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Abstract
Purpose Angiosarcoma (AS) is a rare vasoformative sarcoma, with poor overall survival and a high need for novel treat-
ment options. Clinically, AS consists of different subtypes, including AS related to previous UV exposure (UV AS) which 
could indicate susceptibility to DNA damage repair inhibition. We, therefore, investigated the presence of biomarkers 
PARP1 (poly(ADP-ribose)polymerase-1) and Schlafen-11 (SLFN11) in UV AS. Based on experiences in other sarcomas, 
we examined (combination) treatment of PARP inhibitor (PARPi) olaparib and temozolomide (TMZ) in UV AS cell lines.
Methods Previously collected UV AS (n = 47) and non-UV AS (n = 96) patient samples and two UV AS cell lines (MO-
LAS and AS-M) were immunohistochemically assessed for PARP1 and SLFN11 expression. Both cell lines were treated 
with single agents PARPi olaparib and TMZ, and the combination treatment. Next, cell viability and treatment synergy were 
analyzed. In addition, effects on apoptosis and DNA damage were examined.
Results In 46/47 UV AS samples (98%), PARP1 expression was present. SLFN11 was expressed in 80% (37/46) of cases. 
Olaparib and TMZ combination treatment was synergistic in both cell lines, with significantly increased apoptosis compared 
to single agent treatment. Furthermore, a significant increase in DNA damage marker γH2AX was present in both cell lines 
after combination therapy.
Conclusion We showed combination treatment of olaparib with TMZ was synergistic in UV AS cell lines. Expression of 
PARP1 and SLFN11 was present in the majority of UV AS tumor samples. Together, these results suggest combination 
treatment of olaparib and TMZ is a potential novel AS subtype-specific treatment option for UV AS patients.
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Introduction

Angiosarcoma (AS) is a rare sarcoma with endothelial prop-
erties and an incidence of 0.15 per 100.000 persons per year 
(NCIN 2012). AS can occur either sporadically (primary 

AS) or due to external damaging factors such as UV expo-
sure, radiation therapy or chronic lymphedema (secondary 
AS). Localized AS treatment consists of surgery, combined 
with (neo-)adjuvant radiation therapy or chemotherapy. 
Patients with metastatic disease usually receive chemo-
therapy, either anthracycline-based regimens or paclitaxel 
(Penel et al. 2012). Later lines of treatment can include other 
chemotherapeutic agents such as gemcitabine (Stacchiotti 
et al. 2012) or targeted therapy with pazopanib (van der 
Graaf et al. 2012; Kollar et al. 2017). Reported overall sur-
vival (OS) of all AS patients is poor with a 5-year survival 
rate of around 22–40% (Lahat et al. 2010; Wang et al. 2017; 
Weidema et al. 2019), dropping to only 15% for metastatic 
patients (Lahat et al. 2010). To improve AS prognosis, sev-
eral targeted treatment strategies have been explored, such as 
bevacizumab or sorafenib (Agulnik et al. 2013; Ray-Coquard 
et al. 2012). Recently, small case series have suggested a role 
for immunotherapy in selected AS patients (Painter et al. 
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2020; Florou et al. 2019). Although these results are promis-
ing, these efforts have yet to result in clinical implications 
for current AS patients.

Over the past decades, AS patient survival has not 
improved, emphasizing the need for more effective treat-
ment options (Zhang et al. 2019). As a start, more in-depth 
knowledge on the molecular characteristics of the differ-
ent AS subtypes would be instrumental for further research 
(Chan et al. 2020; Painter et al. 2020; Weidema et al. 2020). 
A recent study provided evidence for the role of UV-induced 
DNA damage in a subset of AS, showing that 10/12 (83%) 
cutaneous AS originating in the head and neck region har-
bored a genetic UV signature (Painter et al. 2020). The fact 
that UV-associated AS develop due to DNA damage, gave 
rise to the hypothesis that these tumors could be particu-
larly susceptible to inhibition of the DNA damage response 
(DDR) pathway.

