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Abstract The vasculature is one of the most dynamic

tissues that encounter numerous mechanical cues derived

from pulsatile blood flow, blood pressure, activity of

smooth muscle cells in the vessel wall, and transmigration

of immune cells. The inner layer of blood and lymphatic

vessels is covered by the endothelium, a monolayer of cells

which separates blood from tissue, an important function

that it fulfills even under the dynamic circumstances of the

vascular microenvironment. In addition, remodeling of the

endothelial barrier during angiogenesis and trafficking of

immune cells is achieved by specific modulation of cell–

cell adhesion structures between the endothelial cells. In

recent years, there have been many new discoveries in the

field of cellular mechanotransduction which controls the

formation and destabilization of the vascular barrier. Force-

induced adaptation at endothelial cell–cell adhesion struc-

tures is a crucial node in these processes that challenge the

vascular barrier. One of the key examples of a force-in-

duced molecular event is the recruitment of vinculin to the

VE-cadherin complex upon pulling forces at cell–cell

junctions. Here, we highlight recent advances in the current

understanding of mechanotransduction responses at, and

derived from, endothelial cell–cell junctions. We further

discuss their importance for vascular barrier function and

remodeling in development, inflammation, and vascular

disease.
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Introduction

The inner lining of blood vessels consists of a monolayer of

specialized cells called the vascular endothelium. High

coherence between the endothelial cells enables a con-

trollable barrier for blood components and inflammatory

cells between circulation and tissues. However, being part

of a highly dynamic tissue itself, the endothelium is con-

stantly subject to changes in mechanical forces. This

accounts for endothelial cells in developing vasculature

during embryogenesis, but also for the endothelium in

existing vessels in adults, which experience forces that

derive from pulsatile blood flow, vessel wall contractions,

and trafficking of immune cells. The endothelial monolayer

has the fascinating capability to adapt accordingly to all

these mechanical inputs while maintaining its crucial vas-

cular barrier function. However, well-adjusted endothelial

responses to forces are challenged by stiffening of the

vascular wall upon aging [1, 2]. Failure of the endothelial

monolayer to adapt to changes in the magnitude or direc-

tion of forces has direct consequences on vascular

permeability, and is, therefore, regarded as an important

cause of vascular diseases, such as acute edema, chronic

inflammation, hypertension, and atherosclerosis [3]. Cells

convert mechanical information into biological responses

via so-called mechanotransduction processes. Increasing

our understanding of vascular mechanotransduction
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pathways may yield potential targets or new approaches to

restore barrier function in these vascular diseases.

Currently, much vascular cell research focuses on

identifying molecular events that may explain how the

endothelium senses and responds to mechanical cues.

Coupling between extracellular environment and cellular

interior occurs via multiprotein transmembrane com-

plexes that are based on integrins, cadherins,

mechanosensitive ion channels, G-protein-coupled

receptors, and receptor tyrosine kinases [4–6]. In addi-

tion, upon alterations in experienced force, dedicated

mechanotransduction complexes undergo structural

deformations [7]. Such mechanically induced confor-

mational changes can determine association or

dissociation of specific proteins by controlling the

exposure of protein-binding domains. Multiple mechan-

otransduction-related events in various tissues have been

extensively reviewed in [7–15]. In this review, we

highlight recent discoveries in endothelial mechan-

otransduction pathways that regulate, or are regulated

by, endothelial cell–cell junctions and we will discuss

the vascular processes they likely associate with.

Mechanical regulation of endothelial cell–cell
junctions

Endothelial monolayer integrity is maintained by VE-

cadherin-based adherens junctions, an essential multipro-

tein cell–cell adhesion structure, which consists of the

transmembrane receptor VE-cadherin, intracellularly

associated catenins, and other regulatory proteins [16]. The

endothelial adherens junctions are formed in conjunction

with other cell–cell adhesions based on receptors, such as

nectins, claudins, occludins, JAMs, and PECAM-1. A

mechanotransduction role for VE-cadherin initially became

apparent from fluid flow studies, in which VE-cadherin, in

combination with VEGFR2 and PECAM-1, turned out to

be required for endothelial cell alignment in the direction

of fluid flow [17]. A second important observation was

made while studying the remodeling of endothelial adhe-

rens junctions using traction force microscopy. These

experiments show that augmented cytoskeletal-pulling

forces on VE-cadherin-based cell–cell junctions increase

junctional size without a loss of tension on the junction

itself [18]. This suggests that the VE-cadherin complex

responds to increased mechanical pulling-force by

enhancing cell–cell adhesion. In the following paragraphs,

we will summarize the current insights and the most recent

findings on the molecular events that underlie such

mechanotransduction responses at endothelial cell–cell

junctions.

