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ABSTRACT: Trifunctional incompletely condensed polyhedral
oligomeric silsesquioxanes (RSiMe2O)3R′7Si7O9 (IC-POSSs) are
considered as intriguing building nanoblocks dedicated to
constructing highly advanced organic−inorganic molecules and
polymers. Up to now, they have been mainly obtained via
hydrosilylation of olefins, while the hydrosilylation of the CC
bonds has not been studied at all, despite the enormous potential
of this approach resulting from the possibility of introducing 3, 6,
or even more functional groups into the IC-POSS structure.
Therefore, in this work, we present a highly selective and efficient
synthesis of the first example of tripodal alkenyl-functionalized IC-
POSSs, obtained via platinum-catalyzed hydrosilylation of the
terminal and internal alkynes, as well as symmetrically and nonsymmetrically 1,4-disubstituted buta-1,3-diynes with silsesquioxanes
(HSiMe2O)3R′7Si7O9 (R′ = i-C4H9 (1a), (H3C)3CH2C(H3C)HCH2C (1b)). The resulting products are synthetic intermediates
that contain CC bonds and functional groups (e.g., OSiMe3, SiR3, Br, F, B(O(C(CH3)2)2 (Bpin)), thienyl), which make them
suitable for application in the synthesis of novel, complex, hybrid materials with unique properties.

■ INTRODUCTION
Trifunctional incompletely condensed silsesquioxanes (RSi-
Me2O)3R′7Si7O9 (IC-POSSs) have attracted much attention
since they were first recognized as building nanoblocks for the
synthesis of advanced hybrid materials.1−8 These compounds,
based on the silicon−oxygen cubic core in which one corner is
open, inherit many features of completely condensed
polyhedral oligomeric silsesquioxanes (R8Si8O12, POSS) and
at the same time possess unique properties that can give them
an advantage over the POSS in some areas of application. For
instance, it was found that open-cage structures IC-POSSs are
characterized by excellent thermal stability, similar to their
POSS analogues. However, because of low symmetry, their
melting points are remarkably lowered.9 This effectively
restricts crystallinity,9−11 and they are much better dispersed
in polymer matrixes,11 compared to completely condensed
POSS, which are more prone to aggregation.12,13

The leading representatives of trifunctional IC-POSSs are
commercially available trisilanols (HO)3R′7Si7O9 (R′ = Et, i-
C4H7, CH2CH(CH3)CH2C(CH3)3 or Ph, trisilanol-POSS).

14

They have been prepared by hydrolytic condensation of RSiX3
(X = Cl, OR, etc.)15−17 or by the controlled cleavage of
R8Si8O12.

18−20 The (HO)3R′7Si7O9 have been used as models
for the silica surfaces,7,8,21 dispersants in polymer ma-
trixes,22−24 reactive additives (which improve the moduli and
thermal stability of composites),25−27 components for the
preparation of noncrystalline poly(silsesquioxane)s,28 as well as
in biomedical studies focused on the tissue healing.29 However,

most of the published reports still have concern for their use as
the main intermediates for the synthesis of completely
condensed monofunctionalized silsesquioxanes RR′7Si8O12 (R
= reactive group, R′ = inert group)30,31 or IC-POSSs with a
wide variety of functionalities situated at the opening
moieties.9,11,32−41

The most common starting reagents for the synthesis of
trifunctional IC-POSS compounds are (RSiMe2O)3R′7Si7O
with R = H or HCCH2 groups. Their modification via
hydrosilylation processes led to a very rich group of new
derivatives.9,11,34−36 They have been used as effective
emulsifiers for the synthesis of stable oil-in-water emulsions,9

nanofillers for tuning properties of optically transparent
polymer materials, stabilizers of a quantum dot (binding
ligand in nanocrystalline electroluminescent materials),42

