pb-BTC, PbS was subsequently 
formed on the surface of Pb-BTC, turning the Pb-BTC into black from 
white, this color variance was finally readout by visual method and 
smartphone RGB readout method. Several beer samples and water 
samples were further detected by this colorimetric system, with re
coveries of 97 %–111 %. Detectable limits of 0.05 μg/mL and 0.2 μg/mL 
can be identified by a smartphone and naked-eye, respectively. This 
colorimetric method is a promising portable analytical system for rapid 
and field analysis of S2− .

2. Experimental section

2.1. Reagents

In this study, all reagents were used without purification and were 
commercially available. 18.25 MΩ cm deionized water (DIW) were used 
for solutions preparation. Pb(NO3)2, trimesic acid (H3BTC), NaOH, 
H2SO4, Na2SO4, K2SO4, NaF, NaCl, NaBr, KI, Na2CO3, Na3PO4⋅12H2O, 
NaNO3, CH3COONa, ethanol, fructose, lactose, maltose, sucrose, 
glucose, tartaric acid, oxalic acid and citric acid were purchased from 
Kelong Chemical Reagents Co. Ltd. (Chengdu, China). The Na2S 

Fig. 2. (a) Effect of Pb-BTC concentration, (b) effect of H2SO4 concentration, (c) effect of reaction time and (d) stability of Pb-BTC (new test paper: 1 day; old test 
paper: 30 days).

Fig. 3. Interferences for S2− detection. (Et: ethanol; Mal: maltose; Suc: sucrose; 
Glu: glucose; Lac: lactose; Fru: fructose; CA: citric acid; TA: tartaric acid; OA: 
oxalic acid).

Fig. 4. (a) Calibration curve of smartphone readout method. (b) Standard cards of visual method and water samples analysis.
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standard solution (1000 μg/mL) and Certified Reference Material (CRM) 
of water (BWZ6676-2016C) were purchased from Beijing Century Aoke 
Biotechnology. Chromatography paper and filter papers were obtained 
from Whatman U.K. Beer samples were acquired from local supermar
ket, tap water was collected from Sichuan Normal University, and lake 
water samples were collected from Qinglong Lake Park and East Lake 
Park (Chengdu), respectively.

2.2. Characterizations

Deionized water (DIW, 18.25 MΩ cm) was obtained from a water 
purification system. The X-ray photoelectron spectroscopy (XPS) data 
and scanning electron microscope (SEM) images were provided by an 
ESCALABMK II X-ray photoelectron spectrometer and a Quanta 250 

SEM (FEI Instrument Co. USA), respectively. X-ray diffraction (XRD) 
data was obtained using a RigakuD/MAX 2550 diffractometer. The 
Fourier transform infrared spectroscopy (FTIR) data was obtained from 
Bruker Optics VERTEX 70.

2.3. Synthesis of Pb-BTC

The Pb-BTC ([Pb2(1,3,5-HBTC)2(H2O)4]⋅H2O) was prepared 
following a previously reported procedure with some modifications 
(Zhang et al., 2017). Initially, dissolve 0.189 g trimesic acid (H3BTC) in 
90 mL H2O using a high-density ultrasonic cleaner, yielding solution A. 
Subsequently, 0.298 g Pb(NO3)2 was dissolved in 10 mL of H2O to form 
solution B. Solution B was then added to solution A, followed by 
ultrasonication for 30 min at room temperature. The synthesized Pb-BTC 
was washed several times with ethanol and then dried in an oven at 
60 ◦C. XRD spectrum of Pb-BTC was coincided with its simulated data 
(Fig. S1, CCDC: 722465) (Sadeghzadeh & Morsali, 2010), confirming the 
successful synthesis of Pb-BTC. The FTIR spectrum of synthesized Pb- 
BTC was presented in Fig. S2, it was matched well with the previous 
literature(Baskoro et al., 2021), further demonstrating the successful 
synthesis of Pb-BTC.