Cytoskeletal-dependent remodeling of VE-cadherin-

based cell–cell junctions

Formation of stable adherens junctions requires coupling of

the VE-cadherin intracellular domain via a cytoplasmic

protein complex to the actin cytoskeleton. This complex is

also critical for most junctional mechanotransduction

events. Moreover, actin dynamics tightly control the

assembly and disassembly of VE-cadherin-based junctions

[19, 20]. In cultured endothelial cells, the formation and

stabilization of cell–cell adhesions are promoted by actin-

protrusive structures that locate at or near the junctions

[21–23]. In mature stabilized junctions, VE-cadherin is

linearly or continuously organized between cells and sup-

ported by parallel running cortical actin bundles [23, 24].

The transition of stable into cytoskeletal-dependent

remodeling junctions is mediated by actomyosin contrac-

tions that generate pulling tension on the junctions [25, 26].

Such remodeling induced by cytoskeletal-pulling forces

results in the formation of a discontinuous junction type,

connected to perpendicular tensile actin bundles, which we

call Focal Adherens Junction (FAJ; Fig. 1) [25]. The

switching between stable and remodeling junctions is

tightly controlled by the localized activation of small

GTPases that modulate cytoskeletal dynamics [27]. Local

activation of the GTPase Rac supports junction stabiliza-

tion (linear junctions), which corresponds with a release of

tension from VE-cadherin [21, 28]. Vice versa, the acti-

vation of the GTPase Rho increases actomyosin-mediated

pulling forces on endothelial junctions and promotes the

formation of FAJs (Fig. 1) [18, 25]. It seems likely that for

efficient barrier function of endothelial monolayers, both

the protrusive and contractile activities of the actin

cytoskeleton are important, as these actin dynamics enable

individual cells to respond to, and resist the pushing and

pulling of their neighbouring cells in monolayer tissue

[22, 29, 30].

How such force-dependent junction remodeling relates

to the function of vascular endothelial junctions in vivo is

less clear, although recent advances have been made in

studies that visualized the remodeling of endothelial cell–

cell contacts and the actin cytoskeleton during angiogen-

esis and anastomosis in transgenic models [31, 32].

Importantly, temporal control of the interaction between

F-actin and the VE-cadherin complex turns out to be cru-

cial for agonist-evoked vascular permeability and

leukocyte extravasation in adult mice [33]. In addition, the

distinct organizations of endothelial junctions are recog-

nizable within human blood vessels [34], which indicates

that force-dependent adherens junction conformations

observed in cultured monolayers relate well to remodeling

of endothelium in vasculature.
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VE-cadherin-dependent mechanotransduction:

switching a-catenin conformation

In a simplified model of adherens junctions, the connection

between classical cadherins and the F-actin cytoskeleton is

made by a core protein structure that consists of the cad-

herin/b-catenin/a-catenin chain, which connects to actin

filaments (Fig. 1). Of note, in endothelial cells, b-catenin
may be replaced in this chain by its homologue c-catenin
(plakoglobin) [35, 36]. In the past years, the role of a-
catenin in bridging the junction and the actin cytoskeleton

has been extensively explored, which was triggered by

biochemical studies showing that a-catenin does not bind

b-catenin and actin simultaneously in solution [37, 38].

Current models point towards the dynamic and allosteric

regulation of a-catenin in response to mechanical forces in

cells, and it becomes clear that a-catenin is a key

mechanosensor interacting with proteins, including actin,

in a force-dependent manner (Fig. 1) [39–42]. Monomeric

a-catenin binds strongly to the cadherin/b-catenin com-

plex, but weakly to F-actin and the affinity of a-catenin for

F-actin decreases even further upon binding to cadherin/b-
catenin [42]. Intriguingly, using an optical trap-based assay

to measure the lifetime of the interaction between the

cadherin core complex to actin fibers, Buckley and col-

leagues discovered that the exertion of tensional force to a
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Fig. 1 Mechano-transduction events during remodeling of endothe-

lial adherens junctions. A model depicts remodeling phases of the

VE-cadherin complex in response to pulling forces. In stable mono-

layers, cell–cell adhesions are organized as continuous linear

adherens junctions (LAJs). This conformation is promoted by Rac-

driven cell protrusions which lower tension on the VE-cadherin

complex and allow the formation of cortical F-actin bundles.

