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Abstract

Objective: Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were
examined for variant associations to quantitative traits of NAFLD-related phenotypes.

Research Design and Methods: By integrating public database text mining, trans-organism protein-protein interaction
transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this
a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-
one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in
10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity,
and WHO-defined metabolic syndrome (MetS).

Results: 273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and
ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P,0.05) to
quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five
genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.

Conclusions: Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide
evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D,
central obesity, and MetS.
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Introduction

It has been estimated that around 20% of all adults have non-

alcoholic fatty liver disease (NAFLD) [1,2], which is defined by

accumulation of fat in hepatocytes exceeding 5-10% of the liver

weight [3]. In the obese adult population NAFLD is present

among 60% [1,2]. NAFLD associates with insulin resistance and

type 2 diabetes (T2D) and it has been suggested that it might

predict the presence or future development of the metabolic

syndrome (MetS) [4,5]. While environmental factors causing

NAFLD are well-known [3,6], it has been suggested that genetics

factors also predispose to NAFLD [7,8] and that these might

explain the difference in NAFLD progression between individuals

[7,9].

At the biochemical level NAFLD often presents with abnormal

liver enzymes without the presence of markers of other common

liver disease, e.g., hepatitis C [10]. Non-invasive tests such as the

BAAT (body mass index, age, alanine aminotransferase, triglyc-
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erides), the European liver fibrosis score, Fibrotest, Fibroscan,

hyaluronic acid, BARD (body mass index, aspartate aminotrans-

ferase (AST):alanine aminotransferase (ALT), diabetes), non-

alcoholic steatohepatitis (NASH) score, and the NAFLD fibrosis

score have been developed [11], and have all been tested in

individuals with NAFLD [10]. However, these tests are still

insufficient to replace liver biopsy [10], which currently is the gold

standard for the diagnosis and assessment of severity of NAFLD

[3]. Nevertheless, knowledge of MetS, T2D, serum insulin, AST,

and ALT concentrations has in a study by Kotronen et al. allowed

prediction of NAFLD with a sensitivity of 86% and a specificity of

71% [12].

Several genes have been suggested as putative candidate genes

for NAFLD susceptibility or progression of the disease [7].

Recently, genome-wide association (GWA) studies have success-

fully contributed to the gene discovery process by identifying

common genetic variants in several complex human diseases

including NAFLD. In a GWA study of liver fat content in 2,111

individuals of different ancestry, the G-allele of rs738409 in

patatin-like phospholipase domain containing 3 (PNPLA3) showed

strong evidence of association with NAFLD [13]. Additionally,

PNPLA3 was found to be associated with ALT concentration in a

GWA of plasma liver-enzyme levels in a Caucasian population

[14]. However, addition of information of variation in PNPLA3 did

not significantly improve the NAFLD prediction score [12].

Bioinformatics is often used in the investigation, establishment,

and ranking of biological candidate genes, and e.g., protein-

protein interaction analyses can be used to identify disease-related

complexes [15]. This method places the potential disease-causing

proteins in a functional context, relative to other known or

unknown disease-associated proteins, and thus, systematic inves-

tigation of such complexes might unmask new candidate genes for

NAFLD-related phenotypes.

The objective of the present study was to identify new putative

candidate genes for NAFLD-associated phenotypes using a

bioinformatics approach that implements text mining, trans-

organism protein-protein interaction transferal, and publicly

available information on protein expression levels in the liver.

Furthermore, we investigated the association of common genetic

variants in the candidate genes with NAFLD-related quantitative

traits (waist circumference, serum triglyceride, and fasting levels of

serum insulin and plasma glucose) in 6,162 middle-aged Danes.

Also, case-control analyses were performed using a total of 10,196

middle-aged Danes to investigate putative associations between

the genetic variants and T2D, central obesity, and MetS.

Materials and Methods

The studies were approved by the Ethical Committee of

Copenhagen and were in accordance with the principles of the

Declaration of Helsinki II. Informed written consent was obtained

from all individuals before participation.

