
����������
�������

Citation: Laubertova, L.; Dvorakova,

M.; Balis, P.; Puzserova, A.;

Zitnanova, I.; Bernatova, I.

Preliminary Findings on the Effect of

Ultrasmall Superparamagnetic Iron

Oxide Nanoparticles and Acute

Stress on Selected Markers of

Oxidative Stress in Normotensive

and Hypertensive Rats. Antioxidants

2022, 11, 751. https://doi.org/

10.3390/antiox11040751

Academic Editor:

Tommaso Angelone

Received: 1 March 2022

Accepted: 8 April 2022

Published: 9 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Article

Preliminary Findings on the Effect of Ultrasmall
Superparamagnetic Iron Oxide Nanoparticles and Acute Stress
on Selected Markers of Oxidative Stress in Normotensive and
Hypertensive Rats
Lucia Laubertova 1, Monika Dvorakova 1,* , Peter Balis 2 , Angelika Puzserova 2, Ingrid Zitnanova 1

and Iveta Bernatova 2

1 Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry,
Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; lucia.laubertova@fmed.uniba.sk (L.L.);
ingrid.zitnanova@fmed.uniba.sk (I.Z.)

2 Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of
Sciences, v.v.i., 813 71 Bratislava, Slovakia; peter.balis@savba.sk (P.B.); angelika.puzserova@savba.sk (A.P.);
iveta.bernatova@savba.sk (I.B.)

* Correspondence: monika.dvorakova@fmed.uniba.sk; Tel.: +421-2-90119-559

Abstract: Several studies have reported that the administration of various nanoparticles in vivo can
cause oxidative stress. The combination of ultrasmall superparamagnetic iron oxide nanoparticles
(USPIONs) and acute stress was selected because, during intravenous application of a contrast
agent, patients are exposed to psycho-emotional stress. This study was designed to investigate the
effect of acute stress and USPIONs on selected markers of oxidative stress (antioxidant capacity,
superoxide dismutase, glutathione peroxidase and catalase activities, levels of advanced oxidation
protein products, protein carbonyls, lipoperoxides and 8-isoprostanes) in plasma and erythrocytes in
normotensive Wistar–Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). In the WKY
and SHR groups, there was a significant main effect of genotype between groups on studied markers
except protein carbonyls and lipoperoxides. In SHR, the combination of acute stress and USPIONs
increased the antioxidant capacity of plasma and the selected enzyme activities of erythrocytes. In
WKY, the combination of acute stress and USPIONs decreased the antioxidant capacity of erythrocytes
and reduced levels of advanced oxidation protein products in plasma. Our study points to the fact
that, when hypertensive subjects are treated with iron oxide nanoparticles, caution should be taken,
especially in stress conditions, since they seem to be more vulnerable to oxidative stress produced
by USPIONs.

Keywords: acute stress; erythrocytes; hypertension; oxidative stress; markers of oxidative damage;
ultrasmall superparamagnetic iron oxide nanoparticles; plasma; USPIONs

1. Introduction

The enormous development of nanotechnologies in recent years has attracted the
attention of biomedical research and has also increased the potential of the use of iron
oxide-based magnetic nanoparticles (NPs) in the diagnosis and treatment of many diseases.
Biological properties of NPs depend on their size, shape, surface modification, distribution,
etc. [1–3], where it is important to retain specific physicochemical properties (magnetic
susceptibility, surface modification, non-toxicity, good mechanical stability and biocom-
patibility [4], time interaction, with emphasis on minimal negative interaction with an
organism and maximum biostability) [5,6]. With these properties, nanoparticles represent
an interesting option for intravenous therapy, diagnostics and magnetic resonance imaging
(MRI) [7] and a variety of bioapplications—for example, detection of bacteria or viruses,
target-specific drug delivery and magnetic hyperthermia treatment in cancer therapy [8].
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A specific group of NPs are ultrasmall superparamagnetic iron oxide nanoparticles (US-
PIONs), the synthetic particles of maghemite (γ-Fe2O3) or magnetite (Fe3O4) with a core
size less than 50 nm [9]. In general, uncoated iron oxide-based magnetic nanoparticles
can induce DNA breakdown, hemolysis and oxidative stress. Therefore, various coatings
have been used to reduce their toxicity and improve their properties [1]. USPIONs are
coated with polyethylene glycol (PEG), which ensures their stability and biocompatibility,
improves their distribution, and reduces their uptake by the mononuclear phagocytic
system [10,11]. The PEG coating of USPIONs reduces undesired interactions with plasma
proteins and their subsequent opsonization as well as allowing targeting ligands to be
conjugated onto the USPIONs [4,12]. However, using different types of NPs/USPIONs in
biomedical applications may cause problems related to their ability to increase oxidative
stress and potential toxicity [13,14].

Oxidative stress is often associated with several biochemical, physiological, and patho-
physiological actions. The potential ability of nanoparticles to increase oxidative stress
is attributed particularly to their ability to contribute to the creation of reactive oxygen
species (ROS) [15]. ROS induce oxidative protein modification represented by advanced
oxidation protein products (AOPP) and protein carbonyls, peroxidation of fatty acids repre-
sented by lipoperoxides and isoprostanes, and other modifications of biomolecules [16,17].
Mammalian cells possess their own antioxidant defense mechanism, which has the ability
to eliminate ROS, including superoxide anion and hydrogen peroxide [18]. The antioxidant
system of cells involves small molecular antioxidants such as reduced glutathione (GSH)
and antioxidant enzymes such as intracellular superoxide dismutase (SOD), glutathione
peroxidase (GPx), glutathione S-transferase (GST) and catalase (CAT) [19,20].