2.4. Analytical procedures

All water samples, beer samples and the CRM water sample 
(BWZ6676-2016C) were pretreated with 0.03 % (m/v) NaOH solution. 
The prepared Pb-BTC was stored at room temperature and weighed it 
when needed. Pb-BTC suspension was prepared by dispersing 60 mg of 
Pb-BTC in 1 mL of deionized water and shaking the solution before each 
used. Pb-BTC suspension was sucked by a plastic dropper and one drop 
of Pb-BTC suspension was dropped to the paper sheet. Pb-BTC was 
uniformly distributed on the paper with water was absorbed by the 
paper. The Pb-BTC fabricated test paper (wet) was used for further 
detection. The Pb-BTC test paper is disposable, so it needs to be replaced 
after use.

As illustrated in Scheme 1, the CVG-visual/smartphone RGB readout 
colorimetric system comprises a syringe, a headspace bottle (15 mL) and 
Pb-MOF fabricated chromatography paper (diameter: 1.5 cm). In the 
procedure, 10 mL sample solution or S2− standard solution was added to 
the headspace vial, the Pb-MOF fabricated chromatography paper was 
placed in sealed cover before tightening sealing cap. Subsequently, 5 mL 
of 6 % (v/v) H2SO4 solution was injected into the bottle to react with S2−

and immediately produce gaseous H2S. H2S was then reacted with Pb- 
BTC to form PbS, causing the color gradually changed from white to 
black. This color change can be observed both with naked-eye and 
smartphone.

3. Results and discussions

3.1. Mechanism discussions

Pb-BTC was prepared and utilized as a substrate for sensitive and 
selective detection of S2− using the chemical vapor generation- 
colorimetric system. S2− was converted to H2S with the addition of 
H2SO4 (chemical vapor generation process, Reaction 1). Subsequently, 
H2S reacted with Pb-BTC, causing a change in the color of the paper 
sheet. The potential mechanism (Reaction 1 and Reaction 2) of the 
discoloration between Pb-BTC and H2S was investigated through 
characterizations. 

S2− +2H+ = H2S↑(chemical vapor generation) (1) 

H2S+Pb2+
= PbS+ 2H+ (2) 

Pb-BTC before and after reaction were characterized by XRD and 
XRD data were presented in Fig. S1. The XRD peaks of Pb-BTC remained 

Table 1 
Analytical results of S2− in water samples and beer samples by the proposed 
method.

Samples Certified 
value (μg/ 
mL)

S2−

added 
(μg/mL)

Detected by 
RGB method 
(μg/mL)

Naked- 
eye

Recovery 
(%)

Qinglong 
Lake water 
(W1)

– – ND – –

(W2) – 0.1 0.106 ±
0.018

106

(W3) – 1 1.108 ±
0.044

111

East Lake 
water 
(W4)

– – ND – –

(W5) – 0.1 0.108 ±
0.012

108

(W6) – 1 1.094 ±
0.032

109

Tap water 
(W7)

– – ND – –

(W8) – 0.1 0.105 ±
0.009

105

(W9) – 1 1.080 ±
0.073

108

BWZ6676- 
2016C* 
(W10)

1 – 1.018 ±
0.030

102

Beer sample 
1 (B1)

– – ND – –

(B2) – 0.1 0.099 ±
0.017

99

(B3) – 1 1.087 ±
0.024

109

Beer sample 
2 (B4)

– – ND – –

(B5) – 0.1 0.097 ±
0.014

97

(B6) – 1 0.996 ±
0.090

99

Beer sample 
3 (B7)

– – ND – –

(B8) – 0.1 0.103 ±
0.023

103

(B9) – 1 1.042 ±
0.026

104

ND: not detected. * BWZ6676-2016C certified value: 2.06 μg/mL, diluted to 1 
μg/mL (W10) before analysis.
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basically unchanged after reaction, indicating no significant alteration 
in the crystal structure of Pb-BTC. However, three additional peaks were 
found after reaction, it matched well with the standard card of PbS 
(PDF#02–0699)(Tan et al., 2017), demonstrating the generation of PbS 
(Reaction 2). SEM characterization was used for further demonstrating 
this hypothesis. Pb-BTC exhibits a well-structured prismatic crystal 
morphology before the reaction (Fig. S3a-3b). After reacting with H2S, 
its surface became rougher (Fig. S3c-3d). With the increase of H2S 
concentration, the crystal structure was partially disrupted and even 
collapsed (Fig. S3e-3h). Energy-dispersive spectroscopy (EDS) indicated 
that uniform distribution of Pb and S on the Pb-BTC (Fig. 1a-1c), with 
sulfur observed in Pb-BTC after reaction (Table S1), further confirming 
the generation of PbS. The production of PbS was further elucidated by 
XPS. After reaction, the S 2p peaks appeared at 160.2 eV (2p3/2) and 
161.4 eV (2p1/2), which attribute to the existence of S2− (Fig. 1e and 
Fig. S4c). Additionally, the binding energies of Pb 4f shifted from 138.2 
eV and 143.1 eV (before reaction) to 137.3 eV and 142.2 eV (after re
action), respectively. In fine energy spectrum (Fig. S4b and S4d), peak of 
Pb-S was observed after reaction, further indicating the generation of 
PbS. (Cha et al., 2018; Lara et al., 2011).