Together, these events support cell–cell adhesions and enhance

barrier function. Cytoskeletal dynamic is responsible for a kinetic

system of actin-bound and -unbound states of the VE-cadherin

complex, in which pulling forces from the actomyosin cytoskeleton

stabilize a direct interaction of F-actin with unfolded junctional a-
catenin. Permeability agonists that stimulate Rho-mediated acto-

myosin contractility induce the formation of tensile radial F-actin

bundles, which pull on the VE-cadherin complex. High pulling-

derived tension destabilizes cell–cell adhesions, which adopt a

discontinuous focal adherens junction (FAJ) organization, and induce

endothelial permeability. Tension-induced binding of vinculin to a-
catenin marks the formation of FAJs, and is responsible to protect

these junctions from opening too far. Simultaneously, several actin

remodeling proteins, including zyxin, VASP, and TES, are recruited

to FAJs upon cytoskeletal-derived pulling

Cell–cell junctional mechanotransduction in endothelial remodeling 281

123



reconstituted cadherin/catenin complex highly increases

binding of a-catenin to F-actin by forming strong long-

lived bonds [42]. This work has put emphasis on a kinetic

model of actin-bound and -unbound states of the cadherin

complex, in which optimal mechanical tension stabilizes

the direct interaction of F-actin to the cadherin complex.

Such a model is also supported by studies using recently

developed FRET probes of a-catenin, which revealed the

conformational changes of the protein as a function of

altered tension at cell–cell junctions [43]. a-catenin lacking
the b-catenin or F-actin-binding domains do not display

force-dependent changes in conformation, indicating that

both protein interactions are necessary for a-catenin to

function as a mechanotransducer.

Force-induced a-catenin–vinculin interaction

Cytoskeletal pulling at the cadherin complex not only alters

its F-actin-binding affinity in a direct manner, but indi-

rectly it might also stabilize the F-actin connection through

the recruitment of vinculin. Junctional recruitment of vin-

culin occurs via a-catenin and depends on actomyosin-

based contractile forces (Fig. 1) [40, 41]. Mechanical

pulling experiments using magnetic tweezers on single a-
catenin molecules demonstrate that within the physiologi-

cal range of cytoskeletal-pulling forces, a-catenin unfolds

and exposes a protein-binding domain for vinculin.

Recruited vinculin, in turn, stabilizes the unfolded con-

formation of a-catenin [44]. Interestingly, the FRET-based

studies of Kim and colleagues further indicate that the

alterations of a-catenin conformation precede the recruit-

ment of vinculin, and suggest that vinculin is not necessary

for force-induced regulation of a-catenin per se [43].

Nevertheless, vinculin binding stabilizes a-catenin in its

open conformation and after force release; vinculin slows

down the process of refolding of a-catenin [44], further

supporting earlier findings of crosstalk between the two

proteins upon binding [39, 45, 46]. It is still unclear whe-

ther the conformation and binding properties of vinculin

itself (or VE-cadherin and b-catenin) alter at cell–cell

junctions under tension. Possibly, FRET-based sensors

developed for vinculin [47] and VE-cadherin [48] might

reveal new insights that address this issue.

In endothelial cells, and many other cell types, vinculin

recruitment to cell–cell junctions demarcates force-depen-

dent remodeling. Vinculin is absent from Rac-induced

linear adherens junctions, which experience low levels of

tension across VE-cadherin [28]. By contrast, junctions that

are remodeled by increased pulling forces (FAJs) specifi-

cally recruit vinculin [18, 25]. Furthermore, VE-cadherin

directly serves as the mechanotransducing receptor that is

responsible for vinculin recruitment, and F-actin accumu-

lation, in response to mechanical forces derived from

magnetic twisting cytometry with VE-cadherin-coated

beads [49]. Similar experiments that exert force on

PECAM-1-based adhesions did not trigger vinculin

recruitment or F-actin accumulation. This indicates that

junctional recruitment of vinculin occurs specifically via

the mechanical stimulation of VE-cadherin. Specific per-

turbation of the force-dependent a-catenin–vinculin
interaction further reveals that vinculin functions as a

strengthener of cell–cell adhesion and barrier formation

[25, 50]. The physiological consequence of vinculin

recruitment to endothelial junctions still remains to be

investigated. We do know that endothelial permeability

agonists promote the formation of FAJs (Fig. 1) and

recruitment of vinculin to these junctions protects them

from opening too far during their permeability-response

[25]. This suggests that VE-cadherin-dependent mechan-

otransduction plays a role in limiting vascular leakage

during inflammatory responses.