Many years of scientific research have shown that redox stress contributes to the
development of hypertension [21–24]. Hypertension is the most common health problem in
many countries. Untreated hypertension leads to many cardiovascular diseases, including
myocardial infarction, heart failure, stroke, peripheral artery disease as well as chronic
kidney disease [25,26]. Growing evidence confirms that oxidative stress plays a crucial
role in the pathogenesis of hypertension, but mechanisms contributing to the increased
production of ROS in hypertension are still not well understood [27,28]. Since NPs are often
used during different diagnostic examinations in hypertensive patients, it is important to
study the safety and the different effects of various NPs, especially in conditions of acute
psycho-emotional stress, in hypertensive subjects.

To mimic acute stress in rats, we used an “air jet” as a stressor to trigger psycho-
emotional stress. This type of stress is characterized by a defense reaction associated
with an increase in the activity of the sympathetic nervous system and with an increase
in acute blood pressure and heart rate [29,30]. Recently, we showed that air jet-induced
stress increased plasma corticosterone levels and reduced USPIONs—originating from iron
content in the whole blood and in the liver of WKY [8]. The high level of corticosterone
leads to the induction of oxidative stress via the production of excessive ROS [31]. The same
model of stress also reduced vascular disorders induced by a single dose of USPIONs in
WKY [8]. In addition, it is well known that stress can negatively affect heart function, and
may also induce endothelial dysfunction and oxidative stress, which may further modify
blood pressure regulation [32–36].

Thus, to study the effects of USPIONs in hypertension, we examined the responses
of enzymes involved in antioxidant defense, as well as the markers of oxidative damage
in plasma and erythrocytes after a single intravenous infusion of USPIONs in an animal
model of hypertension (SHR) and in normotensive rats exposed to acute stress.

2. Materials and Methods
2.1. Nanoparticles

Ultrasmall superparamagnetic iron oxide nanoparticles coated by polyethylene glycol
were used in our study. Commercially available USPIONs (Iron oxide (II, III), magnetic
nanoparticles solution, transmission electron microscope determined average particle size
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30 nm, PEG functionalized, 1 mg/mL Fe, dispersion in H2O, MW: 231.53 g/mol, cat.
No. 747408, PubChem SID 329765832, accessed on 7 September 2021) were purchased
from Merck, Bratislava, Slovakia (previously Sigma-Aldrich, Bratislava, Slovakia) Before
intravenous infusion to rats, USPIONs were autoclaved at 121 ◦C for 30 min and mixed
with sterile saline to reach a final dose of 1 mg of Fe/kg of body weight. Detailed properties
of nanoparticles (including their superparamagnetic properties) used in this study were
described previously by Skratek et al., 2020 [14].

2.2. Animals and Study Design

Rats were born in the certified animal facility of the Institute of Normal and Patho-
logical Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences for a
standardized environmental background for all animals. Rats were housed under standard
conditions at 22–24 ◦C in a 12 h light/dark cycle and fed with a pelleted diet Altromin
formula 1324, variant P (Altromin Spezialfutter, Lage, Germany), with an iron content of
192.51 mg/kg and tap water ad libitum. Wistar–Kyoto (WKY) and spontaneously hyperten-
sive rats (SHR), 12–16-week-old males, were used in this study. Rats were divided into two
groups according to their genotype. Every genotype was divided into four groups: control
(C) (WKYC, n = 6; SHRC, n = 8), a group exposed to acute stress (S) (WKYS, n = 6; SHRS,
n = 8), a group exposed to USPIONs (U) (WKYU, n = 6; SHRU, n = 6) and a group exposed
to the combination of acute stress and USPIONs (S + U) (WKYS+U, n = 5; SHRS+U, n = 6).

The day before the experiment (approximately 20–24 h), two catheters were implanted
into animals under anesthesia (2.5–3.5%; isoflurane, FORANE, 99.9% liquid for steam for
inhalation, b.n. 6065955, AbbVie s.r.o., Bratislava, Slovak Republic). One catheter was
implanted into the carotid artery for direct blood pressure measurement and the second
catheter into the jugular vein for drug (saline/USPIONs) delivery, as described previously
by Liskova et al. 2020 [8]. All rats were also pre-treated with meloxicam (Meloxidolor,
Le Vet Beheer B.V., Oudewater, Nederland) at 2 mg/kg of body weight, intramuscularly,
before surgery to prevent post-surgical pain.

During the experiments, the conscious rats were placed into a plastic box with dark
walls and a transparent lid (27 cm × 14 cm × 9 cm in size), which allowed the rats
free movement. Rats in controls were treated with 10 min infusions of saline, starting
approximately 30 min from the beginning of the experiment (Figure 1). Acute stress in
rats was induced by a 5 s pulse of air using an air jet 10 min before and 10 and 90 min
after USPIONs or saline administration, as described in detail by Liskova et al. 2020 [8].
Rats exposed to USPIONs were treated with 10 min infusions of USPIONs at a dose of
1 mg Fe/kg of body weight. Saline was administered to control rats and rats exposed to
stress alone.
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Figure 1. Timeline of the experimental protocol. Acute stress was produced by a 5 s pulse of air
to the forehead of the rat, as described previously [8]. C—control; S—acute stress; U—USPIONs;
S + U—the combination of acute stress and USPIONs.
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2.3. Sample Preparation

Arterial blood was collected into commercial K3 EDTA (tripotassium ethylenedi-
aminetetraacetic acid) coated tubes (FL Medical, Padova, Italy). Samples were centrifuged
(665× g, 10 min, 4 ◦C, to minimize the damage to erythrocytes used for other measure-
ments) and plasma was aliquoted, shock frozen, and stored at −80 ◦C until analysis. Blood
plasma aliquots were used for determination of antioxidant capacity, protein carbonyls,
lipoperoxides and 8-isoprostanes.