The DDR machinery includes base excision repair (BER); 
a major pathway involved in among others repair of DNA 
single strand breaks (SSBs) generated by reactive oxygen 
species, ionizing radiation and alkylating agents (Zhang 
et al. 2012). A key protein in the BER pathway is poly(ADP-
ribose) polymerase-1 (PARP1), which initiates repair by 
detection of SSBs (Lord and Ashworth 2012). Upon bind-
ing of PARP1 to the SSB, PARP1 initiates formation of poly 
ADP-ribose (pADPr) chains. Both PARP1 and the pADPr 
chains then attract proteins to form the BER complex. Next, 
release of PARP1 from the damaged DNA allows access 
for BER proteins to the damaged site, thus enabling repair. 
Upon PARP inhibition, SSB repair is compromised leading 
to persistent SSBs. In addition, release of PARP1 from the 
DNA is inhibited (so-called PARP trapping). Both persistent 
SSBs as well as PARP trapping can stall replication forks, 
potentially resulting in lethal double-strand breaks (DSBs).

In case of defects in the repair of DSBs, for instance in 
BRCA-mutated cancers, PARP inhibitor (PARPi) mono-
therapy can already effectively cause cell death (Farmer 
et al. 2005). However, in malignancies without such defects, 
clinical application of PARPi monotherapy was shown to 
have only limited efficacy (Choy et al. 2014; Leichman et al. 
2016). PARP inhibitors have been shown to synergize with 
different kinds of chemotherapeutic agents. Of these drugs, 
TMZ induces SSBs and causes increased PARP trapping 
when combined with a PARPi (Murai et al. 2014), and com-
bination therapy of PARPi with TMZ has shown promis-
ing results in vitro and in vivo in other sarcomas, such as 
Ewing sarcoma, desmoplastic small round cell tumors and 
chordoma (Smith et al. 2015; Cao et al. 2019; van Erp et al. 
2020). We hypothesized that combination treatment of a 
PARPi with TMZ would be of particular interest in UV AS, 
based on the UV-induced DNA damage already present in 
the cells, as well as additional DNA damage inflicted by 
TMZ.

To assess the potential of this combination in UV AS, 
we aimed to study the presence of biomarkers for response. 
PARP1 expression was shown to be predictive of response 
to combination treatment of PARPi olaparib with trabectedin 
and other cytotoxic agents across different cell lines (Pigno-
chino et al. 2017). In addition, PARP1 expression was shown 
to be crucial for response to PARPi, as PARP1 knockdown 
made cells highly resistant to PARP inhibition (Murai et al. 
2012). Schlafen-11 (SLFN11) is an even more interesting 
potential biomarker. It is recruited to stressed replication 
forks, then opens chromatin and thus induces a permanent 
and lethal replication block in cells under replication stress 
(Murai et al. 2018). Based on this mechanism, SLFN11 is a 
biomarker for response to agents causing replicative stress, 
including PARP inhibitors (Zoppoli et al. 2012; Barretina 
et al. 2012; Murai et al. 2016). Knockdown of SLFN11 has 
shown to result in decreased sensitivity to the DNA damag-
ing cytotoxic agent trabectedin in preclinical liposarcoma 
and Ewing sarcoma (ES) models (Iwasaki et al. 2019) and 
decreased sensitivity to the PARPi talazoparib in small cell 
lung cancer (SCLC) cell lines (Lok et al. 2017). As for the 
combination therapy of PARPi and TMZ, SLFN11 expres-
sion appears to mainly correlate with sensitivity to PARPi 
treatment, however, in mesothelioma cell lines and SCLC 
in vivo models SLFN11 expression also correlated with 
increased response to PARPi and TMZ combination treat-
ment (Lok et al. 2017; Rathkey et al. 2020). Furthermore, 
resistance to the combination of TMZ with PARPi niraparib 
was shown after SLFN11 knockdown in ES cells (Tang et al. 
2015).

We, therefore, aimed to assess the presence of PARP1 and 
SLFN11 protein expression in clinically derived tumor tis-
sue of UV AS and non-UV AS cases. Next, we investigated 
whether combination therapy of TMZ and PARPi olaparib 
is effective in preclinical in vitro UV AS models.