Other force-dependent molecular events at cell–cell

junctions

Thus far, we discussed mechanotransduction concentrated

around regulation of the a-catenin–vinculin interaction and

the connection of F-actin to the VE-cadherin complex. In

addition to direct conformational changes induced by ten-

sion, force-modulated phosphorylation of a-catenin and

vinculin further contributes to their role in mechanotrans-

duction [51–54]. Besides local vinculin recruitment and

reinforcement of adhesion, VE-cadherin-mediated

mechanotransduction also induces global signals that con-

fer cell stiffening, remodeling of distant integrin-based

focal adhesions, and adherens junctions [49]. Similar

responses are observed when applying force on PECAM-1-

based adhesions [55]. These findings emphasize that VE-

cadherin-mechanotransduction occurs within an integrated,

mechanosensitive network that regulates both local

remodeling at the site of force application and the global

integrity of endothelial tissue.

Moreover, there are additional proteins present at the

cadherin-F-actin interface, and it is likely that other actin-

binding proteins, which interact with a-catenin, may con-

tribute or respond to VE-cadherin-dependent

mechanotransduction. This might involve proteins like

epithelial protein lost in neoplasm (EPLIN), the tight

junction protein ZO-1, afadin, a-actinin, and formin-1 [13].

Moreover, the actin regulatory proteins VASP, zyxin, and

TES are specifically recruited to force-dependent FAJs in

endothelial cells in similar kinetics as vinculin does, but

their recruitment occurs clearly independent of the previ-

ously described a-catenin–vinculin mechano-interaction

[56]. Instead, recruitment of zyxin and TES to FAJs

requires their functional LIM domains [56], protein

282 Y. L. Dorland, S. Huveneers

123



interaction domains which recognize cytoskeletal remod-

eling in response to force [57]. Also the actin bundling

protein fascin is recruited to nascent endothelial AJs that

are very reminiscent of force-induced FAJs [58]. Con-

versely, EPLIN, another LIM domain protein that interacts

with a-catenin and F-actin, is recruited to endothelial

adherens junctions [59]. However, the junctional recruit-

ment of EPLIN to linear adherens junctions occurs in

particular after the release of tension, and EPLIN is

excluded from vinculin-positive FAJs [60], which points

towards an alternative force-dependent-event. We specu-

late that the presence of these various actin regulatory

proteins indicates that actin polymerization and bundling

are of key importance for force-dependent regulation of

endothelial AJs.

Besides through VE-cadherin, cell–cell junctions are

formed in conjunction with various other receptors, and it

is very likely that multiple receptors take part in force-

induced junction remodeling. For instance, the presence of

the tight junctional protein ZO-1 in endothelial cells is

responsible for myosin II activation near cell–cell junctions

[61]. By measuring a VE-cadherin-based FRET sensor, the

authors further show that the depletion of ZO-1 results in a

significant loss of tension from the VE-cadherin complex.

These findings implicate the existence of a mechanism, by

which tight junctions regulate VE-cadherin-dependent

mechanotransduction. Moreover, the presence of another

transmembrane adhesion receptor EMMPRIN (extracellu-

lar matrix metalloproteinase inducer) at endothelial

junctions is important for myosin II activity during the

maturation of VE-cadherin-based junctions [62].

Flow mechanosensing: roles of PECAM-1 and VE-
cadherin

The transmembrane adhesion receptor PECAM-1 mediates

homotypic adhesion between endothelial cells and con-

tributes to maintenance of the endothelial barrier [63].

Moreover, PECAM-1 is a key mechanotransducer that

converts shear forces derived from laminar blood flow into

endothelial cell alignment in the direction of flow [17].

After application of apical flow, activation of integrins on

the basal surface induces cytoskeletal-mediated cell

alignment. Both PECAM-1 and VE-cadherin-based adhe-

sions are crucial for flow-induced integrin activation

(Fig. 2) [17]. This mechano-response is likely dependent

on direct force exerted on PECAM-1, as local application

of tensional force on PECAM-1-adherent beads elicits

global cytoskeletal stiffening, which, in turn, underlies

remodeling of the basal integrin-based adhesions [55].

Possibly, direct application of flow-dependent force on VE-

cadherin-based adhesions further enhances this response.

However, studies with FRET-based tension sensors for

PECAM-1 and VE-cadherin indicate that flow promotes

tension on PECAM-1, within the range of pN force,

whereas tension on VE-cadherin, in fact, lowers [48]. Both

vimentin and actomyosin activity are crucial for the flow-

induced increased tension on PECAM-1 as well as for cell

alignment [48]. Endothelial signals induced by flow, that

may explain basal responses to apical applied forces on

cell–cell junctions, include activation of Rho, PI3K, and

Src family kinase (Fig. 2) [17, 49, 55, 64]. Activation of

PI3K after flow is triggered by transactivated vascular

endothelial growth factor receptors (VEGFR2 and

VEGFR3), and it was recently shown that VE-cadherin

interacts via its transmembrane domain with these recep-

tors and thereby supports their downstream signaling [65].