For isolation of erythrocytes, sediment of blood was used. Erythrocytes were washed
three times with physiological solution. After the final centrifugation (665× g, 5 min,
4 ◦C), erythrocytes were hemolyzed in chilled distilled water. Lysates of erythrocytes were
aliquoted, frozen, and stored at −80 ◦C until analysis [37]. They were used for determi-
nation of the antioxidant capacity and the activities of antioxidant enzymes (superoxide
dismutase, glutathione peroxidase and catalase). Before analysis, the concentration of
proteins in samples (plasma and lysates of erythrocytes) was measured by the Micro BCA™
Protein Assay Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA, cat. No. 23235)
according to the manufacturer’s protocol.

2.4. Measurement of Antioxidant Capacity

Antioxidant capacity was determined in plasma and lysates of erythrocytes by the
Trolox Equivalent Antioxidant Capacity (TEAC) method with minor modifications [38].
This assay assesses total radical scavenging capacity based on the ability of a compound
to scavenge the stable 2,2′-azino-bis(-3-ethylbenzothiazoline-6-sulfonic acid radical cation
(ABTS+). Addition of antioxidants reduces the ABTS+ radical cation to an extent depending
on the activity and the duration of the reaction. Antioxidant capacity was measured at
734 nm and room temperature. Antioxidant capacity is expressed in mmol of trolox/L/mg
of proteins using trolox (a hydrophilic form of vitamin E) as a standard.

The blue-green radical cation was generated by oxidation of 2,2′-azino-bis(-3-ethylbenz
othiazoline-6-sulfonic acid) (ABTS; 7 mmol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany)
with potassium persulfate (2.45 mmol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany) in
water. This solution was stored in the dark at room temperature for 12–16 h before use. Stock
solutions of trolox (2.5 mmol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany) were prepared
in phosphate-buffered saline (PBS; 10 mmol/L; pH 7.4, Merck, Sigma-Aldrich, Taufkirchen,
Germany) and then diluted at a concentration range of 0.05–0.5 mmol/L for use as a working
standard. Fresh working standards were prepared daily.

To prepare the ABTS+ working solution, the concentrated ABTSn+ solution was diluted
with water to a final absorbance of 0.70 ± 0.02 at 734 nm at room temperature. To the
microplate, 10 µL standards, plasma samples or lysates of erythrocytes were added to
290 µL ABTS+ solution and the absorbance at 734 nm was measured over time. This was
compared to a blank, where 10 µL of water was added to 290 µL of the ABTSn+ solution.
The reduction in absorbance was determined 10 min after addition of the samples. The
TEAC of the samples was calculated by relating this decrease in absorbance to that of a
trolox solution on a molar basis.

2.5. Measurements of Antioxidant Enzymes

Superoxide dismutase activity was determined in lysates of erythrocytes by the Su-
peroxide dismutase determination kit (Merck, Sigma-Aldrich, Taufkirchen, Germany, cat.
No. 19160-1KT-F) according to the manufacturer’s protocol. SOD activity was expressed in
U/mg of proteins.

Glutathione peroxidase activity was determined in lysates of erythrocytes by the
Glutathione peroxidase assay kit (Cayman Chemical Company, Ann Arbor, MI, USA, cat.
No. 703102) according to the manufacturer’s protocol. GPx activity was expressed in U/mg
of proteins.
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Catalase activity was determined in lysates of erythrocytes by the catalase assay kit
(Cayman Chemical Company, Ann Arbor, MI, USA, cat. No. 707002) according to the
manufacturer’s protocol. CAT activity was expressed in U/mg of proteins.

2.6. Measurements of Parameters of Oxidative Damage to Proteins

The level of advanced oxidation protein products in plasma was measured by the
modified method according to Kalousova et al. (2002) [39].The exact AOPP structures are
unknown. For their determination, the wavelength of their maximum of 340 nm is used.
Chloramine T has the same absorption maximum after the reaction with KI and is used as
the standard. AOPP levels are expressed in nmol/mg of plasma proteins.

The day before determination of AOPP, 30 µL of precipitating agent was added to
150 µL of blood plasma and allowed to precipitate lipids overnight at 4 ◦C. The precipitating
agent was prepared by mixing MgCl2. 6H2O (1 mol/L; Merck; Sigma-Aldrich, Taufkirchen,
Germany) and dextran sulphate (2%; Merck, Sigma-Aldrich, Taufkirchen, Germany) at a
ratio of 1:1 before use. Precipitated lipids were removed by centrifugation at 1000× g for
20 min at room temperature. The supernatant was appropriately diluted at a ratio of 10:1
with PBS (10 mmol/L; pH 7.4). To the microplate, 100 µL of diluted samples and 10 µL of
glacial acetic acid (Merck, Sigma-Aldrich, Taufkirchen, Germany) were applied.

A stock solution of chloramine T (10 mmol/L, Merck, Sigma-Aldrich, Taufkirchen,
Germany) was prepared in PBS (10 mmol/L, pH 7.4, Merck, Sigma-Aldrich, Taufkirchen,
Germany) and then diluted at a concentration range of 10–100 µmol/L for use as a working
standard. Fresh working standards were prepared daily. For calibration, 100 µL of chlo-
ramine T (10–100 µmol/L) and 100 µL of PBS as a blank were applied to a microplate. To
each standard, 5 µL of KI (1.16 mol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany) and
10 µL of glacial acetic acid were added and absorbance at 340 nm was measured.