Materials and methods

Immunohistochemical PARP1 and SLFN11 
expression in patient‑derived AS tumor tissue

In a previous study, AS cases and clinical data were 
collected via a nationwide query in The Netherlands 
(1989–2014) using the Netherlands Cancer Registry (NCR) 
(Weidema et al. 2019). Through linkage with the Dutch 
Nationwide Network and Registry of Histo- and Cytopa-
thology (PALGA), AS tumor samples were collected for 
pathology review (Casparie et al. 2007). Confirmed AS 
cases were categorized based on clinical origin, with all 
cutaneous AS from the sun-exposed skin of the head and 
neck region classified as UV-associated. Non-UV AS cases 
were classified according to clinical subtype; including 
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radiotherapy-induced, cutaneous non-UV associated, 
Stewart Treves (associated with chronic lymphedema) and 
visceral angiosarcoma. From tissue microarrays (TMAs), 
constructed from formalin-fixed, paraffin-embedded (FFPE) 
material of AS cases of which sufficient tumor was avail-
able with one or two 2.0 mM cores per tumor sample from 
representative tumor areas, 4 µM thick slides were assessed 
for PARP1 and SLFN11 expression. For PARP1, colon and 
tonsil tissue served as positive control. For SLFN11, ton-
sil and a xenograft of a human Ewing sarcoma served as 
positive control. Sections were deparaffinized in xylene and 
rehydrated through a graded ethanol into water series. Anti-
gen retrieval was performed by heating the slides in EDTA 
buffer, pH9 for 10 min (PARP1) or 20 min (SLFN11) at 
100 °C. Endogenous peroxidase activity was blocked with 
3%  H2O2 in distilled water for 10 min at room temperature. 
Subsequently, sections were incubated with monoclonal rab-
bit anti-PARP1 antibody (1:800, clone E102, Abcam, Cam-
bridge, UK) or monoclonal rabbit anti-SLFN11 antibody 
(1:100, clone D8W1B, Cell Signaling Technology, Leiden, 
The Netherlands) in antibody diluent in a humidified cham-
ber overnight at 4 °C. Next, tissue sections were incubated 
with Poly-HRP-GAMs/Rb IgG (ImmunoLogic, Duiven, The 
Netherlands) in EnVision™ FLEX Wash Buffer (Dako, Agi-
lent Technologies, Santa Clara, CA, USA) (1:1) for 30 min 
at room temperature. Antibody binding was visualized using 
the EnVision™ FLEX Substrate Working Solution (Dako) 
for 10 min at room temperature. Finally, slides were coun-
terstained with haematoxylin, dehydrated and coverslipped.

After validation, all IHC stainings were scored by two 
independent observers. For PARP1 and SLFN11, cores 
with > 50% tumor cells with positive nuclear staining 
were regarded positive. In case of a discrepancy between 
two cores derived from one patient, the highest score was 
applied, whereas in case of observer discrepancies, a third 
observer was consulted. Correlation analysis to assess the 
correlation between SLFN11 and PARP1 expression was 
performed using the Fisher’s exact test, with IBM SPSS 
Statistics (Armonk, NY, USA), version 25.0.0.1. This study 
was performed in accordance with the Code of Conduct 
of the Federation of Medical Scientific Societies in The 
Netherlands.

Cell lines, cell culture and compounds

Human cutaneous scalp AS cell line MO-LAS was gener-
ously provided by Dr. Masuzawa from the Kitasato Uni-
versity School of Allied Sciences, Sagamihara, Japan 
(Masuzawa et al. 2012). MO-LAS cells were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM, Lonza, 
The Netherlands) supplemented with 10% Fetal Bovine 
Serum (FBS, Gibco, Thermo Fisher Scientific, Waltham, 
MA, USA) and 1% penicillin–streptomycin (Gibco). Human 

cutaneous scalp AS cell line AS-M was generously provided 
by Prof. Kirkpatrick and Dr. Unger from Johannes Guten-
berg University, Mainz, Germany (Krump-Konvalinkova 
et al. 2003). AS-M cells were cultured in Endothelium Cell 
Growth Medium MV (ECGM MV, PromoCell, Heidelberg, 
Germany) and 1% penicillin–streptomycin. Similar to the 
tumor samples, both cell lines originated from sun-exposed 
skin of the scalp. Both MO-LAS and AS-M cells were kept 
in a humidified atmosphere of 5%  CO2/95% air at 37 °C. 
TMZ and olaparib were purchased from Selleckchem (Hou-
ston, TX, USA) and diluted in DMSO for in vitro experi-
ments. Experiments were performed in triplicate.