Selection of candidate genes using a bioinformatics
approach

We used text mining in NCBI Databases (build 36) as the initial

approach to identify potential biological candidate genes. This

consisted of two PubMed searches using the search terms

‘‘(‘‘hepatic steatosis’’ OR ‘‘NAFLD’’) AND genes’’, or ‘‘(‘‘visceral

obesity’’ OR ‘‘waist circumference’’) AND genes’’. Limits: only

within year 2003–2008 that reduces the search results with app.

50%. All results were reviewed manually. Only papers published

in English were considered. Full texts of papers were searched

when accessible. Also, we searched the online mendelian

inheritance in man (OMIM) for genetic abnormalities leading to

syndromes with fatty liver related phenotypes, and for the terms

‘‘(‘‘hepatic steatosis’’ OR ‘‘NAFLD’’) AND genes’’, or ‘‘(‘‘visceral

obesity’’ OR ‘‘waist circumference’’) AND genes’’. Text mining

identified 273 genes putatively implicated in NAFLD, and these

were prioritized according to how often they were co-mentioned

with the terms ‘‘fatty liver’’ or ‘‘NAFLD’’ in the literature. Of the

273 genes we removed 26 genes due to gene symbol overlap,

missing human homologue or missing ensembl ID. The 247

remaining biological candidate genes were then prioritized using a

scoring scheme based on the origin of the data and OMIM

phenotypes (Supporting Information S1). 37 biological candidate

genes had a priority score .2 (Supporting Information S1) and

were selected for further bioinformatics analysis according to: 1)

MeSH terms (using the GeneCard database (www.genecards.org)),

2) keywords (using the AKS2 database (www.bioalma.com/aks2/

index.php)), 3) pathway analysis (investigating e.g., biological

processes, functional role and sub cellular localization using the

KEGG database (www.genome.jp/kegg/)), 4) interactomes (a

protein-protein interaction analysis with trans-organism protein-

protein interaction transferal) [15], and 5) the GNF expression

profiles from healthy tissues [16,17].

One interactome contained 5 of our 37 biological candidate

genes (Figure 1). Five genes – peroxisomal bifunctional enzyme

(EHHADH), enoyl-CoA hydratase, mitochondrial (ECHS1), long-

chain specific acyl-CoA dehydrogenase, mitochondrial (ACADL),

trifunctional enzyme subunit alpha, mitochondrial (HADHA), and

trifunctional enzyme subunit beta, mitochondrial (HADHB) – were

chosen from this interactome for further investigation, based on

the following criteria: 1) centrally placed in the interactome; 2) five

or more connections to other nodes in the network; and, if

available, evidence of high levels of expression in the liver

compared to other tissues.

Selection of SNPs for genotyping
According to HapMap phase II (release 24), 21 tagSNPs (CEU)

capture all variation in these genes (610 kb) at an r2 threshold of

at least 0.8 (MAF between 1 and 45%) and were chosen for

genotyping. Since HADHA and HADHB share chromosomal

location and therefore are tagged by the same variants, they will

from now on be referred to as HADHA/B and analyzed together.

Haploview (version 4.2) was used to construct linkage disequilib-

rium (LD) plots displaying r2 between each genotyped variant in a

locus (Supporting Information S1).

Genotyping
The tagSNPs were genotyped using KASParH (KBiosciences,

UK) with success rates .96% and error rates not exceeding 0.5%

(.1,177 replicates). Genotype distributions obeyed Hardy-Wein-

berg equilibrium (P.0.05) in all study groups, except for

rs1056471 (P = 0.05) and rs3791731 (P = 0.007) in HADHA/B;

and rs6805633 (P = 4610227) in EHHADH. These three SNPs

were excluded from the analyses.

