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ABSTRACT

Systems pharmacology is an emergent area that
studies drug action across multiple scales of com-
plexity, from molecular and cellular to tissue and
organism levels. There is a critical need to develop
network-based approaches to integrate the growing
body of chemical biology knowledge with network
biology. Here, we report ChemProt, a disease
chemical biology database, which is based on a
compilation of multiple chemical-protein annotation
resources, as well as disease-associated protein—
protein interactions (PPls). We assembled more
than 700 000 unique chemicals with biological anno-
tation for 30 578 proteins. We gathered over
2-million chemical-protein interactions, which were
integrated in a quality scored human PPI network of
428 429 interactions. The PPI network layer allows
for studying disease and tissue specificity through
each protein complex. ChemProt can assist in the
in silico evaluation of environmental chemicals,
natural products and approved drugs, as well as
the selection of new compounds based on their
activity profile against most known biological
targets, including those related to adverse drug
events. Results from the disease chemical biology
database associate citalopram, an antidepressant,
with osteogenesis imperfect and leukemia and
bisphenol A, an endocrine disruptor, with certain
types of cancer, respectively. The server can
be accessed at http://www.cbs.dtu.dk/
services/ChemProt/.

INTRODUCTION

The old drug design paradigm, i.e. drugs interact selectively
with one or two targets (proteins), resulting in treatment
and prevention of disease, is now challenged by several
studies that show most drugs interacting with multiple
targets (‘polypharmacology’) (1,2). For example, celecoxib,
often considered a selective cyclooxygenase-2 non-steroidal
anti-inflammatory drug (NSAID), has been documented
to be active on at least two additional targets,
namely carbonic anhydrase II and S5-lipoxygenase (3).
Rosiglitazone, which has been used for the treatment of
type II diabetes mellitus, not only stimulates
the peroxisome proliferator activated receptor v, but also
blocks interferon gamma-induced chemokine expression in
Graves disease or ophthalmopathy (4). Polypharmacology
is not always beneficial, as it often causes side effects:
Cisapride, which acts as a serotonergic 5-HT4 receptor
agonist, as well as astemizole, which blocks histamine H1
receptors (H1Rs), have both been withdrawn from all
markets due to the risk of fatal cardiac arrhythmia
associated with their blockade of the hERG potassium
ion channel, an unanticipated and undesirable ‘anti-target’
associated to QT prolongation and ‘torsades de pointes’
(5). However, ‘target’” and ‘anti-targets’ are dynamic
attributes, as exemplified by the case of HIR antagonists
and their (in)ability to achieve clinically significant levels in
the brain, influenced by the ATP-binding cassette trans-
porter ABCBI1 (also known as P-glycoprotein), which
effluxes some of these drugs from the brain (6). Acquiring
knowledge of the complete pharmacology profile has
inspired new strategies to predict and to characterize
drug-target associations in order to improve the success
rates of current drug discovery paradigms, i.e. increase
the efficacy and reduce toxicity and adverse effects (2).
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As large-scale chemical bioactivity databases are
being assembled, the polypharmacology (i.e. high affinity
bioactivity across related targets) and promiscuity
(i.e. low affinity across multiple families) of chemicals are
expanding the chemical space for druggable targets (7).
These studies are often focused on specific protein
families, such as G-protein coupled receptors (8), nuclear
receptors (9) and kinases (10), but global pharmacology
profiles of chemicals are considered as well (1,2). Recent
chemoinformatics advances support the development
of polypharmacology data mining, e.g. via iPHACE, an
integrative web-based tool that enables pharmacological
space navigation for small molecule drugs (11) or based
on a Similarity Ensemble Approach (SEA) to relate
protein pharmacology by ligand chemistry (12).
Biological information can also be retrieved for a large
set of chemical compounds through PubChem (13),
CheBI and ChEMBL (14).