Cell viability assay

Cell viability was assessed using the MTT assay. Cells were 
seeded in quadruplicate in a 96-wells plate (3000 cells/well) 
and allowed to adhere overnight. Cells were then treated in 
a range of concentrations of TMZ (0–500 µM) or olaparib 
(0–100 µM) monotherapy for 144 h. Next, cells were incu-
bated with 5 mg/ml MTT (Sigma-Aldrich, Saint Louis, MO, 
USA) in PBS for 3.5 h. The formed formazan crystals were 
dissolved in MTT solvent (isopropanol, 0.1% NP-40 and 
4 mM fuming hydrochloric acid). Absorbance was measured 
with a dual measurement at 560 and 655 nm using the Bio-
Rad iMark plate reader (Bio-Rad, Hercules, CA, USA). For 
each drug the IC50 was calculated using GraphPad Prism 
software (version 5.03 for Windows, GraphPad Software, 
San Diego, CA, USA, http:// www. graph pad. com).

Drug synergy and combination index

Drug synergy of combined TMZ and olaparib was assessed 
by calculation of the combination index (CI) and dose 
reduction index (DRI) with CompuSyn software (Com-
boSyn Inc.) using the Chou-Talalay method (Chou 2006). 
Cells were simultaneously treated with TMZ and olaparib 
concentrations in a non-constant ratio for 144 h, combin-
ing relatively low dosages of olaparib (using the  IC50 and 
approximately 50% of the  IC50 values) with increasing 
dosages of TMZ (10; 25; 50; 100 µM). Effects on cell 
viability of the monotherapy and combination therapy 
were assessed in three independent experiments, using an 
average fraction of cell viability affected (FA) value for 
further calculations. Results of the combination treatment 
are represented in an isobologram, in which the line rep-
resents an additive effect (CI = 1.0) of the combination at 
the given FA value. Points below the line represent syner-
gism (CI < 1.0), points above the line represent antagonism 
(CI > 1.0) (Chou 2006). More specifically, according to 
Chou et al., a CI value between 0.3 and 0.7 indicates syn-
ergism and CI 0.1–0.3 strong synergism (Chou 2006). The 
X- and Y-axis represent the fraction of the dose necessary 

http://www.graphpad.com
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as a single agent to generate reduction of x% cell viability 
(D1/2) divided by the portion of the drug in the combina-
tion treatment (D1 + D2) necessary to reduce a similar x% 
cell viability (Dx)1/2. DRI values of > 1.0 indicate a favora-
ble dose reduction in the combination treatment compared 
to the monotherapy dose. Differences in cell viability fol-
lowing combination treatment were analyzed by two-way 
ANOVA with Bonferroni post-test using GraphPad Prism 
software, a p value < 0.05 was considered significant 
(*< 0.05, **< 0.01, ***< 0.001).

Western blot

Western blot analysis of γH2AX was performed to inves-
tigate the induction of DNA damage after single agent and 
combination treatments with low and high dose TMZ. Pro-
tein extracts were purified from the MO-LAS and AS-M 
cell lines after 48 h with single agent and combination 
treatment. Cells were incubated in cold RIPA buffer con-
taining protease and phosphatase inhibitors and the lysates 
were centrifuged at 14,000g at 4 °C for 15 min. Then pro-
tein concentrations of the supernatants were determined 
with the BCA protein assay system (Pierce Endogen, 
Rockford, IL, USA). Of each condition, equal amounts 
of protein (50 μg) were loaded and run on a 12% sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) gel under reducing conditions and subsequently 
transferred to nitrocellulose membranes. After blocking 
with Odyssey blockbuffer (LI-COR Biosciences, Lincoln, 
NE, USA) in TBS (1:1) at room temperature (RT) for 
1 h, membranes were incubated overnight at 4 °C with 
monoclonal rabbit anti-phospho-Histone H2A.X (γH2AX, 
Ser139) (1:1000, Cell Signaling Technology, Leiden, The 
Netherlands). Next, the blots were incubated at room tem-
perature for 1 h with a goat-anti-rabbit fluor 680-conju-
gated secondary antibody (1:5000, AlexaFluor, Invitro-
gen, OR, USA), incubated for 1 h at RT with monoclonal 
mouse anti-GAPDH (1:10,000, Abcam, Cambridge, UK) 
as a loading control and subsequently incubated for 1 h at 
RT with a goat-anti-mouse fluor 800-conjugated secondary 
antibody (1:5000, AlexaFluor, Invitrogen). The fluorescent 
signals were analyzed with the Odyssey Infrared Imaging 
System (LI-COR Biosciences) and Odyssey Application 
Software (version 3.0.30). The experiment was performed 
in duplicate. In addition, western blot analysis of PARP1 
and SLFN11 was performed as described above on the 
MO-LAS and AS-M cell line, using the monoclonal rabbit 
anti-PARP1 (#9542, 1:2000, Cell Signaling Technology), 
monoclonal rabbit anti-SLFN11 (#34858, 1:1000, Cell 
Signaling Technology), and monoclonal mouse anti alpha 
Tubulin (A11126, 1:1000, Invitrogen).