Study participants
This study involved 10,196 unrelated Danes from four study

groups. Details of the study samples are given in Supporting

Information S1. 1) The population-based sample (Inter99) of

middle-aged individuals (n = 6,162) sampled at the Research

Centre for Prevention and Health [18]. 2) T2D patients sampled

through the out-patient clinic at Steno Diabetes Center (SDC)

(n = 1,695). 3) A population-based group of middle-aged glucose-

tolerant participants recruited via SDC (n = 730). Finally, the

ADDITION Denmark study (Anglo-Danish-Dutch Study of

Genetics of NAFLD-Related Metabolic Phenotypes
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Intensive Treatment in People with Screen-Detected Diabetes in

Primary Care) (ClinicalTrials.gov ID-no: NCT00237548 [19],

which is a population-based, high-risk screening and intervention

study for T2D in general practice (n = 1,609) was included as the

fourth group. All participants in study group 1 and 3 underwent a

standard 75 g oral glucose tolerance test (OGTT). T2D and

glucose tolerance was diagnosed according to the World Health

Organization (WHO) 1999 criteria [20], and central obesity was

defined using waist-circumference ($88 cm for women and

$102 cm for men).

Quantitative trait analyses were carried out in glucose tolerant

individuals from study group 1 (n = 4,567), whereas the case-

control studies of T2D and central obesity involved all four study

groups (n = 10,196). Individuals with MetS were identified from

study group 1. The case-control study of MetS was defined

according to the 1998 WHO criteria [21] and involved 1,757

control individuals and 1,349 individuals with either impaired

glucose tolerance (defined as increased fasting glycaemia (IFG),

impaired glucose tolerance (IGT), screen-detected T2D (scT2D),

or T2D), or increased insulin resistance calculated using the

homeostasis model assessment of insulin resistance (HOMA-IR),

together with two or more components of MetS (dyslipidemia,

hypertension, obesity, or albuminuria). Control individuals were

defined as not having any of the components comprised in the

WHO-defined criteria of MetS.

Selection of NAFLD-related phenotypes
NAFLD-related quantitative traits that were investigated in this

study included: waist circumference, serum triglyceride, and

fasting levels of serum insulin and plasma glucose. These traits

were considered the best surrogate measures of NAFLD based on

previous studies [12,22].

Anthropometrical and biochemical measurements
Height (without shoes) and weight were measured in light

indoor clothing, and BMI was calculated as weight in kg/(height in

m)2. Waist circumference was measured in the upright position

midway between the iliac crest and the lower costal margin [18].

Blood samples were drawn after a 12 h overnight fast. Plasma

Figure 1. Interactome from the protein-protein interaction analysis. Enlarged picture of the interactome, from which EHHADH, ECHS1,
HADHA, HADHB, and ACADL were selected for further analyses. Nodes are round if not on the list of prioritized candidate genes, and squared if on the
list. The thickness of the line represents the priority score. The thicker the line, the higher prioritized on the list of candidate genes. Dark background
color means highly expressed (above average) in liver compared to other tissues in the renormalized tissue expression data set [17]. White nodes
represent proteins with no expression data available in the renormalized data set. However, in the orginal GNF tissue data set [16], all the genes
corresponding to the white proteins have an expression level above the median for all tissues, supporting the observation that the proteins have a
relative higher expression in liver. In the upper right corner is the entire protein-protein interaction network depicted. The smaller interactome is
highlighted with a dashed circle. Cytoscape 2.6 (http://www.cytoscape.org/) was used to visualize the interactome.
doi:10.1371/journal.pone.0016542.g001
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glucose was analyzed by a glucose oxidase method (Granutest;

Merck, Darmstadt, Germany) and serum insulin (excluding des-

31,32 and intact proinsulin) was measured using the Autodelfia

insulin kit (Perkin-Elmer/Wallac, Turku, Finland). Serum triglyc-

erides were analyzed using enzymatic colorimetric methods (GPO-

PAP and CHOD-PAP; Roche Molecular Biochemicals, Mann-

heim, Germany). HOMA-IR was calculated as: (fasting plasma

glucose (mmol/l) 6 fasting serum insulin (pmol/l))/22.5 [23].

Statistical analyses
Analyses were performed using R version 2.10.0. P-values were

not adjusted for multiple hypothesis testing and P,0.05 was

considered significant.