cross-linking agents in binders, hot-melt adhesives,43 insoluble
Langmuir films,44 and monomers in the synthesis of high-
temperature resistance polymers.34,35 They were also employed
in the manufacture of liquid-crystal displays,45 photosensitive
materials,46−48 optical fibers, and materials.49,50
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Table 1. Hydrosilylation of Alkynes 2a−f and 1,3-Diynes 2g−n with IC-POSSs 1a,bf
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All of the above-mentioned studies have concern for the use
of trifunctional IC-POSSs obtained only by the hydrosilylation
of carbon−carbon double bond (CC), in which the research
was focused on the uses of the desired products, and in most
cases, no optimization of the reaction conditions was made.
Therefore, there is still a great need for developing the
synthetic approaches leading to new compounds, which will
open areas of research not available so far. One of them is the
hydrosilylation of the carbon−carbon triple bonds (CC) in
alkynes and 1,3-diynes. This method together with hydro-
silylation of functional olefins seems to be one of the most
powerful tools, which, when used appropriately, can easily
provide a multiplicity of functional IC-POSSs.51,52 The
obtained compounds possess CC bond(s) and other
functional groups that can be easily modified by addition
and condensation reactions, Sonogashira, Suzuki, or Heck
couplings, as well as they can be used as monomers or
initiators in atom transfer radical polymerization (ATRP) or
reagents in click chemistry.53−56 Such alkenyl-functionalized
IC-POSSs constitute excellent precursors for the construction
of advanced hybrid materials, for instance, dedicated to
optoelectronics.57−60

Therefore, in this work, we decided to describe the synthesis
and characterization of new tripodal alkenyl-functionalized IC-
POSSs afforded by hydrosilylation of alkynes and more
challenging symmetrical and nonsymmetrical 1,4-disubstituted
buta-1,3-diynes with silsesquioxanes (HSiMe2O)3R′7Si7O9 (R′
= i-C4H9 (1a), (H3C)3CH2C(H3C)HCH2C (1b)). The
application of two different silsesquioxane substrates allowed

obtaining compounds characterized by different physical
properties and checking if the type of inert groups in the IC-
POSS structure has an impact on the time and selectivity of
the processes. It should be mentioned that substrates 1a and
1b can be easily synthesized with high yields via the previously
reported methods, which is an additional advantage of the
synthetic protocols proposed in this manuscript.33,61

■ RESULTS AND DISCUSSION
Firstly, we investigated the hydrosilylation of terminal alkynes
([(1,1-dimethyl-2-propynyl)oxy]trimethylsilane (2a) and tri-
(iso-propyl)silylacetylene (2b)) with silsesquioxanes (HSi-
Me2O)3R′7Si7O9 (R′ = i-C4H9 (1a) or (H3C)3CH2C(H3C)-
HCH2C (1b)). In our experiments, we used commercially
available platinum catalysts: Karstedt’s catalyst (Pt2(dvs)3 (I),
PtO2/XPhos (XPhos = 2-dicyclohexylphosphino-2′,4′,6′-tri-
(iso-propyl)biphenyl) (II), and Pt(PPh3)4 (III)) (Table 1,
entries 1−6). The reactions were carried out with reagents in a
ratio [1]:[2] = 1:3, in toluene or tetrahydrofuran (THF), at
100 °C, without any purification of the acquired chemicals.
The progress of the reactions was monitored by 1H NMR after
24 h, while the process selectivity was calculated using 1H and
29Si NMR.
The hydrosilylation of [(1,1-dimethyl-2-propynyl)oxy]-

trimethylsilane (2a) with silsesquioxanes 1a,b carried out in
the presence of Karstedt’s catalyst (I) resulted in the formation
of products 3aa and 3ba with selectivities of 91 and 88%,
respectively. Traces of α-isomers (4aa, 4ba) were noticed. The
selectivity of the synthesis of 3aa was improved up to 97%

Table 1. continued

ams(1)/VTHF = 50 mg mL−1, argon; 2 × 10−1 mol of XPhos was added. bInstead of Z-isomers, bishydrosilylated products were formed. c60 °C. d40
°C. ems(1)/Vtol. = 100 mg mL−1, 40 °C. Conversions of reagents were determined by 1H NMR; the selectivity for all experiments was confirmed by
1H, 13C, 29Si NMR, Fourier transform infrared (FT-IR), and MALDI time-of-flight (TOF). The isolated yield of products = 83−95% (see the
Supporting Information (SI)). fReaction conditions: 100 °C, ms(1)/Vtol. = 50 mg mL−1 (where mS(1) is the mass of the substance 1a or 1b).
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when the PtO2/XPhos (II) system62−65 was used (Table 1,
entry 2). A similar result was obtained when the process was
carried out in the presence of Pt(PPh3)4 (III), 96% (Table 1,
entry 3). Moreover, the application of Pt(PPh3)4 (III) allowed
reducing the catalyst loading to 3 × 10−2 mol of Pt per mol of
SiH. The same catalyst was used in the hydrosilylation of 2a
with 1b and led exclusively to product 3ba (>99%) (Table 1,
entry 5). The processes with sterically more hindered tri(iso-
propyl)silylacetylene (2b) resulted in the formation of
products 3ab and 3bb already using Karstedt’s (I) catalyst.
Based on the obtained results, we can perceive a relationship