The level of protein carbonyls in plasma was measured by the OxiselectTM protein
carbonyl ELISA kit (Cell biolabs, Inc., San Diego, CA, USA, cat. No. STA-310) according
to the manufacturer’s protocol. Protein carbonyl levels are expressed in nmol/mg of
plasma proteins.

2.7. Measurements of Parameters of Oxidative Damage to Lipids

The level of lipoperoxides in plasma was measured by the modified method according
to el-Saadani et al. (1989) [40].

The analysis was based on the ability of lipoperoxides to convert iodide to iodine.
The iodine in the reaction mixture gradually reacted with an excess of iodide to form a
triiodide anion with an absorption maximum of 365 nm. Lipoperoxide levels are expressed
in nmol/mg of plasma proteins.

For determination of lipoperoxide levels, 20 µL of plasma sample and 200 µL of
working solution were added to the microplate. The working solution consisted of potas-
sium dihydrogenphosphate (0.2 mol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany),
potassium iodide (0.12 mol/L, Merck, Sigma-Aldrich, Taufkirchen, Germany), sodium
azide (0.15 mmol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany), Igepal (3 mmol/L,
Merck, Sigma-Aldrich, Sigma-Aldrich, Taufkirchen, Germany), benzalkonium chloride
(0.27 mmol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany), and ammonium molybdate
(10 µmol/L; Merck, Sigma-Aldrich, Taufkirchen, Germany). Lipoperoxide levels were cal-
culated according to Lambert–Beer law using the molar absorption coefficient of triiodide
anion (ε = 24,600 L.mol−1.cm−1) measured at 365 nm.

The level of plasma 8-isoprostanes (Iso-P) was determined by the 8-isoprostanes
express ELISA kit (Cayman Chemical Company, Ann Arbor, MI, USA, cat. No. 516360)
according to the manufacturer’s protocol. 8-Isoprostanes levels are expressed in pg/mg of
plasma proteins.



Antioxidants 2022, 11, 751 6 of 16

2.8. Statistical Analysis

The statistical analyses were performed using statistical software StatsDirect 3, version
3.2.109. (StatsDirect® Ltd., Birkenhead, UK), and GraphPad Prism, version 5.0 (GraphPad
Software, Inc., San Diego, CA, USA). The level of significance was defined as p < 0.05. The
data are presented as the mean ± standard error of the mean (SEM). Normality of data was
analyzed by the Shapiro-Wilk test. Analysis of variance (ANOVA) was used on the normally
distributed data. Differences between controls of each genotype were analyzed by one-way
ANOVA with Bonferroni comparison. Differences between groups of each genotype were
analyzed by two-way ANOVA with Bonferroni multiple comparison. To detect associations
between genotypic groups, two-way ANOVA with Bonferroni comparison was used. The
associations between parameters were analyzed with Pearson’s correlations.

3. Results
3.1. The Antioxidant Capacity of Plasma

In WKY, there were no significant changes in the antioxidant capacity of plasma
between groups (Figure 2a). Acute stress, USPIONs and the combination of acute stress
and USPIONs had no effect on the antioxidant capacity of plasma of WKY.
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TEAC—Trolox Equivalent Antioxidant Capacity; WKY-Wistar—Kyoto rats; SHR—spontaneously
hypertensive rats; C—control; S—acute stress; U—USPIONs; S + U—the combination of acute stress
and USPIONs.

In plasma of SHR (Figure 2a), the SHRS+U group had significantly higher antioxidant
capacity compared to the control SHRC group (SHRS+U vs. SHRC, p = 0.0062) and compared
to SHR exposed to acute stress only (SHRS+U vs. SHRS, p = 0.0039). Acute stress and
USPIONs, respectively, had no effect on the antioxidant capacity of plasma of SHR.

A significant reduction in plasma antioxidant capacity was found in the SHR groups
compared to the WKY groups with the same exposure in each pair, including the control
groups (SHRC vs. WKYC, p = 0.0004; SHRS vs. WKYS, p = 0.0031; SHRU vs. WKYU,
p = 0.0026; SHRS+U vs. WKYS+U, p = 0.0018) (Figure 2a).

In genotype groups of WKY and SHR, there was a statistically significant associ-
ation for the antioxidant capacity of plasma between groups (main effect of genotype,
F(1,43) = 39.78, p < 0.0001, n = 51).

3.2. The Antioxidant Capacity of Erythrocytes

In WKY, acute stress and USPIONs had no significant effect on the antioxidant capacity
of erythrocytes (Figure 2b). The WKYS+U group had significantly reduced antioxidant
capacity of erythrocytes compared to the control WKYC group (WKYS+U vs. WKYC,
p = 0.0332).
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In SHR, there were no significant changes in the antioxidant capacity of erythrocytes
between groups. Acute stress, USPIONs and the combination of acute stress and USPIONs
had no significant effect on the antioxidant capacity of erythrocytes in SHR (Figure 2b).

In the control groups of different genotypes, significant changes in the antioxidant
capacity of erythrocytes were found. The control SHRC group had significantly reduced
antioxidant capacity of erythrocytes compared to the control WKYC group (SHRC vs.
WKYC, p = 0.0067) (Figure 2b).