Association with NAFLD-related phenotypes. Quanti-

tative trait studies were performed using a general linear model.

Data with non-normally distributed residuals (serum triglycerides

and serum insulin release) were logarithmically transformed prior

to analyses. All analyses were adjusted for age, sex, and BMI,

assuming an additive model (Padd). Effect sizes are denoted as b
that reflect a per allele effect with 95% confidence interval (CI),

and are given as actual values or percentage if logarithmically

transformed. The statistical power was estimated using 1,000

simulations and a significance threshold of 0.05. Based on the

allele frequencies of the variant and the sample size of 6,162

individuals, we have estimated the effect sizes per allele of

quantitative traits for which we had 60 and 90% statistical power,

respectively, to detect an association. Power estimates for the

quantitative trait analyses are summarized in Supporting

Information S1. A quantile–quantile (QQ) plot was generated by

plotting the observed ordered allele associations from the

quantitative trait analyses against the ordered expected

associations (Supporting Information S1).

To investigate higher order interactions between the 18 SNPs

and environmental factors we applied the software package

Bayesian Association for Multiple SNP Effects (BAMSE) [24],

that model gene-environment interactions while accounting for

multiple testing. We used the Inter99 study population including

the 18 SNPs and glucose tolerance status (NGT, IFG, IGT, and

scT2D), as well as questionnaire-based information on four self-

reported environmental factors: physical activity (passive, light or

medium, and hard or very hard), energy intake (kJ/day), alcohol

intake (gram/day), and smoking habits (daily, occasionally, ex-

smoker or never) to test if any of these associated with any of the

investigated quantitative traits.

T2D, central obesity, and MetS association analyses.

Logistic regression was used to examine differences in genotype

distribution in the case-control studies. The T2D case-control

analyses were adjusted for age, sex, and BMI. We included 2,330

T2D patients in the case-control for central obesity, why these

analyses were adjusted for age, sex, BMI, and diabetes treatment.

The MetS case-control analyses were adjusted for age and sex. The

statistical power calculations in the case-control studies were done

using CaTS, power calculations for large genetic association studies,

available at http://www.sph.umich.edu/csg/abecasis/cats/. The

statistical power to detect an OR of 1.10 was, depending on the

investigated trait, estimated to be between 48 and 99% for variants

with a MAF.20%. The statistical power for the case-control

analyses is summarized in Supporting Information S1.

Functional prediction for the variants
The potential functional effects of the variants were predicted

using Ensembl SNP Effect Predictor (http://www.ensembl.org/)

and FastSNP [25].

Results

Selection of candidate genes
Text mining identified 273 genes putatively implicated in

NAFLD-related phenotypes, of which 37 biological candidate

genes where selected for further analysis. From these genes

EHHADH, ECHS1, ACADL, HADHA, and HADHB, which are

involved in the mitochondrial fatty acid b-oxidation, were selected

as candidate genes for tagging and genotyping (Figure 1).

Studies of associations to NAFLD-related quantitative
traits

Figure 2 summarizes the results for the four NAFLD–related

quantitative traits: waist circumference, fasting serum triglyceride,

fasting plasma glucose, and fasting serum insulin; values are given

in comparable Inter99 population SD units. Nine genetic variants

showed significant associations with one or more of these traits

(Table 1). Extensive results from the quantitative association

analysis are enclosed in Supporting Information S1. A QQ-plot to

visualize the distribution of observed versus expected P-values

from the quantitative trait analyses, is enclosed in Supporting

Information S1.

Investigating higher order interactions between the 18 SNPs

and environmental factors using BAMSE showed no significant

associations.

T2D, central obesity, and MetS case-control studies
Two variants in EHHADH were associated with T2D:

rs6784193 (ORadd = 1.14(1.01–1.29), Padd = 0.03) and rs7635708

(ORadd = 1.20(1.02–1.41), Padd = 0.03). We found no association

with T2D for any of the variants in ECHS1, ACADL, or HADHA/B

(Supporting Information S1).