Apoptosis assay

Apoptosis was assessed using the Annexin-V/propidium 
iodide (PI) double staining apoptosis assay (Biovision Cat# 
1001-200, CA, USA) after single agent treatment and com-
bination treatment. Cells were incubated with Annexin-V-
FITC and PI in cell culture medium supplemented with 
 CaCl2 (final concentration 15 mM). Apoptotic cells were 
measured using the CytoFLEX flow cytometer (Beck-
man-Coulter, Brea, CA, USA) and the percentage of early 
(Annexin-V positive, PI negative) and late (Annexin-V and 
PI positive) apoptotic cells was calculated using FlowJo soft-
ware (version 10.0.7).

Results

PARP1 and SLFN11 expression in AS tumor tissues

A total of 47 UV AS patients were assessed for immunohis-
tochemical expression of PARP1 and SLFN11. Median age 
was 78 years and median overall survival was 13 months 
(range 0–194 months). Additional clinical characteristics are 
described in Supplemental Table 1 PARP1 was expressed 
in 46/47 (98%) of cases, whereas 80% (37/46) of tumors 
showed SLFN11 positivity (Fig. 1, Table 1; Supplemental 
Fig. 1). In 36 UV AS patients (77%), both SLFN11 and 
PARP1 expression was present. None of the UV AS sam-
ples was negative for both PARP1 and SLFN11 expres-
sion. In addition, tumor samples of 96 non-UV AS patients 
were assessed for PARP1 and SLFN11 expression, show-
ing 89–100% PARP1 positivity and 63–66% cases positive 
for SLFN11 expression. In all 143 AS cases taken together, 
SLFN11 and PARP11 expression was significantly corre-
lated (p = 0.002, Supplemental Table 2).

Both the MO-LAS and the AS-M cell line showed strong 
immunohistochemical positivity for PARP1 and SLFN11, 
as well as presence of PARP1 and SLFN11 by western blot 
analysis (Supplemental Fig. 2).

Combination treatment of olaparib and TMZ 
in AS cell lines

MO-LAS cells showed an  IC50-value of 1.99 ± 0.11 µM for 
olaparib and 110.3 ± 15.2 µM for TMZ (Table 2, Fig. 2a). 
AS-M cells exhibited a higher  IC50-value for olaparib 
(6.62 ± 1.02 µM), and were more sensitive to TMZ than 
MO-LAS cells  (IC50 66.8 ± 11.9 µM) (Fig. 2b). The com-
bination treatment significantly decreased cell viability 
compared to the single agent treatments in both cell lines 
(Fig. 3a, b), except for the combination of 1 µM olaparib 
and 10 µM TMZ in MO-LAS cells, and 7 µM olaparib and 
10 µM TMZ in AS-M cells. Calculation of the combination 
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index showed synergy (CI < 1.0) for all combinations in 
MO-LAS and AS-M cells (Fig. 3c, d). The combinations 

with 50 and 100 µM TMZ yielded even strong synergy 
(CI 0.1–0.3) in both cell lines except for 50 µM TMZ with 
1 µM olaparib in MO-LAS (Table 3). For each combina-
tion, the DRI was > 1 for both olaparib and TMZ.

