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High-resolution susceptibility weighted imaging (SWI) provides unique

contrast to small venous vasculature. The conspicuity of these mesoscopic

veins, such as deep medullary veins in white matter, is subject to change from

SWI venography when venous oxygenation in these veins is altered due to

oxygenated blood susceptibility changes. The changes of visualization in small

veins shows potential to depict regional changes of oxygen utilization and/or

vascular density changes in the aging brain. The goal of this study was to use

WM venous density to quantify small vein visibility in WM and investigate its

relationship with neurodegenerative features, white matter hyperintensities

(WMHs), and cognitive/functional status in elderly subjects (N = 137).

WM venous density was significantly associated with neurodegeneration

characterized by brain atrophy (β = 0.046± 0.01, p < 0.001), but no significant

association was found between WM venous density and WMHs lesion load

(p = 0.3963). Further analysis of clinical features revealed a negative trend of

WM venous density with the sum-of-boxes of Clinical Dementia Rating and

a significant association with category fluency (1-min animal naming). These

results suggest that WM venous density on SWI can be used as a sensitive

marker to characterize cerebral oxygen metabolism and different stages of

cognitive and functional status in neurodegenerative diseases.
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Introduction

Age-related cognitive and functional decline are
increasingly prevalent due to the rise in Alzheimer’s disease
(AD) and related dementias (Alzheimer’s Association, 2020).
Varying degrees and patterns of brain atrophy have been
reported in different types of dementia such as AD, Parkinson’s
disease, frontotemporal lobar degeneration, and vascular
dementia (Frisoni et al., 1996; Burton et al., 2004; Fox and
Schott, 2004; Logue et al., 2011). Despite an unclear mechanism,
brain atrophy assessed using volumetric imaging has been
used to detect the disease onset, monitor its progression,
and differentiate among dementia subtypes (Risacher et al.,
2017). Unfortunately, by the time brain atrophy can be
measured on volumetric imaging, the patient may already
be suffering from significant cognitive decline and thus
have few treatment options. Studies of 18F-FDG-PET have
shown that decreased glucose metabolism in AD brain can
be detected long before brain atrophy or clinical symptoms
become apparent (Mosconi, 2005). It revealed that the
reduction of glucose metabolism of neuronal cells is not
due entirely to atrophy but reduced utilization per gram of
tissue in AD (Ibanez et al., 1998). However, the high cost
and limited availability of PET imaging make it less than
ideal for routine monitoring of a rapidly aging population.
So far, one of the most challenging aspects of age-related
dementia remains the early detection of neurodegenerative
pathophysiology, including a more accessible early imaging
marker of neurodegeneration before structural volume loss or
symptoms occur.

Susceptibility-weighted imaging (SWI) is an established
clinical imaging sequence for examination of the venous system
and microbleeds in the brain (Sehgal et al., 2005; Mittal
et al., 2009). SWI, which relies on paramagnetic deoxygenated
hemoglobin as intrinsic T2∗ contrast agent (Reichenbach et al.,
1997; Haacke et al., 2004), enhances the visibility of the brain’s
vasculature and enables quantitative estimates of the venous
density (Vigneau-Roy et al., 2014; Bernier et al., 2018; Buch
et al., 2021). SWI provides not only rich information about the
anatomy of the venous vasculature, including small veins, but
also an assessment, albeit indirect, of oxygen metabolism of the
brain via unique venous blood susceptibility contrast of veins
with the background tissue (Ge et al., 2009). Recent studies
have demonstrated that SWI is highly sensitive to changes of
venous oxygenation level caused, for example, by ingesting
caffeine, breathing carbogen, or even by simple alteration of
respiratory pattern (Sedlacik et al., 2008; Chang et al., 2014). In
brain tissue with impaired neuronal metabolism, unconsumed
oxygen drains directly into the veins, thus elevating the level
of diamagnetic oxygenated hemoglobin in the veins. This, in
return, alters the venous T2∗ and lowers the phase difference
between the veins and surrounding tissue (Li et al., 2013). As
a result, small veins become less conspicuous on SWI images.

The very opposite occurs in stroke when there is perfusion
deficit creating an enhancement of the veins in areas of reduced
perfusion (Xia et al., 2014; Rastogi et al., 2015; Lu et al.,
2021).