The minor G-allele of rs11101721 in ECHS1 associated with

central obesity (ORadd = 1.21(1.05–1.40), Padd = 0.008). For

HADHA/B, the minor G-allele associated with a decrease in risk of

developing central obesity (ORadd = 0.93(0.87–0.99), Padd = 0.03).

For the other variants, no statistically significant associations were

observed when comparing the genotype distribution between lean

individuals and obese individuals as defined by waist circumference

(Supporting Information S1).

When comparing the genotype distribution between individuals

with MetS and individuals with no clinical evidence of MetS, the

minor G-allele of rs11101721 in ECHS1 associated with MetS

(ORadd = 1.20(1.01–1.43), Padd = 0.04). No variants in EHHADH,

ACADL, or HADHA/B showed associations with MetS (Supporting

Information S1).

Discussion

We aimed at identifying new putative candidate genes for

NAFLD-related phenotypes by applying trans-organism protein-

protein interaction transferal combined with liver expression data,

and to investigate genetic variants in the candidate genes and their

association with metabolic traits known to relate to NAFLD.

The main findings of this study were: 1) the bioinformatics

approach proved successful in identifying putative candidate

genes, 2) the variations in the selected candidate genes were

associated with several NAFLD-associated traits, suggesting a

potential role in the development of these metabolic phenotypes.

Selection of candidate genes
We identified five genes involved in the b-oxidation of fatty

acids. The activities of mitochondrial respiratory chain enzyme

complexes have been shown to be impaired in the liver of patients

Genetics of NAFLD-Related Metabolic Phenotypes
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with NASH [26], suggesting that mitochondrial dysfunction might

play a role in the pathogenesis of NAFLD. However, it has not yet

been clarified which molecular mechanisms cause the defects. A

common denominator of the five identified genes is peroxisome

proliferator-activated receptor alpha (PPARa), which play a role in

regulation of the genes. PPARa has previously been investigated in

our study populations in relation to T2D- and obesity-related

quantitative traits [27], but has also been suggested as a gene

predisposing for NAFLD [28]. PPARa is the main regulator of

fatty acid utilization [29] and when activated, PPARa causes a

decrease in plasma-, hepatic-, and intramuscular contents of

triglycerides [30]. EHHADH binds to PPARa providing a positive

feed-back loop, thereby adjusting the tissue expression levels of

PPARa according to a given metabolic need [31]. In rats, down-

regulation of ECHS1 has been identified as a contributing factor in

high-fat diet induced hepatic steatosis, causing decreased mito-

chondrial fatty acid b-oxidation, a finding that was validated in

patients with simple steatosis [32]. Furthermore, it was shown that

down-regulation of ECHS1 by small interfering RNA (in vitro and in

vivo) aggravated the accumulation of lipids in hepatocytes caused

by free fatty acid overload [32]. Moreover, PPARa responsive

elements have been identified in ECHS1 [33], but it remains to be

Figure 2. Quantitative trait analyses of NAFLD-related traits in (n = 4,567) glucose-tolerant Danes. Standardized Inter99 population SD
units for NAFLD-related traits: waist circumference, fasting serum triglycerides, fasting plasma glucose, and fasting serum insulin. Calculated as
mean(trait)/SD(trait). The analyses were adjusted for age, sex, and BMI.
doi:10.1371/journal.pone.0016542.g002
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determined whether the decreased mitochondrial fatty acid b-

oxidation induced by ECHS1 down-regulation is mediated

through PPARa.

PPARa agonists used to treat dyslipidemia have been shown to

moderately induce the expression of ACADL and ECHS1 in rat

liver [34], and in rat heart muscle PPARa agonists increase the

expression of ECHS1 and reduce the expression of HADHA/B

[35]. These findings may indicate that PPARa also regulates these

genes. Furthermore, treatment with a PPARa agonist improved

steatosis in fatty liver Shionogi mice and reduced hepatic

triglyceride level by inducing expression of several genes involved

in the turnover of fatty acids, e.g., ACADL [36]. In a study of 26

histology diagnosed NAFLD patients, liver expression of both

ACADL and HADHA was increased 3-6-fold compared to healthy

individuals [28]. In contrast, Eaton et al. showed that patients with

NAFLD had a significantly increased amount of 3-hydroxyacyl-

CoA and 2-enoyl-CoA esters in their liver mitochondria,

suggesting a decreased HADHA activity [37].