In summary, current models indicate that the VE-cadherin

complex is a direct mechanotransducer during cell–cell

junction remodeling upon cytoskeletal-pulling forces (see

earlier paragraphs). Conversely, during flow sensing, VE-

cadherin seems to function rather as an adaptor for VEGFR

signaling towards remodeling of integrins. Yet, Src-de-

pendent phosphorylation of the cytoplasmic tail of VE-

cadherin at Y658 and Y685 is strongly dependent on the

speed of flow [66]. Because blood flow rates are distinct in

arteries versus veins [67], this may explain why phospho-

rylation of these specific residues occurs preferentially in

veins and not in arteries [66, 68]. Until now, it is unclear

whether phosphorylation of VE-cadherin is actively

involved in flow-induced mechanotransduction. Of interest,

the small GTPase Rap1, which is strongly implicated in

endothelial cell–cell junction stabilization and barrier for-

mation [69], is required for functioning of the PECAM-1/

VE-cadherin/VEGFR complex in flow sensing [70]. This

adds another signaling route to this mechanotransduction

pathway. Finally, it is already long known that shear stress

induces currents across the plasma membrane of endothe-

lial cells, for which mechanosensitive ion channels are

responsible [71–73]. Of these mechano-channels, the

endothelial-expressed transient receptor potential cation

channel subfamily V member 4 (TRPV4) has been recently

reported to be presented at higher levels in response to flow

[74], and to interact with b-catenin at cell–cell junctions

[75, 76]. This hints at a potential role for cell–cell junctions

in Ca2?-dependent signaling during adaptation to flow-

derived forces.

Intracellular mechanotransduction

Mechanical stimuli, initially sensed by transmembrane

(adhesion) complexes, propagate throughout the cell via

direct mechanotransduction and via force-induced bio-

chemical signaling [77, 78]. Eventually, these events lead
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to cytoskeletal remodeling (i.e., actomyosin-mediated

stiffening), endothelial alignment, and nuclear adaptation

[79]. Rho GTPases control the actomyosin cytoskeleton

and take a central role in endothelial mechano-signaling

[3, 80, 81]. Permeability agonists, such as thrombin and

histamine, induce the formation of force-dependent FAJs

via activation of Rho [18, 25, 82–84]. In turn, Rho sig-

naling via its effector Rock assures resilience of the

cytoskeleton to withstand external forces [85], which likely

protects endothelial integrity during inflammatory respon-

ses [3, 18, 86]. In addition, Rho–Rock signaling is crucial

for the stiffening mechano-responses that are triggered by

direct force applied on PECAM-1- and VE-cadherin-based

adhesions [48, 49, 55]. Key identified endothelial Rho

activators (so-called GEFs) that are responsible for adhe-

sion-mediated mechanotransduction are LARG and GEF-

H1 [87, 88]. However, it is unknown which GEFs mediate

mechanotransduction from endothelial adherens junctions.

A recent functional screen for GEFs in endothelial reori-

entation after mechanical substrate stretching (which may

relate to physiological relaxation and contraction of the

vessel wall) suggests a role for the GEF Solo in junction-

dependent mechanotransduction [89]. Of note, ten addi-

tional GEFs were identified to be involved in this

mechanically induced response, and it is still unclear

whether Solo is activated downstream from VE-cadherin,

PECAM-1, or alternative endothelial mechanoreceptors.

Intriguingly, cytoskeletal stiffening enhances transmis-

sion from extracellular forces towards mechano-responses

within the nucleus [55, 77, 85]. Changes in shear stress

regulate endothelial gene expression and there is a growing

list of flow-sensitive miRNA’s of which the miRNA’s-19a,

-21, -92a, -143, -145 and -712 target vascular permeability

and inflammatory pathways [90–95] It seems likely that for

these processes, the nucleus connects to the stiffening

cytoskeleton. The LINC (Linker of Nucleoskeleton and

Cytoskeleton) protein complex governs this function. It

contains KASH (Klarsicht, Anc-1, Syne Homology)-do-

main proteins, such as nesprins, that span the outer nuclear

membrane and interact with the cytoskeleton. Furthermore,

the complex includes SUN and emerin proteins that span

the inner nuclear membrane [96, 97], which, in turn, con-

nect to the nucleoskeleton via lamins and regulate

chromatin dynamics and gene expression [98]. Another

recently discovered mechano-signaling pathway that bio-

chemically couples extracellular mechanical stimuli to

nuclear responses comprises the activity of Yes-associated

protein (YAP) and transcriptional co-activator with PDZ-

binding motif (TAZ) proteins. Being part of the conserved

Hippo pathway, these proteins are responsible for cell–cell

contact inhibition and inhibition of cell proliferation to

regulate tissue size [99]. Independent from activation via

the Hippo pathway, YAP/TAZ activation is regulated by

cytoskeletal contractility and Rho GTPase activity [100].