In this study, we used WM venous density as a semi-
quantitative estimate to assess the visibility of the periventricular
small veins’ appearance on SWI. To characterize if WM
venous density can be used as a potential marker of neuronal
oxygen metabolism, we examined the relationship of WM
venous density to neurodegenerative features (e.g., gray matter
volume fraction and parenchymal volume fraction) and cerebral
microangiopathy (e.g., WMHs) as well as cognitive performance
metrics in elderly individuals.

Materials and methods

Study participants

The imaging protocol was approved by the Institutional
Review Board at New York University (NYU) Grossman School
of Medicine. In this HIPAA-compliant and IRB-approved cross-
sectional study, we examined consecutive baseline MRI of 137
elder participants at the NYU Langone Health’s Alzheimer’s
Disease Research Center (NYULH-ADRC). Imaging took place
between March 2014 and December 2019. All participants
gave written, informed consent before obtaining an MRI
scan. Subjects with conditions that could have confounded
the interpretation of venous density were excluded, including
any significant neurologic disease (other than AD) such as
Parkinson’s disease, Huntington’s disease, infarction, normal
pressure hydrocephalus, brain tumor, progressive supranuclear
palsy, seizure disorder, subdural hematoma, multiple sclerosis,
and head trauma. Also excluded were subjects that had
contraindications for MRI studies, including the presence of
metal or foreign objects in the eyes, skin or body.

Cognitive assessments

All NYU-ADRC subjects underwent a detailed
neurocognitive assessment as defined by the National
Alzheimer’s Coordinator Center’s Uniform Data Set. This
included Clinical Dementia Rating (CDR R©, henceforth CDR)
and the One-Minute Animal Test (OMAT) score. The CDR
is a widely utilized tool for grading the presence and severity
of dementia (Morris, 1993; O’Bryant et al., 2008), based on a
five-point scale (0, 0.5, 1, 2, 3) that assesses the characteristics
of cognitive impairment and function across 6 domains. The
standard global CDR score ranges from 0 (normal), 0.5 (mild
cognitive impairment or MCI), and 1–3 (increasing severity
of dementia). Alternatively, sum-of-boxes of the CDR (CDR-
sum) is the sum of all the elemental components across the 6
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categories, (range 0–18) providing a more granular range to
define the degree of cognitive and functional impairment. The
OMAT is a fast assessment to measure semantic fluency by
asking the subject to list as many animals as possible in 1 min;
a low OMAT score (≤ 13) indicates a symptom of dementia
(Kinuhata et al., 2018).

MRI protocols

All subjects were scanned under a clinical MRI protocol
including: T1-magnetization prepared rapid gradient echo (T1-
MPRAGE), T2-fluid attenuated inversion recovery (T2-FLAIR)
and high in-plane resolution SWI sequence on a 3 Tesla (3T)
MRI system (Siemens Prisma) using a 64-channel head coil.
MPRAGE images were acquired using the following parameters:
TE/TR: 5 ms/2,100 ms; matrix size: 256 × 256 × 176; voxel
size: 1 mm isotropic. T2-FLAIR images were acquired using
the following parameters: TE/TR: 75 ms/9,000 ms; matrix size:
320 × 320 × 42; voxel size: 0.6875 mm × 0.6875 mm ×

4 mm. High in-plane resolution flow-compensated SWI images
were acquired using gradient-echo sequence using following
parameters: TE/TR: 25 ms/50 ms; matrix size: 512 × 512 ×

32; voxel size: 0.4297 mm × 0.4297 mm × 1.5 mm. All scans
were collected parallel to the anterior commissure to posterior
commissure (AC-PC) line. The 48 mm SWI slab covered the
entire periventricular region with the lateral ventricle in the
center of the slab.

Quantification of white matter
hyperintensities volume and fractional
volume indices

Absolute volume of white matter hyperintensities was
estimated from T2-FLAIR images using an automated bilateral
distance partitioning method (Chen et al., 2021) applied to
total WMHs masks (obtained using FireVoxel software1) to
yield periventricular WMHs lesion (Pv-WMHs) mask. Total
WMHs and Pv-WMHs lesion volume were estimated based
on the mask and its voxel size. We used the FSL FMRIB’s
Automated Segmentation Tool FAST segmentation toolbox on
the T1-MPRAGE data to yield a probability mask and a binary
mask of three tissue types including white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF). Brain parenchymal
fraction (BPF), gray matter fraction (GMF) were calculated as
the volumetric ratio of brain parenchyma (WM and GM total
volume), gray matter to the intracranial volume (WM, GM and
CSF total volume), which were then used as a volume index to
characterize neurodegeneration.