A significant reduction in the antioxidant capacity of erythrocytes was found in the
SHR groups compared to the WKY groups with the same exposure (SHRS vs. WKYS,
p = 0.0007; SHRU vs. WKYU, p = 0.026; SHRS+U vs. WKYS+U, p = 0.0303) (Figure 2b).

In genotype groups of WKY and SHR, there was a statistically significant association
for the antioxidant capacity of erythrocytes between groups (main effect of genotype,
F(1,43) = 32.25, p < 0.0001, n = 51).

3.3. Superoxide Dismutase Activity

In WKY, there were no significant changes in the superoxide dismutase (SOD) activity
between groups (Figure 3a).
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Figure 3. Effects of USPIONs and acute stress on superoxide dismutase (a), glutathione peroxidase
(b) and catalase (c) activities in erythrocytes of normotensive (WKY) and spontaneously hyperten-
sive rats (SHR). The level of significance was defined as p < 0.05. The data are presented as the
mean ± standard error of the mean (SEM). SOD—superoxide dismutase; GPx—glutathione peroxi-
dase; CAT—catalase; WKY-Wistar—Kyoto rats; SHR—spontaneously hypertensive rats; C—control;
S—acute stress; U—USPIONs; S + U—the combination of acute stress and USPIONs.

In SHR (Figure 3a), significantly increased SOD activity was found in the SHRU group
and the SHRS+U group compared to the control SHRC group and the SHRS group (SHRU
vs. SHRC, p = 0.0206; SHRS+U vs. SHRC, p = 0.0333; SHRU vs. SHRS, p = 0.0209; SHRS+U vs.
SHRS, p = 0.0337).

A significant increase in SOD activity was found in the SHR groups compared to the
WKY groups with the same exposure for groups exposed to USPIONs and the combina-
tion of acute stress and USPIONs (SHRU vs. WKYU, p = 0.0089; SHRS+U vs. WKYS+U,
p = 0.0073) (Figure 3a).
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In genotype groups of WKY and SHR, there was a statistically significant association
for SOD activity between groups (main effect of genotype, F(1,43) = 9.686, p = 0.0033, n = 51).

3.4. Glutathione Peroxidase Activity

In WKY, there were no significant changes in the glutathione peroxidase (GPx) activity
of erythrocytes between groups (Figure 3b).

In SHR (Figure 3b), the SHRU group and the SHRS+U group had significantly higher
GPx activity compared to the control SHRC group (SHRU vs. SHRC, p = 0.0345; SHRS+U
vs. SHRC, p = 0.0171). In addition, the SHRS+U group had significantly higher GPx activity
compared to the SHRS group (SHRS+U vs. SHRS, p = 0.0405).

There was no significant change in GPx activity in erythrocyte lysates for control
groups with different genotypes (Figure 3b).

A significant increase in GPx activity was found in the SHR groups compared to the
WKY groups with the same exposure for groups exposed to USPIONs and the combi-
nation of acute stress and USPIONs (SHRU vs. WKYU, p = 0.018; SHRS+U vs. WKYS+U,
p < 0.0001) (Figure 3b).

In genotype groups of WKY and SHR, there was a statistically significant association
for GPx activity between groups (main effect of genotype, F(1,43) = 25.90, p < 0.0001, n = 51).

3.5. Catalase Peroxidase Activity

In WKY, there were no significant changes in the catalase (CAT) activity of erythrocytes
between groups (Figure 3c).

In SHR (Figure 3c), the SHRS+U group had significantly higher CAT activity compared
to the control SHRC group (SHRS+U vs. SHRC, p = 0.0051) and to the SHRS group (SHRS+U
vs. SHRS, p = 0.0098). Acute stress had no effect on CAT activity compared to the control.

A significant increase in CAT activity was found in the SHR groups compared to the
WKY groups with the same exposure for pairs (SHRS vs. WKYS, p = 0.0328; SHRU vs.
WKYU, p = 0.0023; SHRS+U vs. WKYS+U, p < 0.0001) (Figure 3c).

In genotype groups of WKY and SHR, there was a statistically significant association
for CAT activity between groups (main effect of genotype, F(1,43) = 43.84, p < 0.0001, n = 51).

3.6. Advanced Oxidation Protein Products

The effect of acute stress, USPIONs and the combination of stress and USPIONs on
advanced oxidative damage to proteins (AOPP) was studied in terms of advanced oxidation
protein product formation.

In WKY (Figure 4a), a significant decrease in AOPP levels was found in the WKYS+U
group compared to the control WKYC group (WKYS+U vs. WKYC, p = 0.0477). Acute stress
and USPIONs had no significant effect on AOPP formation in plasma of WKY.

In SHR (Figure 4a), there were no significant changes in AOPP levels between groups.
Significant changes in AOPP levels were not found for control groups with differ-

ent genotypes. The control SHRC group had a slightly higher level of AOPP in plasma
compared to the control WKYC group (Figure 4a).

Significantly increased AOPP levels were found in groups exposed to the combination
of acute stress and USPIONs only (SHRS+U vs. WKYS+U, p = 0.0014) for the WKY and SHR
groups with the same exposure (Figure 4a).

In genotype groups of WKY and SHR, there was a statistically significant association
for AOPP levels between groups (main effect of genotype, F(1,43) = 13.92, p = 0.0007, n = 51).