The activity of these transcriptional regulators is controlled

by numerous mechanical stimuli, including extracellular

matrix (ECM) stiffness, cell geometry, cell–cell contact,

and shear stress [101]. Endothelial cells adhering to flexible

ECM show cytoplasmic YAP/TAZ localization, whereas in

intermediate or high stiffness environments, the proteins

locate within the nucleus [100]. This relocalization is

linked to the activity of YAP/TAZ and can also be

observed upon mechanical cell stretching, altered cell-po-

larity, or cell–cell adhesion. For endothelial cells, the YAP/

TAZ mechanotransduction pathway is important for

geometry determined cell survival [100]. To date, the

Cell alignment

VE-cadherin
PECAM-1

VEGFR2/3

Src

P P }
PI3K

Cytoskeletal remodeling

Integrin activation

Endothelium

Rho

Vascular ECM

Fig. 2 Mechano-transduction events during endothelial sensing of

laminar flow. Shear forces derived from the bloodstream promote

endothelial signaling. This occurs via a mechanotransduction com-

plex consisting of the junctional adhesion proteins PECAM-1 and

VE-cadherin in conjunction with activation of VEGF receptors.

Subsequently, activation of signaling pathways controlled by Src,

Rho, and PI3K mediates cytoskeletal remodeling and activation of

basal integrins which support alignment of the endothelial cells in the

direction of flow
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precise mechanisms by which YAP/TAZ sense mechanical

stimuli, and if and how they relate to remodeling of cell–

cell junctions, are not fully clear. However, the function

and junctional recruitment of YAP tightly depend on VE-

cadherin-based adhesion and are modulated by the tension-

raising permeability agonist thrombin [102]. Moreover, the

actin remodeling protein EGF receptor kinase substrate 8

(EPS8) has recently been shown to regulate the interaction

of YAP with the VE-cadherin complex and to control

endothelial permeability in vivo [103]. Recruitment of

EPS8 to cell–cell junctions occurs via binding with a-
catenin and is particularly prominent during junction

remodeling in subconfluent endothelial monolayers. EPS8

binding competes with the interaction of YAP to the VE-

cadherin complex and regulates VE-cadherin turnover.

Upon adherens junction maturation, EPS8 dissociates from

the VE-cadherin complex, and PI3K-mediated phosphory-

lation of YAP promotes its recruitment to cell–cell

junctions and renders YAP transcriptionally inactive [103].

As mentioned before, force applied on cell–cell junctions

activates PI3K, and therefore, this molecular event may

provide a link between junctional mechanotransduction

and transcription in maintenance of endothelial integrity.

Taken together, control of endothelial YAP/TAZ is a rel-

atively new field of expertise, and clearly, more in-depth

investigations will be needed to fully unravel the impor-

tance of the crosstalk between junctional and nuclear

mechanotransduction.

Junction remodeling in angiogenesis

Sprouting angiogenesis, a physiological remodeling pro-

cess, in which new blood vessels emerge from existing

vasculature [104, 105], is tightly dependent on modulation

of cell–cell junctions and various mechanical forces

[9, 106]. At the onset of angiogenesis, remodeling of

endothelial cell–cell adhesions is required to allow sprout

formation, whereas at later stages, when new sprouts are

established and lumens form, cell–cell adhesions tighten

and establish vessel integrity. As crucial cell–cell adhesion

receptor, VE-cadherin plays a key role in these processes:

endothelial cells expressing lower levels of VE-cadherin

[107], or lacking functional VE-cadherin [32, 108] fail to

correctly organize cell–cell junctions in forming sprouts.

As a consequence, angiogenesis is perturbed due to a

weakened interaction of tip cells with following stalk cells

or due to sprouts failing to establish a connection to the

pre-existing vasculature.