1 https://firevoxel.org

Quantification of venous density

SWI images were preprocessed with 1) bias field uniformity
correction and 2) de-noising using a spatially adaptive non-
local means algorithm N3BiasFieldCorrection and DenoiseImage
commands in ANTs2 to avoid potential inaccurate segmentation
from noise and field inhomogeneity on SWI images. MPRAGE
and T2-FLAIR volumes were co-registered to SWI images
using FLIRT linear registration in FSL. Then white matter
and WMHs mask generated from T1-MPRAGE and T2-FLAIR
images were spatially transformed to SWI space. Venous
segmentation was performed on preprocessed SWI with a novel
vascular segmentation toolbox developed by Bernier et al.3 using
multiple iterative Frangi filter and vessel enhancing diffusion
(VED) filter to extract tubular shapes of different size as vessels.
A more detailed description of the segmentation algorithm can
be found in Bernier et al. (2018). WM venous density was
calculated as volumetric fraction of veins in white matter on SWI
images. To evaluate the global and regional white matter venous
density, the periventricular white matter region was extracted
from the T1-MPRAGE data using an automatic multi-atlas
based segmentation tool (MRIcloud, Johns Hopkins University,
MD, Baltimore4) (Wu et al., 2016). The segmentation was
based on pre-defined elderly brain atlases (age between 50 and
90 years) with 289 partitions that include periventricular white
matter structures where most of the periventricular WMHs and
deep medullary veins are located. The periventricular white
matter density was calculated using the same approach as white
matter venous density. Finally, a scaled venous vasculature
map in each region was created. The flowchart of the image
processing pipeline is illustrated in Figure 1. To prevent false
positive segmentation caused by hypointense regions other than
veins, microbleeds and susceptibility artifacts near the sinuses
were manually excluded from the WM mask on SWI images by
an experienced neuroradiologist (YG 20 years of experience).

Statistical analysis

Statistical analysis was performed using Graphpad Prism
(Graphpad, San Diego, CA5) and Matlab R 2019b (MathWorks,
Natick, MA, 2019). One-way analysis of variance (ANOVA)
was used to characterize the difference in age, sex, education
and WM venous density among three groups with different
CDR-sum score. The Bonferroni correction was used to adjust
for multiple comparisons. Multiple linear regression was used
to examine the relationship between WM venous density
(dependent variable) and estimates of neurodegeneration: GMF

2 http://stnava.github.io/ANTs/

3 https://github.com/braincharter/vasculature

4 www.MRICloud.org

5 www.graphpad.com
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and BPF. Linear regression was also performed to investigate
the association of WM venous density to CDR-sum and OMAT
score. We also examined the association of WM venous density
and periventricular WM venous density with total WMHs
lesion and periventricular WMHs lesion volumes. In this model,
WM/Pv-WM venous densities were dependent variables and
WMHs/Pv-WMHs lesion volumes were independent variables.
All linear regression analyses were adjusted for age, sex and
education as covariates for a two-tailed p-value below 0.05
(p < 0.05) which was considered as statistically significant. The
p values for regression analyses were also tested with False
Discovery Rate (FDR) to evaluate statistical significance.

Results

Subjects characteristics

In total, 137 elderly participants (age, 71.1 ± 9.5 years;
32 males and 105 females; education, 16.8 ± 2.9 years) were
included in this study. The subject characteristics are shown
in Table 1. The majority of subjects (64%) were cognitively
normal (CDR = 0), 35% were MCI (CDR = 0.5), and 1%
had increasing dementia symptoms (CDR≥ 1). The MRI
data from 137 subjects were used for volumetric analysis on
neurodegeneration and WMHs. For the cognitive performance
analysis, six subjects were excluded because of an incomplete
CDR assessment, and four subjects lacked the OMAT results.
Thus, 131 subjects were used to evaluate the association between
SWI and cognitive metrics.

Visibility of white matter venous
vasculature in the presence of
neurodegeneration

Figures 2A,C show representative T1-MPRAGE, T2-FLAIR
and minimum-intensity projected SWI (mIP-SWI) of subjects
without and with apparent neurodegeneration. Low visibility
of deep medullary veins was observed in the setting of severe
neurodegeneration in GM and WM. Figures 3A,B show the
association of WM venous density with fractional volume
indices; that is, WM venous density is positively associated with
BPF (β = 0.046± 0.01, p < 0.001), GMF (β = 0.037± 0.01,
p < 0.001).