Antioxidants 2022, 11, 751 9 of 16

Antioxidants 2022, 11, 751 9 of 17 
 

3.5. Catalase Peroxidase Activity 
In WKY, there were no significant changes in the catalase (CAT) activity of 

erythrocytes between groups (Figure 3c). 
In SHR (Figure 3c), the SHRS + U group had significantly higher CAT activity 

compared to the control SHRC group (SHRS + U vs. SHRC, p = 0.0051) and to the SHRS group 
(SHRS + U vs. SHRS, p = 0.0098). Acute stress had no effect on CAT activity compared to the 
control. 

A significant increase in CAT activity was found in the SHR groups compared to the 
WKY groups with the same exposure for pairs (SHRS vs. WKYS, p = 0.0328; SHRU vs. 
WKYU, p = 0.0023; SHRS + U vs. WKYS + U, p < 0.0001) (Figure 3c). 

In genotype groups of WKY and SHR, there was a statistically significant association 
for CAT activity between groups (main effect of genotype, F(1,43) = 43.84, p < 0.0001, n = 51). 

3.6. Advanced Oxidation Protein Products 
The effect of acute stress, USPIONs and the combination of stress and USPIONs on 

advanced oxidative damage to proteins (AOPP) was studied in terms of advanced 
oxidation protein product formation. 

In WKY (Figure 4a), a significant decrease in AOPP levels was found in the WKYS + U 

group compared to the control WKYC group (WKYS + U vs. WKYC, p = 0.0477). Acute stress 
and USPIONs had no significant effect on AOPP formation in plasma of WKY. 

 
Figure 4. Effects of USPIONs and acute stress on levels of advanced oxidation protein products (a), 
protein carbonyls (b), lipoperoxides (c), and 8-isoprostanes (d) in plasma of normotensive (WKY) 
and spontaneously hypertensive rats (SHR). The level of significance was defined as p < 0.05. The 
data are presented as the mean ± standard error of the mean (SEM). AOPP—advanced oxidation 
protein products; LPx—lipoperoxides; WKY-Wistar—Kyoto rats; SHR—spontaneously 
hypertensive rats; C—control; S—acute stress; U—USPIONs; S + U—the combination of acute stress 
and USPIONs. 

Figure 4. Effects of USPIONs and acute stress on levels of advanced oxidation protein products (a),
protein carbonyls (b), lipoperoxides (c), and 8-isoprostanes (d) in plasma of normotensive (WKY) and
spontaneously hypertensive rats (SHR). The level of significance was defined as p < 0.05. The data
are presented as the mean ± standard error of the mean (SEM). AOPP—advanced oxidation protein
products; LPx—lipoperoxides; WKY-Wistar—Kyoto rats; SHR—spontaneously hypertensive rats;
C—control; S—acute stress; U—USPIONs; S + U—the combination of acute stress and USPIONs.

3.7. Protein Carbonyls

In WKY, acute stress and USPIONs had no significant effect on protein carbonyl
formation (Figure 4b). The WKYS+U group had significantly reduced protein carbonyl
levels compared to the WKYU group (WKYS+U vs. WKYU, p = 0.0402).

In SHR (Figure 4b), there were no significant changes in protein carbonyl levels
between groups.

There were no significant changes in protein carbonyl levels in plasma for control
groups with different genotypes (Figure 4b).

Significantly increased formation of protein carbonyls in plasma was found in the
SHR groups compared to the WKY groups exposed to the combination of acute stress and
USPIONs (SHRS+U vs. WKYS+U, p = 0.0163) (Figure 4b).

3.8. Lipoperoxides

The effect of stress, USPIONs and the combination of stress and USPIONs on lipid
peroxidation was studied in terms of lipoperoxide (LPx) formation.

In WKY and SHR, there were no significant changes in LPx levels between groups
(Figure 4c).

There were no significant changes in LPx levels in plasma for control groups as well
as groups with the same exposure with different genotypes (Figure 4c).

3.9. 8-Isoprostanes

In WKY and SHR, there were no significant changes in the 8-isoprostane (Iso-p) levels
between the groups (Figure 4d).
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Significant changes in Iso-P levels in plasma were found for control groups with
different genotypes. The control SHRC group had significantly higher Iso-P levels compared
to the control WKYC group (SHRC vs. WKYC, p = 0.0115) (Figure 4d).

Significantly increased Iso-P levels were found in the SHR groups compared to the
WKY groups with the same exposure for groups exposed to acute stress, USPIONs and the
combination of acute stress and USPIONs (SHRS vs. WKYS, p = 0.0292; SHRU vs. WKYU,
p = 0.0178; SHRS+U vs. WKYS+U, p = 0.0019) (Figure 4d).

In genotype groups of WKY and SHR, there was a statistically significant association
for the Iso-P levels between groups (main effect of genotype, F(1,43) = 28.28, p < 0.0001,
n = 51).

3.10. Correlations

In rats with different genotypes, significant correlations between different markers of
oxidative stress are presented in Table 1. Correlation is significant at the 0.05 level (2 tailed).

Table 1. Significant correlations between different parameters of oxidative stress in normotensive
(WKY) and hypertensive (SHR) rats.

Genotype Parameter Parameter n p r

WKY

AOPP TEAC-PL 23 0.005 −0.568
AOPP LPx 23 0.038 0.435
AOPP Carb-P 23 0.047 0.418
AOPP GPx 23 0.018 0.488
Carb-P TEAC-PL 23 0.010 −0.525
Carb-P GPx 23 0.010 0.525

GPx TEAC-PL 23 0.0001 −0.716

SHR
AOPP LPx 28 0.001 0.602
AOPP Iso-P 28 0.011 0.474
SOD GPx 28 0.0001 0.742

Correlation is significant at the 0.05 level (2 tailed). AOPP—advanced oxidation protein products, Carb-P—
protein carbonyls, LPx—lipoperoxides, GPx—glutathione peroxidase, TEAC-PL—antioxidant capacity in plasma,
IsoP—8-isoprostanes, and SOD—superoxide dismutase.