Based on a combination of computational modeling and

live imaging of angiogenesis, Bentley and colleagues

proposed that differential junctional adhesive strength

throughout the vasculature, via changes in VE-cadherin

mobility, allows for endothelial cell rearrangement and

underlies the formation of angiogenic sprouts [109]. It is

not completely clear when forces at junctions, or direct

VE-cadherin-dependent mechanotransduction, are at play

in sprouting angiogenesis. However, it is evident that

during the different phases of angiogenesis, remodeling

adherens junctions between tip and stalk cells appear,

which are reminiscent of the force-dependent FAJs

observed in endothelial cultures [109]. The actin

cytoskeleton is highly dynamic at endothelial junctions

during angiogenesis [31, 110]. Moreover, endothelial

actomyosin contractility, which generates cytoskeletal

force, regulates the distribution of VE-cadherin at cell–cell

adhesions [111]. Conversely, optimal ECM rigidity con-

trols sprout formation and vascular network connectivity

[112], likely caused by feedback mechanisms derived from

the ECM that determines collective behaviour of

endothelial cells [113], and due to altered responsiveness to

angiogenic growth factors, such as VEGF [114]. The

importance of crosstalk between cell–cell junctions, the

cytoskeleton, and interactions with the ECM is further

supported by the finding that endothelial b1 integrins

control angiogenic sprouting via the actomyosin-dependent

distribution of VE-cadherin and stabilizing cell–cell junc-

tions in maturating vessels [115]. During lumen formation,

the scaffold protein AmotL2 is needed for proper connec-

tion of VE-cadherin to the F-actin cytoskeleton [116].

Because AmotL2 is also required for actomyosin-depen-

dent forces at endothelial junctions, this finding suggests

that VE-cadherin mechanotransduction, via its coupling to

the cytoskeleton, underlies lumen formation in newly

formed vessels. During the process of collective migration,

for example, in elongating sprouts, endothelial cell–cell

junctions experience changes in mechanical tension. Dur-

ing their remodeling these junctions are stabilized by local

F-actin assembly, for which the Rho effector formin-like 3

(FMNL3) is crucial [117, 118]. Moreover, inhibition of

formin activity readily converts stable LAJs into remod-

eling FAJ in vitro. In vivo inhibition of formin activity

perturbed lumen formation [118, 119]. Interestingly, the

related protein formin-1 interacts with a-catenin [120],

within the same domain, where the force-induced interac-

tion of a-catenin with vinculin occurs [13]. We speculate

that junctional recruitment of FMNL3 could be part of a

VE-cadherin-dependent mechanotransduction in

angiogenesis.

In addition to mechanical forces induced by collective

cell migration, mechanical forces derived from blood flow

will further contribute to control angiogenesis [121]. For

instance, once the level of increasing shear stress reaches a

certain threshold, the formation of sprouts is promoted

[122]. Surprisingly, no prominent role for VE-cadherin-

based junctions was found in this mechano-response,
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emphasizing a role for alternative mechanotransduction

mechanisms in angiogenesis.

In lymphatic vasculature, a junctional remodeling pro-

cess is observed in the collecting lymphatics, where

PECAM-1- and VE-cadherin-based junctions are separated

at a distinct button-like structure that allows fluid entry

from tissue [123, 124]. At those button-like junctions, the

adherens junctions specifically adopt an interrupted con-

formation, comparable to the organization of FAJs in

vascular endothelium. The (lymph)angiogenic growth

factor angiopoietin-2 induces the formation of button-like

junctions during the development of collecting lymphatics

and triggers phosphorylation of VE-cadherin at Y685, the

latter being a mechanotransduction response induced by

flow-derived forces [66]. Another event which takes place

in collecting lymphatics is triggered by disturbed flow,

which activates the transcription factor FOXC2. The

presence of FOXC2 is responsible for recruitment of YAP/

TAZ to lymphatic endothelial junctions and stabilizes

endothelial integrity in disturbed flow conditions, thereby

supporting formation of functional collecting lymphatics

[125].

Taken together, tight interplay between junctional

remodeling and mechanical forces occurs during

(lymph)angiogenesis. We expect that novel developments

in in vivo imaging models, using transgenic zebrafish or

mouse models, will further establish the importance of

mechanotransduction events at the distinct steps of the

angiogenic cascade.

Mechanotransduction in vascular stiffness-related
disease

Blood vessel stiffening is an important cause of leakage

and inflammation in age-related vascular diseases, includ-

ing hypertension and atherosclerosis. For example,

stiffness of the aorta increases aortic pulse pressure, pres-

sure wave velocity, leading to hypertension, and is a strong

predictor of cardiovascular morbidity and mortality

[126, 127]. In addition, vascular stiffening associates with

acute respiratory distress syndrome and vascular injury.

Arteries stiffen as a result of structural changes in the ECM

of the blood vessel wall during aging [1, 2]. ECM turnover

and changes in its composition (mainly collagens, fibro-

nectin, elastin and calcium deposits) determine the level of

vascular stiffening. During age-related vessel stiffening,

deposition of various collagen types increases, not only at

the subendothelial level, but also in the intima and media

layers of the vasculature [128, 129]. Accumulation of

advanced glycation end-products (AGEs) reinforces this

process by increasing the crosslinking of collagen [130].