Investigating a potential functional role of the variants included

in this study, revealed that rs2286936 of ACADL is a non-

synonymous coding variant and thereby could impact on the

measured phenotypes. This variant has been shown to associate

with the metabolite acylcarnitine 9 in a GWA study of 163

metabolic traits measured in human blood (initial step: n = 1,809/

replication step: n = 422), indicating that this variant may play a

role in human lipid metabolism [38]. None of the other variants

are coding variants, but thorough functional characterization is

warranted to eliminate other mechanisms in which these variants

might alter the phenotype. Taken into account the previous

knowledge about the five selected genes, we propose that they are

reasonable candidate genes, and therefore hypothesize that they

may play a role in the development in NAFLD and NAFLD-

related metabolic traits.

The NAFLD-associated PNPLA3 was not directly identified

using this approach, but the glycerolipid metabolism pathway that

PNPLA3 is involved in, is connected to the fatty acid metabolism

pathway, which was one of the top ranked pathways in the

pathway analysis.

Association with NAFLD-associated quantitative traits
Variation in several of the genes associated with the investigated

quantitative traits that relate to NAFLD, indicating that these

genes, alone or in combination, might influence the development

and/or progression of NAFLD. However, no evidence of

associations of major effects between these variants and

NAFLD-related quantitative traits was found. We constructed a

QQ-plot to visualize the distribution of observed versus expected

P-values from the quantitative trait analyses. Limits to this method

are the low number of observations, potentially high LD between

some of the variants, and non-normally distributed data. Despite

this, the QQ-plot showed an over-abundance of low P-values

(Supporting Information S1). Given the relatively high LD

between some of the variants in a locus that shows associations

with a trait, e.g., rs6783938 and rs6784193 of EHHADH with

r2 = 0.7 which both are associated with fasting serum insulin, we

cannot preclude that these associations reflect the same causative

variant. None of the investigated variants were identified in the

recent GWA studies of NAFLD or surrogate NAFLD measures

such as plasma levels of liver enzymes [13,14]. Hence, investigat-

ing the effect of these variants in combination with other genetic

variants or environmental factors would help elucidating their

potential role in NAFLD. However, examining higher order

interactions between the variants and environmental factors in the

present study applying the software package BAMSE did not show

any combinations that significantly contributed to the investigated

NAFLD-related phenotypes (data not shown).

T2D, central obesity, and MetS case-control studies
Only few of the variants showed association to T2D, MetS, or

central obesity. This is, however, not tantamount to them being

irrelevant for the development of NAFLD. Here, we assume that

individuals with T2D, MetS, or central obesity suffer from some

degree of NAFLD, but we have no clinical evidence of liver disease

in these patients. Therefore, an alternative study design would be

to focus on search for associations of these variants with the

mentioned metabolic disorders in cases with clinically diagnosed

NAFLD.

Table 1. Nominal statistically significant associations with NAFLD-related traits in the quantitative trait analyses in (n = 4,567)
glucose-tolerant Danes.

Gene SNP Major/minor allele Trait
n
WT/HE/HO

Per allele effect
(95%CI) Padditive

EHHADH rs2216386 A/G Fasting serum insulin 2777/1406/180 3.4% (0.8%; 6.1%) 0.01

EHHADH rs16859825 T/C Fasting plasma glucose
(mmol/l)

3747/613/24 0.033 (0.004;0.062) 0.03

Fasting serum insulin 5.3% (1.4%;9.3%) 0.01

EHHADH rs6783938 C/T Fasting serum insulin 3596/765/39 4.1% (0.5%; 7.7%) 0.03

EHHADH rs6784193 A/G Fasting serum insulin 3089/1157/107 3.8% (0.8%; 6.7%) 0.01

EHHADH rs6779662 T/C Waist circumference (cm) 3786/542/21 20.60 (21.03; 20.17) 0.006