Induction of DNA damage upon combination 
treatment

For further analysis of the effects of the combination treat-
ment, we aimed to investigate those combination schedules 
with relatively low dosages of both compounds yet result-
ing in a large effect on cell viability, since lower dosages 
will be more likely to be suited for clinical application in 
the future. Based on these features, we selected the com-
bination of 50% of the  IC50 of olaparib with either 50 (low 
dose) or 100 µM (high dose) TMZ for both cell lines. Both 
cell lines were analyzed after 48 h of treatment, showing 
an increased level of DNA damage marker γH2AX after 
the combination treatment with both low and high dose 
TMZ, compared to the respective single agent treatments 
(Fig. 3e, f; Supplemental Fig. 3).

Effects of combination treatment on apoptosis

Next, we aimed to study the effects of the combination 
schedules on apoptosis. After 72 h and 96 h of treatment, 
both combination with low and high dose TMZ signifi-
cantly induced apoptosis compared to the single agent 
treatments in MO-LAS and AS-M cells (Fig. 4). The level 
of apoptosis was significantly higher after treatment with 
the high-dose TMZ combinations compared to the low-
dose TMZ combinations, with exception of AS-M cells 
after 96 h, in which apoptosis was also increased but did 
not reach statistical significance.

Fig. 1  Immunohistochemical expression of PARP1 and SLFN11. 
a UV AS sample positive for PARP1. b UV AS sample showing 
SLFN11 expression. Images taken at × 20 digital magnification

Table 1  SLFN11 and PARP1 immunohistochemical expression per AS subtype

UV AS UV-associated angiosarcoma, RT AS radiotherapy-induced angiosarcoma, StwT AS Stewart Treves angiosarcoma, Visc AS visceral angio-
sarcoma
*Of evaluable cases

AS subtype SLFN11+ (%*) SLFN11− (%*) SLFN11
Not evalu-
able

PARP1+ 
(%*)

PARP1−
(%*)

PARP1
Not evaluable

UV AS (n = 47) 37 (80) 9 (20) 1 46/47 (98) 1/47 (2) 0
Non-UV AS (n = 96) 61 (66) 31 (34) 4 80 (93) 6 (7) 10
 Cutaneous non-UV AS (n = 19) 12 (67) 6 (33) 1 17/17 (100) 0 2
 RT AS (n = 32) 20 (67) 10 (33) 2 29/32 (91) 3/32 (9) 0
 StwT AS (n = 16) 10 (63) 6 (37) 0 10/10 (100) 0 6
 Visc AS (n = 29) 19 (68) 9 (32) 1 24/27 (89) 3/27 (11) 2

Total (n = 143) 98 (71) 40 (29) 5 126/133 (95) 7/133 (5) 10
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Discussion

In this study, we showed that PARP1 expression was pre-
sent in almost all (46/47, 98%) UV AS samples and in both 
UV AS cell lines, indicating a potential role for PARP 
inhibition in UV AS. In addition, SLFN11 and PARP1 are 
present in a large proportion of non-UV AS. As expected, 
single agent olaparib yielded only modest effects in UV 
AS cell lines MO-LAS and AS-M. We therefore combined 
olaparib with the alkylating agent TMZ and demonstrated, 
synergy between olaparib and TMZ treatment in two UV 
AS cell lines, with strong synergy (CI < 0.3) in nearly 
all combinations using 50 and 100 µM TMZ. Combina-
tion treatment of olaparib and TMZ effectively induced 
apoptosis after 72 h and 96 h of treatment. The level of 
γH2AX, indicative of DNA damage, was significantly 
higher upon combination treatment compared to any of 
the single agents.

The DRI was > 1 for all combination treatments, indi-
cating that the dosage of both TMZ and olaparib can 
be reduced in combination treatment compared to the 

effects of the respective single agent treatments. Given 
the potential toxicity of the combination treatment, these 
dose reductions could contribute to better tolerability 
while maintaining optimal anti-cancer effects. Both UV 
AS cell lines showed a higher DRI for TMZ compared to 
the DRI for olaparib, which is in line with previous finding 
showing that olaparib has a potentiating effect on TMZ 
(Curtin and Szabo 2013). Treatment with TMZ leads to 
methylation of DNA at three positions: the O6 and N7 
position of guanine and the N3-position of adenine. These 
methylpurines are then excised, resulting in single strand 
DNA breaks (SSBs). Inactivation of PARP1 inhibits repair 
of SSBs, thus potentiating the effect of TMZ (Curtin and 
Szabo 2013).