between the type of alkyne and the type of catalyst that needs
to be used to obtain the products with high regioselectivity. In
the hydrosilylation of alkyne 2a, it was necessary to use the
catalysts that possess bulky triarylphosphine (PPh3) and
dialkylarylphosphine (XPhos) ligands in their structures to
impart a high level of process selectivity. The improvement of
the selectivity of the hydrosilylation of terminal alkynes by use
of the Pt catalyst associated with bulky ligands has been already
widely reported in the literature.62,63,65−68 On the other hand,
when more sterically congested alkyne 2b was hydrosilylated,
the application of the commonly used Karstedt’s catalyst in this
process was sufficient to selectively obtain products 3ab and
3bb.
In the next step, we decided to study hydrosilylation of

internal symmetrical and nonsymmetrical alkynes (4-octyne
(2c), 1,2-diphenylacetylene (2d), bis(4-bromophenyl)-
acetylene (2e), 4-(phenylethynyl)phenylboronic acid pinacol
ester (2f), Table 1, entries 8−18).
The hydrosilylation of symmetrically disubstituted internal

alkynes 2c−e with 1a and 1b in the presence of Pt2(dvs)3 (I)
(3 × 10−4−3 × 10−2 Pt/ mol of SiH) demonstrated the
selective formation of products 3ac−ae (Table 1, entries 8−
17). Along with the increase of the steric hindrance and the
presence of functional groups in the structure of alkyne, the
time needed to achieve full reagent conversion increased, and a
higher catalyst concentration was needed.
In the hydrosilylation of unsymmetrically disubstituted 4-

(phenylethynyl)phenylboronic acid pinacol ester (2f) with
silsesquioxane 1a, the mixtures of products 3af/4af were
obtained in an equal ratio of 50/50 (Table 1, entry 18). The
reason for this is the presence of almost the same aryl
substituents in the structure, which cannot be recognized by
catalysts.
The synthetic methods described are the unique and direct

ways for the synthesis of 1,2-(E)-disubstituted and 1,1,2-(E)-
trisubstituted alkenyl-functionalized IC-POSSs, allowing for
the introduction of three, six, or even more the same
(hydrosilylation of symmetrically disubstituted CC) or
different (hydrosilylation of unsymmetrically disubstituted
CC) organic functional substituents into the tripodal IC-
POSS structures. To date, this group of compounds cannot be
directly synthesized via any other synthetic methods. More-
over, the obtained novel products (3aa−af) can be considered
as useful and versatile building blocks, in which further
transformation of unsaturated CC bonds and/or other
functionalities such as boron pinacol ester or blocked OH
might occur.
Encouraged by the results from the hydrosilylation of

alkynes, we decided to use this approach to perform the
hydrosilylation of much more complex and challenging
reagents, namely, symmetrically and nonsymmetrically 1,4-
disubstituted buta-1,3-diynes.

First, the hydrosilylation of 2,2,7,7-tetramethyl-3,5-octadiyne
(2g) and 1,4-(1,1-dimethyloxy-trimethysilyl)buta-1,3-diyne
(2h) with silsesquioxane (HSiMe2O)3(i-C4H7)7Si7O9 (1a)
was performed in the presence of Karstedt′s catalyst with the
equimolar stoichiometry [1a]/[2g or 2h]/[Pt] = 1:3:6 × 10−2.
It was found that in both cases the reaction exclusively led to
the products of the 1,2-addition of SiH group to one of the two
CC bonds in diyne molecule (3ag and 3ah; Table 1, entries
20 and 21). Analogue influence of the t-Bu and (CH3)2OSi-
(CH3)3 groups on forming the product of monohydrosilylation
of 1,3-diynes was previously observed.69,70