EHHADH rs2160815 T/A Serum triglycerides 3397/925/67 3.2% (0.3%; 6.1%) 0.03

ECHS1 rs7093778 T/C Fasting plasma glucose
(mmol/l)

840/1350/149 0.03 (0.01; 0.05) 0.002

ACADL rs1396828 T/C Waist circumference (cm) 1267/2139/974 20.3 (20.5; 20.1) 0.01

ACADL rs2286963 T/G Waist circumference (cm) 1825/1933/569 0.26 (0.04; 0.48) 0.02

Values of serum triglycerides and serum insulin were logarithmically transformed prior to statistical analyses, and their effect sizes are presented as the increase/
decrease in percent. Effect sizes and P-values shown are for an additive genetic model and are adjusted for age, sex, and BMI. WT, wild-type. HE, heterozygous. HO,
homozygous.
doi:10.1371/journal.pone.0016542.t001

Genetics of NAFLD-Related Metabolic Phenotypes

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e16542



The strengths of this study lie within the chosen methods. Text

mining and the other bioinformatics approaches used take

advantage of data available from public sources, thereby

implementing many different types of studies. Many diseases that

present a similar clinical phenotype are caused by variation in

genes that are part of the same functional protein complex, where

the overlapping phenotype can be explained by variation in single

genes, or combinations of genes, making the entire protein

complex dysfunctional [15]. Also, the large well-characterized

study samples used, in most cases provide sufficient statistical

power (.80%) to detect moderate genetic effects on quantitative

surrogate measures of NAFLD (Supporting Information S1).

One could speculate that the text mining approach would

discriminate in favor of the included genes, and that previous

studies investigating the role of variation in these genes in relation

to NAFLD, contribute to their status as highly prioritized

candidate genes. This has been taken into consideration by the

subsequent protein-protein interaction analysis, where interacting

proteins were included to the list of prioritized candidates. From

the interactome, only ACADL and HADHA were present on the

prioritized list, and we therefore believe that discrimination has

been minimized.

There are additional limitations to this study. Text mining was

limited to PubMed and OMIM only and, additionally, to a limited

time-period, meaning that we may have missed important

information reported elsewhere or at a different time-point. Also,

text mining was itself limited, as it did not include full-text articles.

However, we believe that we have accounted for this by applying

the other steps in the bioinformatics approach, in which we

extracted additional unlimited information from several other

sources.

Here we investigate the impact of potential candidate genes on

surrogate measures of NAFLD. The use of surrogate measures is

experimental and should be interpreted with caution. Further-

more, it should be noted that information on alcohol consumption

within the study population is based on questionnaires, which

introduces another bias to this study, and the possibility that

excessive alcohol abuse was present in some of the investigated

individuals cannot be eliminated. Finally, substantial multiple

testing correction is needed to account for statistical type I errors.

In the present study, Bonferroni adjustments for multiple testing

negate all associations.

Using a bioinformatics approach we have identified five new

potential candidate genes for NAFLD. Our exploratory analyses

suggest that these genes may contribute to the development of

NAFLD; however, we failed to provide evidence of associations

with major effects between SNPs in these five genes and NAFLD-

related quantitative traits, T2D, central obesity, and MetS.

Supporting Information

Supporting Information S1 Summary of the number of
abstracts retrieved from PubMed using different search
phrases.

(DOC)

Acknowledgments

The authors wish to thank A. Forman, I.-L. Wantzin, and M. Stendal for

technical assistance, and A. L. Nielsen, G. Lademann, and M.M.H.

Kristensen for management assistance.

Author Contributions

Conceived and designed the experiments: BT SB TIAS OP TH.

Performed the experiments: KB JMJ MH NTK APG CHS TSJ NG.

Analyzed the data: KB JMJ MH NTK APG CHS TSJ NG ÅA.
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