Elastin levels decrease in the vessel wall during aging,

which is considered an irreversible process, underlying a

large part of the stiffening process [131]. Besides such

alterations in the ECM, changes in the activity and struc-

ture of vascular smooth muscle cells with aging promote

vessel stiffness [132]. Even though the actual stiffness of

the vascular wall of carotid arteries denuded from

endothelium is similar as in intact arteries [133], a role for

endothelial cells in stiffening of the vascular wall is

expected to occur via reduced production of nitric oxide,

which promotes vasoconstriction via vascular smooth

muscle cell activation [134]. In addition, disturbances in

blood flow, e.g., at arterial bifurcations or at locations of

vascular damage trigger local stiffening and the formation

of atherosclerotic plaques [135]. Of note, the extent of

forces induced by ECM stiffening, and exerted on

endothelial adhesion receptors, is orders of magnitudes

higher than those derived from blood flow [136]. Stiffening

of the subendothelial matrix from 2.5 kPa (a condition

mimicking young arteries) to 10 kPa (a condition compa-

rable to arteries of older individuals) already has major

impact on the atheroprotective role of fluid flow [137].

Endothelium grown on top of 2.5 kPa conditions promotes

tightening of endothelial cell–cell junctions, lowering of

RhoA GTPase activation, and production of endothelial

nitric oxide in response to arterial flow [137]. In addition,

the type and magnitude of shear stress derived from flow

have major impact on flow-initiated endothelial mechan-

otransduction responses, including augmented intracellular

forces [138]. Future studies are expected to unravel the

intriguing crosstalk of mechanotransduction involved in

simultaneous sensing of forces from ECM and flow.

The eventual leakage and inflammatory response in

stiffening vessels are concluded at the level of the

endothelium. As discussed earlier, there is tight crosstalk

between cell–matrix and cell–cell adhesion (reviewed in

detail [139, 140]). Integrin-mediated mechanotransduction

translates forces from the ECM to actomyosin-mediated

pulling [141], which, in turn, regulates endothelial cell–cell

adhesions [18, 25, 142]. Pathophysiological stiffening of

the vessel wall perturbs this mechanotransduction response

and increases monolayer permeability, leukocyte transmi-

gration, and drives cardiovascular disease [83, 143, 144].

The importance of this pathway is underscored by the

finding that in vivo deficiency of non-muscle myosin light-

chain kinase, an important activator of actomyosin con-

traction, attenuates endothelial permeability and

atherosclerosis [145]. Furthermore, in mice, where

endogenous VE-cadherin is replaced by a VE-cadherin-a-
catenin fusion protein (which tightens junctions to F-actin),

inflammatory-induced vascular leakage and leukocyte

transmigration are strongly reduced [33], pointing to a

potential role of junctional mechanotransduction as thera-

peutic target in inflammation. As discussed earlier,
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endothelial mechanotransduction includes signals that

promote permeability, but also signals that protect against

permeability. It is fair to assume that pathological ECM

stiffness perturbs the balance between permeability pro-

tective and promoting mechanisms. Moreover, flow-

induced mechano-responses depend on the stiffness of the

vascular ECM [137], which will be important for structural

vessel remodeling upon strong changes in flow (i.e., after

bypass surgery or in arteriovenous fistulas). Deformation of

the endothelium during these processes is translated to

cytoskeletal and junctional adaptation through, for exam-

ple, phosphorylation of adhesion proteins [146].

Altogether, the discovery of integrated mechanotransduc-

tion responses, controlling endothelial cell–cell junctions,

and barrier function opens up possibilities to restore this

balance and to reduce stiffness-associated vascular disease.

Potentially, advances in endothelial proteomics will iden-

tify those junctional mechanotransduction events that may

serve as targets to block permeability and inflammation in

stiffened arteries. Recent proteomic studies in non-en-

dothelial cells have identified novel networks of proteins

that associate with cell–cell junctions [147, 148]. By ana-

lyzing the identified proteins from those mass spectrometry

studies in the Online Mendelian Inheritance in Man

(OMIM) database, we find associations with cardiovascular

disease (Table 1). Most of these associations show a link

with cardiac phenotypes, which could relate to the close

crosstalk between forces at the vascular wall, hypertension,

and cardiac remodeling [149, 150]. The current challenge

is to find (novel) key events that may serve as therapeutic

targets to prevent vessel leakage and inflammation.
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