The in vitro activity of PARPi and TMZ combination 
treatment in UV AS is in line with previous studies of this 
combination in other sarcomas (Ewing sarcoma [ES], chor-
doma and desmoplastic small round cell tumor [DSRCT]) 
(Cao et al. 2019; van Erp et al. 2020; Smith et al. 2015). 
Both in chordoma and DSRCT moderate to strong synergy 
was observed, as well as increased apoptosis (Cao et al. 
2019; van Erp et al. 2020). These studies showed adequate 
translation of in vitro–in vivo effectivity, yielding signifi-
cantly reduced tumor growth upon the combination treat-
ment. Ideally, our in vitro findings in UV AS would be fur-
ther examined in an in vivo study. However, no such model 
is yet available, and given the concordant results in chor-
doma and DSRCT, it could be considered to proceed to a 
clinical study directly.

To date, phase II clinical studies in different malignan-
cies such as small cell lung cancer (SCLC), melanoma and 
glioblastoma multiforme showed that the combination of a 
PARPi with TMZ was well tolerated but yielded mostly only 
modest responses (Lu et al. 2018). The maximum reported 

Table 2  IC50 values for olaparib and TMZ in MO-LAS and AS-M 
cell lines

IC50 concentration at which 50% of cell viability is affected, SD 
standard deviation, TMZ temozolomide

Cell line Compound IC50 (mean ± SD)

MO-LAS Olaparib (µM) 1.99 ± 0.11
TMZ (µM) 110.3 ± 15.2

AS-M Olaparib (µM) 6.62 ± 1.02
TMZ (µM) 66.8 ± 11.9
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Fig. 2  Single agent therapy effects on cell viability of olaparib and 
TMZ. a Cell viability after treatment with olaparib for MO-LAS and 
AS-M cells (mean values of three experiments); b Cell viability after 

treatment with temozolomide for MO-LAS and AS-M cells (mean 
values of three experiments). Dotted line represents 50% reduction in 
cell viability  (IC50)
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median PFS was 3.6 months in melanoma patients, which 
did not differ from response to TMZ monotherapy (Middle-
ton et al. 2015). In ES, no antitumor activity was observed 
in a phase I/II trial of PARPi talazoparib and TMZ in 15 
patients (Schafer et al. 2020). Of note, these patients were 
already heavily pre-treated (median of three previous treat-
ments). In addition, in vivo combination treatment with 

PARPi and TMZ in 10 ES models was only effective in 5/10 
models (Smith et al. 2015). There was no clear correlation 
between PARP levels and responsiveness to treatment, and 
other biomarkers were not mentioned.

A high potential candidate biomarker for response 
to PARPi and chemotherapy combination treatment is 
Schlafen-11 (SLFN11), which was discovered to correlate 
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Fig. 3  Combination therapy of olaparib and TMZ in MO-LAS and 
AS-M cell lines. a Cell viability of MO-LAS cells treated with sin-
gle agent and combination treatment. b Cell viability of AS-M cells 
treated with single agent and combination treatment. c Isobologram 
of the combination treatment with increasing olaparib and TMZ con-
centrations in MO-LAS cells. The X- and Y-axis represent the frac-
tion of the dose necessary as a single agent to generate reduction 
of x% cell viability (D1/2) divided by the portion of the drug in the 