Two conceptual developments support polypharma-
cology: systems pharmacology, aimed at drug actions
in the context of regulatory networks (15); and systems
chemical biology (16), which introduces chemical aware-
ness in systems biology. Since proteins rarely operate in
isolation inside and outside cells, but rather function in
highly interconnected cellular pathways, interactome
networks have been developed by data integration.
Yildirim ez al. (17) combined FDA-approved drugs with
a human protein—protein interaction (PPI) network
(human interactome) in order to analyze the interrelation-
ships between drug targets and disease—gene products i.c.
disease—proteins. Similar work has been based on
PubChem bioassays as source of polypharmacology (18).
The use of side-effect similarity has been proposed on
the assumption that drugs with similar side-effects
are likely to interact with similar target proteins (19).
Recent advances include a protein—protein association
network based on the chemical toxicology of environ-
mental chemicals (20) and a human disease network
linking disorders and disease genes to various known
phenotypes (21).

Our goal in the present work was to develop a disease
chemical biology server, called ChemProt, based on the
integration of chemical-protein annotation resources that
are now accessible from large repositories, and curated
disease-linked PPI data (22). ChemProt is designed to
assist the elucidation of drug actions in the context of
cellular and disease networks. Further to that, it allows
the identification of additional genes that may play major
roles in modulating chemical response i.e. to drugs, envir-
onmental chemicals and natural products, thus leading to
new options in drug discovery and environmental chemical
evaluation. Lastly, the ChemProt server could contribute
to drug repurposing as well as to the investigation of
chemicals related to anti-targets and adverse drug events.

IMPLEMENTATION
Data sources

We first gathered chemical-protein interaction data
from different open source databases i.e. ChEMBL

(version chembl_05) (14), BindingDB (23), PDSP Ki
Database (24), DrugBank (version2.5) (25), PharmGKB
(26) and two commercial databases, WOMBAT (version
2009) and WOMBAT-PK (version 2008) (7). Active
compounds from the PubChem bioassay (2010) have
been collected as well (13). We considered only active
compounds from ‘confirmatory’ assays in order to
capture high-confidence chemical-protein annotations
from PubChem. These databases provide experimental
evidence of chemical-protein interactions. Drug-target in-
formation was collected from DrugBank and PharmGKB.
In addition, we integrated chemical-protein associations
from CTD (version 2009) (27) and STITCH (version
STITCH 2.0) (28). These last two databases consider the
effect or modulation (positive or negative) of a chemical
on proteins, other than that defined as binding activity.
Examples include gene expression or pathway data, where
the deregulation of a gene by a chemical may be not due to
a physical interaction between the two entities but a
response at a cellular level. Duplicate chemicals from the
multiple databases were found by using InChl keys and
were merged into a single ChemProt ID. However, the
biological information associated to each chemical was
conserved for wusers looking on selective databases.
Overall, the final database contains 700000 distinct
molecules annotated for 30 578 proteins.

Descriptors and similarity measurement

The chemical structure of the molecules was encoded
using two rather different types of fingerprints. The
166 MACCS keys, encode the presence or absence of
predefined substructural or functional groups (29). On
the other hand, a more complex 3-point pharmacophore
fingerprint (GpiDAPH3) is based on an expansion of the
PATTY pharmacophore feature recognition scheme of a
2D structure (30). This scheme assigns one or more
pharmacophore feature types to all atoms in a molecule
using a predefined list of SMART queries. The list of
pharmacophore feature types comprises: hydrogen-bond
donor (D), hydrogen-bond acceptor (A), polar (P) and
hydrophobic (H). In addition, an extra label (p or pi) is
added to each feature if the originating atom or group is
sp>-hybridized or planar for other reasons. The
GpiDAPH3 pharmacophore feature scheme is expressed
in 2D as triplet feature combinations with a graph based
inter-atom distance binning scheme. Both fingerprints are
implemented in the Molecular Operating Environment
(MOE, version 2008.10) (31). The similarity between two
molecules is measured using the Tanimoto coefficient (Tc),
a method of choice for the computation of fingerprint-
based similarity (32). The Tc is defined as the number of
bits in common divided by the total number of used bits in
both molecules. For any pair of chemicals, Tc assumes
values between 0 and 1. A high Tc represents high
similarity.