Subsequently, the hydrosilylation of 1,4-diphenylbuta-1,3-
diyne (2i), 1,4-di(4-fluorophenyl)buta-1,3-diyne (2j), and 1,4-
bis(thiophen-3-yl)buta-1,3-diyne (2k) was performed (Table
1, entries 23−33). It turned out that reactions of diaryl-1,3-
diynes with aryl substituents resulted in the mixture of mono-
and bissilylated products. However, the addition of the 12-fold
excess of diyne and the increase of solution concentration
allowed obtaining monohydrosilylated products (3ai−ak, 3bi)
with quantitative yields (Table 1, entries 29, 31−33). The
excess of diynes was easily removed by flash chromatography.
Our preliminary tests of hydrosilylation of 1,4-diphenylbuta-

1,3-diyne with IC-POSS (under conditions conducive to
polymerization) confirmed the formation of oligomers (degree
of polymerization of ca. 10). Synthesis of longer-chain
polymers and cross-linked systems probably will be the real
challenge due to the high steric hindrance of both diynes and
IC-POSSs 1a and 1b. Based on our experience with the scope
of Pt-catalysts and reagents, which we have tested so far, we
believe that for the linear dialkylbuta-1,3-diynes, higher-
molecular-weight oligomeres can be obtained than that for
diphenylbuta-1,3-diyne, while for the diynes with bulky/more
steric groups, e.g., t-Bu, even dimerization should not be
observed. However, the use of different methods and reagents
can lead to different results and conclusions. In the approach
presented in this manuscript, the excess of buta-1,3-diyne
favors the formation of monoadducts, and no oligomerization
is observed. It should be noticed that the 4-fold excess of diyne
leads to the selective formation of product 3.
The last group of tested compounds was nonsymmetrically

substituted 1,3-diynes (tri(iso-propyl)(4-phenylbuta-1,3-diyn-
1-yl)silane (2l), tri(iso-propyl)((4-bromophenyl)buta-1,3-
d i yn -1 - y l ) s i l ane (2m ) , and t r i ( i s o - p ropy l ) ( (4 -
(trifluoromethyl)phenyl)buta-1,3-diyn-1-yl)silane (2n)). It
was found that the presence of silyl groups directed the SiH
addition to the CC bond without the presence of a silicon
atom, which highly improved the selectivity of the process.
Therefore, an equimolar amount of diynes was applied to
obtained products (3al−an) with very high yields. A similar
influence of the silyl group on the addition of the SiH group to
the CC in terminal and internal alkynes was previously
reported.64,71,72

The above-described straightforward and efficient synthetic
protocols allowed for the preparation of tripodal IC-POSSs
with three alkenyl substituents bearing at the same time
functional groups such as 4-bromophenyl, 4-fluorophenyl,
thienyl, silyl, or blocked OH. These systems are considered to
be the perfect components for further modification by
hydrosilylation, hydroboration, and other chemical processes.
They represent a new family of trifunctional IC-POSSs, which
cannot be obtained directly by other synthetic methods.
The thermal properties of the majority of obtained products

were characterized by the differential scanning calorimetry
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(DSC) and thermogravimetric analysis (TGA) (performed
under an inert atmosphere). The results of DSC analysis
carried out in the range of −50−100 °C showed that for all
tested IC-POSSs no transitions are observed under the tested
conditionsall of them appear as viscous liquids.
On the other hand, TGA analysis showed that, in general,

silsesquioxanes 3 are thermally stable up to 300 °C (Table 2).

The highest thermal stability was observed for the products of
hydrosilylation of tri(iso-propyl)silylacetylene (2b) with
silsesquioxane 1b (3bb, 339 °C) and bis(4-bromophenyl)-
acetylene (2e) with silsesquioxane 1a (3ae, 355 °C). On the
other hand, hydrosilylation of 1,4-diphenylbuta-1,3-diyne (2i)
with 1b gave the product stability up to 337 °C.
The lowest thermal stability was observed for the

compounds containing blocked hydroxyl groups (OSiMe3).
Data from TGA analysis is summarized in Table 2, while
selected TGA curves are presented in Figures 1 and 2. The
curves for the remaining tested compounds are presented in
the Supporting Information.