3.2. Optimization of conditions

Different experimental parameters can influence the efficiency of 
H2S production, subsequently affecting the reaction of Pb-BTC with H2S. 
Therefore, Pb-BTC concentration, H2SO4 concentration and reaction 
time were optimized. The V(R þG þ B) value represents the summation 
of red value (R), green value (G) and blue value (B), expressed as V(R þ
G þ B) ¼ VR þ VG þ VB. A decrease in the V(R þ G þ B) value indi
cating darkening of the color.

The concentration of Pb-BTC plays a crucial role for the sensitivity of 
this system, so that Pb-BTC concentration was optimized. As depicted in 
Fig. 2a, as the Pb-BTC concentration increased, V(R þ G þ B) value 
gradually decreased and reached a plateau at 60 mg/mL, consistent with 
the results of visual method. Therefore, 60 mg/mL Pb-BTC was used in 
further experiments. H2SO4 concentration significantly affects the pro
duction of H2S, as insufficient of H2SO4 leads to incomplete conversion 
of S2− to H2S. Fig. 2b demonstrates that the optimal V(R þ G þ B) value 
was obtained at a H2SO4 concentration of 6 % (v/v), corroborating re
sults obtained with naked eye. Subsequently, reaction time was opti
mized to achieve stable results. The V(R þ G þ B) value decreased with 
time and stabilized at 10 min (Fig. 2c), so that 10 min was chosen for 
subsequent experiments. Furthermore, five types of test paper (What
man grade 1 filter paper (test paper 1), Whatman grade 2 filter paper 
(test paper 2), Whatman grade 3 MM chromatography paper (test paper 
3), Whatman grade 4 filter paper (test paper 4) and Whatman grade 5 
filter paper (test paper 5)) were used for investigating the effect of test 
paper. Under optimized conditions, test paper 3 exhibits the best 
analytical performance both in visual mode and smartphone mode, so 
that test paper 3 was chosen for the subsequent experiments (Fig. S5). 
Comparison between an old test paper (stored at room temperature for 
30 days) and a new test paper (stored at room temperature for 1 days) 
indicates minimal discrepancy in both smartphone readout mode and 
visual mode, affirming the stability of Pb-BTC at room temperature 
(Fig. 2d). Under optimal conditions, good reproducibility and stability 
(relative standard deviation (RSD) = 1.8 %) were achieved in both 
smartphone and naked-eye (Fig. S6 and Fig. S7).

In summary, the optimized conditions of this study can be outlined as 
follows: (1) Pb-BTC concentration: 60 mg/mL; (2) H2SO4 concentration: 
6 % (v/v); (3) reaction time: 10 min.

3.3. Interferences

The anti-interference capability stands as a pivotal factor for po
tential application of methodologies in real sample analysis. Hence, this 
section delves into interference tests. Fortunately, chemical vapor 

generation (CVG) was used as a sampling method for this colorimetric 
system, offers notable advantages including high efficiency of vapor 
generation and efficient matrix separation.