4. Discussion

The aim of our study was to investigate an antioxidant response in rats exposed to
USPIONs and stress alone, or in combination, in two different rat strains by determination
of the antioxidant capacity of plasma and erythrocytes and the activities of antioxidant
enzymes in erythrocytes. We also measured levels of markers of oxidative damage to
proteins and lipids in plasma.

In hypertension, the production of reactive oxygen species (ROS) is increased by vari-
ous processes, which can lead to an increase in other cardiovascular diseases and disorders,
as shown by many scientific studies [33,35,41,42]. Therefore, the non-enzymatic and enzy-
matic antioxidant defense is an important mechanism to reduce the risk of cardiovascular
diseases and against increased oxidative stress. During diagnostic examinations as well
as intravenous application of a contrast agent, patients are exposed to acute stress. Conse-
quently, a psycho-emotional stress response is induced, and this can affect physiological
and biochemical processes in the body [43]. In addition, psycho-emotional stress leads to
the induction of various negative effects on different cell types [31].

In our study, we found significantly reduced antioxidant capacity in plasma of young
SHR compared to WKY. Similarly, Newaz et al. (1999) demonstrated a significant reduction
in total antioxidant status in plasma of young SHR compared to WKY of the same age [44].
In addition, in WKY, we have found a negative correlation between plasma antioxidant
capacity and markers of oxidative damage to proteins (AOPP).

Acute stress and USPIONs showed genotype-dependent effects on the antioxidant
capacity of plasma. In plasma of WKY, none of the exposures had any effect on antioxidant
capacity. On the other hand, USPIONs significantly increased the antioxidant capacity
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of plasma of SHR that were simultaneously exposed to the combined effect of USPIONs
and stress, compared to the control and stress groups. Increased antioxidant capacity
could be caused by a combination of the effects of various molecules—for example, by
polyethylene glycol (PEG), which is used in nanoparticles. Juarez-Moreno et al. (2015)
reported that PEG has the ability to increase antioxidant capacity because it might function
as an antioxidant molecule [45]. The same effect could be caused by other molecules such
as albumin, bilirubin or uric acid [16]. Because antioxidant capacity in the WKY group was
significantly higher than in the SHR group, this final effect might not be visible.

The study of the effects of USPIONs on erythrocytes is challenging. Erythrocytes
are very sensitive to variation in their environment and reflect those changes [46]. In
the SHR group, significantly reduced antioxidant capacity of erythrocytes was found
compared to the WKY group. There was no other effect of the monitored factors. In the
study by Radosinska et al. (2021), significantly lower amounts of iron originating from
USPIONs were found in erythrocytes of SHR than of WKY using SQUID magnetometry [47].
Decreased uptake of USPIONs into erythrocytes of SHR could be one of the reasons
why USPIONs had no effect in SHR animals [47]. Oleksa et al. (2021) reported that
administration of USPIONs had no effect on the fundamental properties and deformability
of erythrocytes in SHR [12]. In the WKY group, acute stress and USPIONs significantly
reduced antioxidant capacity in erythrocytes. A slight reduction trend in antioxidant
capacity was observed for all WKY exposure groups; as such, it is possible that only
the combination of acute stress and USPIONs caused a significant reduction effect in
antioxidant capacity. The study by Oleksa et al. (2021) demonstrated changes in vascular
function in WKY induced by USPIONs but no changes in SHR [12].

Iron plays a key role in living matter as a mediator of many important biochemical
reactions due to its ability to change oxidation state by providing or accepting electrons.
On the other hand, this ability results in the direct or indirect generation of ROS and other
free radicals—for example, by the Fenton reaction [48]. Products of this reaction, hydroxyl
radicals are extremely reactive and can cause oxidation of basic cellular macromolecules,
such as nucleic acids, proteins, lipids, and carbohydrates. Iron plays an important role in
the formation of lipid peroxyl radicals and lipoperoxides [20].

Indirect generation of ROS is associated with iron-dependent enzymes that catalyze
important biological processes [49]. Erythrocytes eliminate ROS by antioxidant enzymes,
such as SOD, GPx and CAT. The overproduction of ROS leads to the increased activi-
ties of antioxidant enzymes, as well as increased intracellular levels of these antioxidant
enzymes [50].

In the normotensive WKY group, there were no significant changes in the SOD, GPx
and CAT activities of erythrocytes between groups. Acute stress, USPIONs and the combi-
nation of acute stress and USPIONs had no effect on enzyme activities in erythrocytes. In
living systems, the antioxidant defense operates on many levels. Under normal conditions
in cells, there is a balance between enzymatic and non-enzymatic antioxidant defense, and
elimination of ROS and free radicals. This balance is essential for the survival of organisms
and their health [51]. Antioxidant enzymes represent the first level of this defense. Sev-
eral studies have found that the exposure time to acute stress and nanoparticles is a very
important factor in redox balance [4]. Xiong et al. (2015) reported increased SOD activity
and reduced oxidative stress in Sprague Dawley rats after iron NPs were administered
once per day for 7 days [52]. In the WKY group, defense mechanisms were sufficient to
eliminate oxidative processes caused by acute stress, USPIONs or their combination, with-
out changing the activity of antioxidant enzymes. Many research groups have focused on
studying the relationship between hypertension and the activities of antioxidant enzymes,
but their results were highly contradictory. Although some studies have shown an adaptive
increase in the activities of antioxidant enzymes in various models of hypertension, the
relationships discovered are still the subject of in-depth discussion [27,53–55].