■ CONCLUSIONS

In this study, we presented for the first time the examination of
hydrosilylation of the terminal and internal alkynes as well as
symmetrically and nonsymmetrically 1,4-disubstituted buta-
1,3-diynes with silsesquioxanes (HSiMe2O)3R′7Si7O9 (R = i-
C4H9 (1a) and (H3C)3CH2C(H3C)HCH2C (1b)). The
application of commercially available platinum catalysts, air-
stable reagents, and the 100% atom economic efficiency of the
hydrosilylation process proved that the developed methods are
extremely efficient and lead to the alkenyl-functionalized
tripodal IC-POSSs that cannot be obtained by other direct
catalytic and noncatalytic reactions.
We successfully synthesized 20 novel products that possess

both unsaturated double or/and triple bonds and other highly
reactive organic substituents in their structures, e.g., OSiMe3,
SiR3, Br, F, B(O(C(CH3)2)2 (Bpin)), and thienyl. The
possibility of introducing 3, 6, or even more reactive functional
groups into the POSS molecules in the presence of seven inert
substituents makes the obtained compounds the novel class of
sophisticated, nanometric building blocks, which have never
been synthesized before. Herein, we have presented ideal
examples of functional molecules that could be further
modified and used in the preparation of advanced molecules
with desired physicochemical properties. The products have
been fully characterized by 1H, 13C, 29Si NMR, FT-IR, and
high-resolution mass spectrometry (HRMS), as well as DSC
and TGA analysis. The DSC results showed that no transitions
are observed. On the other hand, the TGA proved the high
thermal stability of alkenyl-functionalized IC-POSSs up to 300
°C.

■ EXPERIMENTAL SECTION
Silsesquioxanes 1a,b were synthesized according to previously
reported methods.33,61 Buta-1,3-diynes 2g−h and 2j−k were
synthesized by Glaser homocoupling of terminal alkynes3,3-
dimethyl-1-butyne, 2a, and 1-ethynyl-4-fluorobenzene, 3-ethynylth-
iophene, respectively.69 Buta-1,3-diynes 2l−n were synthesized by the
Cadiot−Chodkiewicz cross-coupling reaction.73

General Procedure for Hydrosilylation of Alkynes 2a−f and
1,3-Diynes (2g−n) with IC-POSSs 1a,b in the Presence of
Karstedt’s Catalyst or Pt(PPh3)4. Karstedt’s catalyst (I) or
Pt(PPh3)4 (III) was added to a solution of silsesquioxane 1a,b (0.1
g, 0.103 mmol (1a), 0.073 mmol (1b)), and an appropriate alkyne or
buta-1,3-diyne (0.219−1.236 mmol) in toluene in an amount that
varied from 3 × 10−4 to 6 × 10−2 mol of Pt, depending on the
experiment. Subsequently, the reaction mixture was heated to 100 °C.
The conversion of the reagents was determined by 1H NMR
spectroscopy after 24 and 48 h. Then, the solvent was evaporated
under a vacuum. The crude product was dissolved in petroleum ether
and filtered through silica gel or silica gel modified by HMDS for
compounds 3aa, 3af/4af, 3ba/4ba, 6ah. After the evaporation of the
solvents, the product was washed with methanol and dried for 6 h
under a vacuum. The excess of 2i−k was separated from products
3ai−3ak and 3bi using flash column chromatography in hexane/ethyl
acetate. The isolated products were characterized by NMR, FT-IR
spectroscopy, and MALDI TOF spectrometry.

For detailed data, see the Electronic Supporting Information.
General Procedure for Hydrosilylation of Alkynes 2a with

IC-POSSs 1a in the Presence of PtO2/XPhos System. The
reaction was carried out in an argon atmosphere. PtO2 (II) (10 mol
%) and 2-dicyclohexylphosphino-2′,4′,6′-tri(iso-propyl)biphenyl (20
mol %; XPhos) were added to a Schlenk flask with a Rotaflo stopcock
and equipped with a magnetic stirrer. The catalyst and XPhos were
dried under vacuum conditions for 1 h. Then, the flask was flushed
quickly with argon, and anhydrous and degassed THF (1 mL) were
added. The mixture was stirred at 60 °C for 30 min until a

Table 2. Thermal Properties of Selected IC-POSSsa

aConditions: N2 atmosphere (20 mL/min); 29−995 °C at a heating
rate of 10 °C/min.
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homogeneous system was obtained. After this, silsesquioxane 1a (0.1
g, 0.103 mmol), an alkyne 2a (60 μL, 0.310 mmol), and THF (1 mL)
were added. The reaction was carried out at 100 °C. The conversion
of the reagents was determined by 1H NMR spectroscopy after 24 and
48 h. The procedures of isolation and analysis of the obtained
products were carried out as described above.

■ ASSOCIATED CONTENT
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