Given the prevalence of organic compounds in beer samples, inter
ference tests were conducted using this method with addition of organic 
compounds, including ethanol (Et), fructose (Fru), lactose (Lac), maltose 
(Mal), sucrose (Suc), glucose (Glu), tartaric acid (TA), oxalic acid (OA) 
and citric acid (CA). As illustrated in Fig. 3, these organic compounds do 
not interfere with the detection of S2− , even at a concentration (50 μg/ 
mL) 50-fold higher than that of S2− (1 μg/mL). Visual colorimetry 
revealed no significant color change in the absence of S2− , indicating 
that co-existing substances do not affect the detection of S2− . Notably, a 
dark color is observed in the presence of S2− , maintaining consistency 
even when co-existing with organic compounds at high concentration (1 
μg/mL S2− + 50 μg/mL co-existing organic compounds). Similar 
analytical results were obtained for smartphone RGB readout method, 
underscoring its favorable tolerance to interference. S2− exhibits a 
propensity to bind with most metal ions, forming insoluble or slightly 
soluble species, mitigating potential metal interferences in the envi
ronment. Various interference sources (K+, Na+, Cl− , I− , Br− , F− , CO3

2− , 
PO4

3− , NO3
− , CH3COO− (Ac− )) were examined. There is no doubt that 

these co-existing ions also have no effect on the determination of S2−

(Fig. S8). These findings underscore the high potential application of the 
proposed method for H2S detection.

3.4. Sample analysis

Various concentrations of S2− standard solutions (0, 0.02, 0.05, 0.1, 
0.2, 0.5, 1, 2, 5 and 10 μg/mL) were assessed using this method to 
evaluate its performance. As the concentration of S2− increased, the 
color of the test paper gradually changed from white to black (Fig. 4b). 
S2− at a concentration of 0.05 μg/mL could be detected using smart
phone RGB readout method, while 0.2 μg/mL S2− can be readout by 
naked-eye (Fig. S9). Both concentrations meet the WHO-stated value 
(0.5 μg/mL) for water system. In addition, V(R þ G þ B) value 
decreased gradually with the increase of S2− concentration, displaying a 
strong linear relationship with S2− in the range of 0–2 μg/mL (Fig. 4a). 
The analytical performance of this system was in comparison with others 
(Table S2). The results show that this method presents a low detectable 
limit and a wide linear range. This method is not only a portable, low- 
cost and easy-to-operate method, but also a sensitive and selective 
analytical system for S2− .

For verifying the applicability and accuracy of this colorimetric 
system, three water samples and a CRM water sample (BWZ6676- 
2016C) were analyzed. As depicted in Fig. 4b, the colors were consistent 
with those of standard cards in visual mode, and satisfactory recoveries 
(102 %–111 %) were achieved using smartphone RGB readout mode, as 
summarized in Table 1. To further validate the accuracy of this method, 
the CRM water sample (BWZ6676-2016C) was measured 7 times to 
obtain an average value of 1.018 μg/mL (n = 7, f = 6), which is almost 
identical to the certified value (1 μg/mL). In addition, the value of s 
(standard deviation) was 0.030. The calculation of equation (t =
|x− μ|

s
̅̅̅
n

√
) yields 1.59, which is less than 2.45 in 95 % confidence level 

(t0.05, 6 = 2.45), t-test demonstrated that the analytical result by this 
method had no significant difference with the certified value. Further
more, this method was further applied to beer samples, their colors were 
matched well with the standard card (Fig. S10), and their corresponding 
results readout by smartphone were presented in Table 1, recoveries 
ranging from 97 % to 109 %. These results indicate the method's sig
nificant potential for on-site analysis of S2− .

4. Conclusions

A miniaturized chemical vapor generation-colorimetric analytical 
system was developed for the selective and sensitive detection of S2− . In 
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the process of chemical vapor generation, S2− was transformed to H2S 
and separated from the complicated matrix, so that the interferences 
from the matrix can be eliminated efficiently. The generated H2S gas was 
then reacted with Pb-BTC, and PbS was formed on its surface and caused 
the Pb-BTC fabricated paper turned to black from white. The color 
changes were available to both smartphone readout mode and visual 
mode. The experimental conditions were optimized, and detectable 
limits of 0.05 μg/mL and 0.2 μg/mL were achieved under smartphone 
mode and visual mode, it is far below the stated value of WHO (0.5 μg/ 
mL). Several real samples were measured by this colorimetric system to 
demonstrate its accuracy and applicability, including beer samples, 
water samples and a CRM water sample (BWZ6676-2016C). This 
method is a portable, low-cost and easy-to-operate analytical system for 
S2− rapid and on-site analysis.
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