combination treatment (D1 + D2) necessary to reduce a similar x% 
cell viability (Dx)1/2. D1 = TMZ, D2 = olaparib. d Isobologram of 
the combination treatment with increasing olaparib and TMZ con-
centrations in AS-M cells. e Protein expression of γH2AX in MO-
LAS cells treated with single agent and combination treatment for 
48 h. f Protein expression of γH2AX in AS-M cells treated with sin-
gle agent and combination treatment for 48  h. *p value < 0.05; **p 
value < 0.01; ***p value < 0.001
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with sensitivity to DNA damaging agents (Zoppoli et al. 
2012; Barretina et al. 2012). In our study, SLFN11 expres-
sion was present in both UV AS cell lines and in 80% of 
UV AS tumor samples. Several preclinical studies provided 
evidence for the role of SLFN11 in cytotoxic effects of 
PARPi and chemotherapy in for instance Ewing sarcoma 
and lung cancer (Iwasaki et al. 2019; Lok et al. 2017; Tang 
et al. 2015). However, a recent study showed no correla-
tion between SLFN11 expression and olaparib activity in 
breast cancer cell lines and PDX models (Winkler et al. 
2021), stressing the need for cancer-specific experiments to 
examine SLFN11 as a biomarker. Thus far, the two reported 
clinical studies examining SLFN11 as a biomarker have not 
shown conclusive results. Although one study did report 
SLFN11 expression to be associated with a better response 
to TMZ/PARPi combination treatment in SCLC patients, a 
very low cut-off value for SLFN11 expression was used (any 
presence of SLFN11-positive cells) (Pietanza et al. 2018). 
In another trial investigating a PARPi and irinotecan with 
or without TMZ in solid malignancies, SLFN11 had a sig-
nificant association with best response in all patients, but 
no association was found between the intensity of SLFN11 
expression and best response (Federico et al. 2020). Hence, 
further studies are needed to determine the appropriate clini-
cal application of SLFN11 as a biomarker in AS.

Due to the limited availability of evidence with regard to 
the appropriate threshold for SLFN11 positivity, we applied 
a cut-off value of 50% positive cells in the current study, 
aiming for a relevant level of expression. This might have 
resulted in an underestimation of SLFN11 positivity in UV 
AS cases. Although PARP1 and SLFN11 were not only pre-
sent in UV AS cases but also in a large proportion of non-
UV AS cases, further preclinical experiments in non-UV AS 
were not possible due to a lack of models.

Future research should further explore the use of SLFN11 
as a biomarker in AS, starting with knockdown experiments 
in AS cell lines and establishment of the appropriate thresh-
old for SLFN11 expression. Validation of SLFN11 in a clini-
cal setting (either in AS or in other, more common cancers 
in which patient inclusion is less challenging) may enable 
the design of a biomarker-driven basket study to investigate 
PARPi and TMZ combination therapy in cancer patients 
with SLFN11-positive tumors. Ideally, such a study would 
only include cancer types in which in vitro results already 
indicate sensitivity to PARPi and TMZ treatment. Another 
potentially interesting development lies in the combination 
of PARPi with immune checkpoint inhibition (ICI), based 
on increased tumor mutational burden (TMB) and upregula-
tion of Programmed Death-Ligand 1 upon PARP inhibition 
(Peyraud and Italiano 2020). Given the presence of PARP1 

Table 3  FA, CI and DRI values 
for combination treatment in 
MO-LAS and AS-M cell lines

FA value fraction of cell viability affected by treatment, SD standard deviation, CI combination index, DRI 
dose reduction index, TMZ temozolomide

Olaparib (µM) TMZ (µM) FA value 
(mean ± SD)

CI DRI (TMZ; olaparib)

MO-LAS 1 10 0.396 0.918 (7.1; 1.3)
25 0.752 0.494 (33.1; 2.2)
50 0.647 0.470 (8.0; 2.9)

100 0.896 0.230 (37.8; 4.9)
2 10 0.869 0.194 (14.5; 8.0)

25 0.957 0.117 (49.0; 10.4)
50 0.966 0.072 (31.3; 25.2)

100 0.972 0.094 (38.3; 14.8)
AS-M 3.5 10 0.682 0.291 (18.2; 4.2)

25 0.766 0.359 (27.3; 3.1)
50 0.780 0.235 (11.8; 6.7)

100 0.828 0.290 (15.8; 4.4)
7 10 0.847 0.211 (9.0; 10.0)

25 0.878 0.244 (11.6; 6.4)
50 0.899 0.206 (7.1; 15.4)

100 0.916 0.224 (8.6; 9.3)
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expression in our study, and the previously reported high 
TMB and corresponding clinical response to ICI in UV AS 
(Painter et al. 2020), this combination treatment could also 
be of interest for UV AS patients.

Overall, our data show that the combination therapy 
of PARPi olaparib with alkylating agent TMZ works 

synergistically in UV AS cell lines. In addition, we demon-
strated expression of SLFN11, a biomarker for response to 
DNA damaging agents, in 74% of UV AS tumor samples. 
Therefore, these results may provide the first step towards 
novel AS subtype-specific targeted treatment options.
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