In the SHR group, SOD activity was significant increased after exposure to USPIONs
and the combination of acute stress and USPIONs compared to the control group. These
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two SHR groups also had significantly higher SOD activity compared to the WKY groups
with the same exposure. SOD catalyzes the reaction in which hydrogen peroxide (H2O2) is
produced [56]. Subsequently, H2O2 is decomposed by peroxidases such as GPx or CAT [48].
In this study, a significant increase in GPx and CAT activities in the SHR groups induced by
USPIONs or the combination of acute stress and USPIONs was also found. A significant
positive correlation between SOD and GPx activities was found in the SHR group [57]. This
may indicate an upregulation of GPx activity, possibly caused by the increased production
of H2O2 generated by SOD. Petrulea et al. (2012) reported that increased antioxidant
enzyme activities such as SOD, GPx and CAT may be indicators of the compensation of
induced oxidative stress [58].

In recent years, a rapid increase in studies focusing on the measurement of oxidatively
modified protein and lipid products in the pathogenesis of various diseases has been
observed. In the normotensive WKY, levels of markers of oxidative damage to proteins
(AOPP and protein carbonyls) were not significantly influenced by stress or USPIONs.
However, the combination of these factors resulted in a reduction in levels of measured
markers. This indicates a good adaptive response of the internal antioxidant system of the
organism to increased stress. In contrast, SHR reacted to increased stress (acute stress +
USPIONs) by elevating levels of these markers compared to WKY. Enhanced formation
of ROS was previously reported in experimental models of hypertension such as SHR. In
addition, increased protein carbonylation was detected in tissues from SHR [59,60]. Tyther
et al. (2009) identified 11 proteins including antioxidant enzymes that were differentially
carbonylated in SHR kidney medulla compared to WKY normotensive rats [61]. Specific
modification of proteins in SHR kidneys may contribute to the renopathy associated with
hypertension.

Other consequences of high levels of ROS or free radicals are to inflict direct damage
to lipids. Hydroxyl radicals cause oxidative damage to cells because they unspecifically
attack biomolecules and they are involved in cellular disorders such as neurodegeneration,
cardiovascular diseases, and cancer [17]. Hydroxyl radicals play an important role in the
chemistry of lipid peroxidation because they are much stronger oxidants than superoxide
anion radicals and can initiate the chain oxidation of various lipids. Hydroxyl radicals are
formed through redox cycling by Fenton and Haber–Weiss reactions, where iron plays an
important role as a catalyst. In plasma of the two genotype groups of rats (WKY and SHR)
in this study, for USPIONs or the combination of acute stress and USPIONs, we found
no significant changes in lipoperoxide levels. No changes in this plasma marker could
be caused by the decomposition of hydroperoxides by two-electron reduction. Enzymes
mainly responsible for this elimination are glutathione peroxidases (GPx) and selenoprotein
P. Glutathione peroxidases catalyze the reduction of hydrogen peroxide (H2O2) and organic
hydroperoxides using glutathione (GSH). GPx is both an extracellular and an intracellular
enzyme. Selenoprotein P is the major plasma selenoprotein that catalyzes the reduction of
phospholipid hydroperoxides using GSH or thioredoxin. This decomposition of lipoper-
oxides protects plasma proteins against peroxynitrite-induced oxidation and nitration or
low-density lipoproteins (LDL) from peroxidation [62].

Isoprostanes are one of the most reliable biomarkers of lipid peroxidation. Isoprostanes
are prostaglandin-like compounds produced by non-enzymatic peroxidation of arachidonic
acid in membrane phospholipids. Significantly increased 8-isoprostane levels were found
in the SHR groups compared to the WKY groups with the same exposure for all groups as
well as control groups. Our results are consistent with several studies describing elevation
of 8-isoprostane level in biological samples in hypertension [63–65].

Correlations between markers of oxidative stress in rats of each genotype confirm the
positive effect of plasma antioxidant capacity or antioxidant enzymes on oxidative damage to
proteins and lipid peroxidation. When plasma antioxidant capacity is lower in normotensive
rats, there is higher formation of products of oxidative damage to proteins—AOPP and
protein carbonyls. The higher the levels of AOPP in plasma, the higher the levels of other
markers of oxidative damage to proteins (protein-carbonyls) and lipids (lipoperoxides).
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There is also a positive correlation between AOPP and GPx activity, i.e., higher AOPP levels
indicate increased oxidative stress in animals, which leads to the activation of GPx.

According to our results, the effects of USPIONs and psycho-emotional stress on the
induction of oxidative stress depend on various conditions. Genotype can play a very
important role. Of course, other factors such as time of exposure or dose can also impact
this process.

5. Conclusions

Our results show (Figure 5) significant differences in plasma antioxidant status, the
activities of antioxidant enzymes and markers of oxidative damage to proteins and lipids
in SHR under acute stress and during administration of USPIONs, or their combination.
We found that SHR exposed to USPIONs in combination with acute stress, despite the
elevated activities of antioxidant enzymes, experience increased oxidative damage to lipids
and proteins determined in plasma compared to normotensive rats (WKY). Thus, our data
point to the fact that caution should be taken when hypertensive subjects are treated with
USPIONs, especially in stress conditions, as they seem to be more vulnerable to oxidative
stress produced by iron oxide nanoparticles.
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