PPI network

The human interactome used is an in-house protein—
protein interaction network inferred from experiments in
both humans and model organisms (22). Using an



elaborate scoring scheme, all interactions have been
validated against a gold standard (33). The current
interactome contains 428 429 unique protein—proteins
interactions derived from source databases such as
BIND (34), GRID (35), MINT (36), dip_full (37),
HPRD (38), intact (39), mppi (40), MPact (41),
Reactome (42) and KEGG (43). Data are transferred
between organisms by using the Inparanoid orthology
database (44). In total the human interactome comprises
22997 genes.

Human disease genes and complexes

Based on a previous study (45), disease-associated protein
complexes were associated to the chemical-protein anno-
tation by mining OMIM (46) and GeneCards (47), two
data resources for genes association to diseases, we col-
lected a list of 2227 unique disease-related proteins and
mapped the complexes of genes to disease. Similarly,
complexes of genes were mapped to Gene Ontology
(GO) terms (48) and tissues by using the expression data
from 73 non-disease tissues from the Novartis Research
Foundation Gene Expression Database (GNF) (49) and
Human Protein Atlas (50). Users of ChemProt can thus
retrieve gene complexes that are related to a query
chemical and visualize the annotations of each complex.

APPLICATIONS
Chemical—protein interactions

Chemicals can be searched using a common name,
SMILES and by drawing the 2D structure, or retrieved
through their annotation to a protein. Users can then
choose the descriptor space and the Tc threshold to be
used for similarity search. Following a successful query,
hits grouped by species will be returned, together with
computed physico-chemical properties such as Molecular
Weight, LogP, the number of hydrogen bond donors and
acceptors, the number of rigid bonds and the number of
rings, based on the Marvin applet from Chemaxon (51).
Hits are provided separately for known annotations, and
for prediction of small molecule bioactivity, respectively.
The biochemical and pharmacological effects of a
chemical, e.g. substrate, inhibitor, agonist or antagonist,
are provided if such information is available, together with
hyperlinks to UniProt and Ensembl, which lead to more
information on protein sequence and function,
respectively.

From chemical-protein interactions to complex protein—
disease associations

The unique feature of ChemProt is that it offers the user
the possibility to get information at a cellular level, by
linking chemically-induced biological perturbations to
specific tissues and phenotypes.

Proteins that are both affected by a chemical and par-
ticipate in one or more protein complexes are highlighted
in the results table of the ChemProt server. By clicking on
the protein, the user is redirected to the ‘Disease
complexes’ server and has to choose which complex to
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visualize. On the ‘Disease complexes’ server, size and il-
lustrations of the protein network are provided.
Additionally, enrichment analysis results of the proteins
in the complex are shown, with respect to disease associ-
ation (OMIM, BioAlma), GO terms (biological process,
cellular component) and tissue specificity (Human Protein
Atlas, GNF). To ensure that the complexes were biologic-
ally relevant entities, the enrichment of the biological
terms (OMIM, GO,...) was compared to randomly
generated complexes (1.0e6). The significances were
calculated using a hyper-geometric test and the P-value
for the most significant enriched term for each of the
data types was calculated as previously described (45).
The table presenting the OMIM enrichment results is
interactively linked with an illustration of the protein
complex where proteins associated with the selected
disease are colored yellow.

Output of the chemical-proteins interactions and
disease complexes can be downloaded from the
ChemProt website. In addition, the ‘Reflect’ service
provides further information on chemicals and genes
(52). ‘Reflect’ tags gene, protein and small molecule
names in text and offers the opportunity to quickly view
additional information on the ChemProt results, including
synonyms, protein sequences, domains, 3D structures and
subcellular location.

EXAMPLES

With the integration of several databases, ChemProt not
only provides pharmacological information, but also
includes biological data associated to environmental
chemicals and natural products. As seen in the examples
below, ChemProt can be queried for drugs as well as
environmental chemicals. A search for citalopram, an
antidepressant, illustrates the complementarity of the
integrated databases within ChemProt (Figure 1).
Marketed as a selective serotonin reuptake inhibitor
(SSRI) (DrugBank), this drug displays bioactivity on
seven human proteins (ChEMBL). Via ChemProt, four
other proteins (DRD3, SHTI1B, SHT3, ADRA2A) are
retrieved from the Ki database. Additional information
on drug-target associations is provided by STITCH and
CTD. From the first annotation to the D4 dopamine
receptor (DRD4), the disease term (under Disease
Complexes) is highlighted, indicating that protein—
protein interaction information for this protein is avail-
able. Using the link to the Disease Complexes server,
one finds that DRD4 interacts with three proteins (SRC,
GRB2 and NCKI). According to OMIM, this protein
network is associated to osteogenesis imperfecta and
leukemia and, according to BioAlma, to several psychotic
disorders. GO enrichment indicates significant association
of the protein complex to signal complex formation and
vesicle membrane. Furthermore, tissue annotation
suggests that this complex is mainly expressed in follicle
and non-follicle cells (HPA) and dentritic cells (GNF).
Although it might be surprising to see a connection
between antidepressant and leukemia, it has been shown
recently that antidepressants such as chlomipramine and
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Type a compound name: Paste or import molecule in SMI format: |
N
Choose fingerprint OMAcc OPH4 | CN(C)CCCC3(elccc(Fject)OCc2ee(CHN)cee23 |
[c]
Search by Target al
Type a target name: I:I i
x|
( submit ] [ Clear fields ] =
When done import
Annotated Compound
Human
Compound|Type |Value [Target Name Species Pharmacol. | UniProt | Ensembl TC |Database |Diseases
ID effect ID ID complexes
114367 Score|421 | dopamine receptor D4 Homo sapiens | NULL ENSG00000069696 | 1 | Stitch Diseases
114367 Score|408 | Cytochrome P450, family 2 | Homo sapiens | NULL ENSP00000346625 | 1 | Stitch NA
subfamily D, polypeptide 7
114367 NA [NA NA Homo sapiens | NA ENSG0000100197 |1 CTD Diseases

CHEMICAL-PROTEIN
ANNOTATIONS

Complex 145 from DRD4 (ENSG00000069696)

Size 4
BioAlma Terms 33

BioAlma

GO biological process

PROTEIN COMPLEXE
DISEASE ANNOTATIONS

DRD4

GO cellular component

mRNA expression

Figure 1. Chemical-protein annotation and disease associations retrieved from ChemProt for the compound citalopram. (1) The compound can be
queried using different formats (name, SMILES and structure). (2) A query results in a table showing protein annotations and bioactivity predictions
for the compound. (3) Finally, a protein—protein interaction network (protein—complex) for a target protein can be depicted and disease associations
(OMIM and BioAlma) and other biological components (GO terms, HPA and mRNA expression) are displayed.

fluoxetine reduce the growth of B-cell malignancies in
leukemia (53).

The second query, ‘bisphenol A’ (BPA), is an environ-
mental pollutant used as plasticizer (54). BPA has bio-
logical activity on the estrogen receptor o (ESRI), the
androgen receptor (AR) and the estrogen related
receptor gamma (ERR3). However, several other
proteins are retrieved from CTD and STITCH based on
association data with this chemical. Looking at ESRI1 in
the Disease Complexes server, a complex of 17 proteins is
depicted (complex 265) with significant associations to
Li-FRAUMENI syndrome, breast cancer and neoplasms.
Enrichment analysis indicates that the complex is found in
the nucleus (GO cellular component), involved in the
regulation of metabolic processes and transcriptionally
regulated by the RNA polymerase II promoter (GO bio-
logical process). Furthermore, data from immunohisto-
chemistry studies suggest that the complex is mainly
located in the endometrium and the cerebral cortex
(HPA). The disease chemical biology network for BPA
indicates that, under certain conditions, this chemical
may be associated with certain types of cancers.

We have illustrated that ChemProt integrates molecu-
lar, cellular and phenotypic data associated to small mol-
ecules, which can lead to novel links and suggest new
avenues for research. We envisage that the ChemProt
server will find applications within a variety of
chemogenomics,  polypharmacology and  systems
chemical biology studies. ChemProt will be updated
once a year with new compounds, new interactions and
more sophisticated descriptors.
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