Visibility of white matter venous
vasculature in the presence of white
matter hyperintensities

Figures 4A,B illustrate representative cases (shown in
Figures 2B,D) of SWI images overlaid with the WMHs

lesion mask. Conspicuous small veins were delineated
penetrating or surrounding WMHs when there was no
apparent neurodegeneration, whereas with subjects showing
apparent neurodegeneration there was lower visibility of small
veins. In addition, quantitative analysis revealed no significant
association of white matter venous density with WMHs lesion
load (p = 0.396). We also examined the association of Pv-WM
venous density with Pv-WMHs lesion load and no association
was found (p = 0.739).

Relationship of white matter venous
density with cognitive evaluation

When examining the association between WM venous
density with cognitive evaluations, as demonstrated in
Figure 5A, there is a trend of negative association of WM
venous density with CDR-sum score (p = 0.101). We further
investigated the relationship of WM venous density to OMAT
test scores (p = 0.040). In Figure 5B, it showed a significant
positive association with WM venous density.

Discussion

In this study, we quantitatively evaluated the venous oxygen
saturation dependent visibility of WM venous vasculature on
high resolution SWI, in a cohort of elder individuals. In
AD, neurodegeneration underlies both reduced cell activity in
early stages and cell loss in relatively late stages. SWI can
provide insight into the early detection of neurodegeneration,
via its ability to detect reduced oxygen metabolism. Using
SWI, qualitative and quantitative assessment of venous oxygen
saturation has never been so feasible. It can directly visualize
small veins with high sensitivity in detecting different levels
of (de)oxygenated hemoglobin without radiotracers. Previous
studies have shown the change of venous contrast in SWI
venography when the venous oxygen level is altered (Rauscher
et al., 2005). Unlike other imaging techniques that measure
oxygen metabolism in the brain including 15O PET (Mintun
et al., 1984) and T2- or R2-based MRI (Xu et al., 2009; Mao
et al., 2018), SWI is routinely used in clinical evaluation of
neurological and psychological disorders thanks to its clinical
accessibility and fast acquisition (e.g., < 5 min) on most
scanners.

Compared to large venous structures, such as internal
cerebral veins, the contrast of WM small veins on SWI
venography are more sensitive to the changes of deoxygenated
hemoglobin level. Thus, we investigated whether WM venous
density could quantitatively depict the oxygen metabolism in
aging brains and different stages of cognitive impairment. In
elderly populations, neurodegeneration and WMHs are two
common radiological markers seen in age-related diseases
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FIGURE 1

Imaging processing pipeline for extracting white matter (red) and periventricular white matter (yellow) venous vasculature using preprocessed
SWI and T1-MPRAGE images. Maximum intensity projection (MIP) of venous masks is shown for visualization.

TABLE 1 Characteristics of participants.

Total CDR = 0 CDR = 0.5 CDR = 1

Subjects number (N) 137 (131*) 84 46 1

Age (years) 71.1 ± 9.5 69.8 ± 9.4 74.9 ± 7.7 82.7

Sex (female/male) 105/32 (30**) 64/20 36/10 1/0

Education (years) 16.8 ± 2.9 17.1 ± 2.7 16.7 ± 2.3 20

*Six participants in total lack of CDR-global score. **Two of the male participants lack of CDR-global score. All data are presented as mean standard deviation.

such as AD and other types of dementia. We found strong
correlations between WM venous density and fractional volume
indices such as BPF and GMF, suggesting subjects with a higher
degree of neurodegeneration in both gray and white matter have
lower WM venous visibility since the neurodegenerative features
of brain structures would contribute to higher unconsumed
oxygenated level in WM small veins.

Previous studies have shown the reduced venous visibility
and venous density on SWI images in multiple sclerosis
(MS) patients, indicating the potential alteration of neuronal
metabolism caused by neurodegeneration in MS (Ge et al., 2009;
Zivadinov et al., 2011; Sinnecker et al., 2013), which is consistent
with findings using a quantitative measure of cerebral metabolic
rate of oxygen (Ge et al., 2012). Furthermore, veins in white
matter collect blood from both white matter and gray matter.
Thus, WM venous density may be a potential target to describe
overall metabolic changes caused by neurodegeneration from
both tissue structures. Loss of brain volume likely indicates
the damage and loss of neural processing and computational

components such as neurons and synapses, which are thought
to be major energy-consuming components in the brain.
Unconsumed arterial blood will increase the concentration
of oxygenated hemoglobin in small veins, leading to altered
T2∗ decay in the veins and reduced the phase difference
between veins and tissue, or reduced “blooming effect” that
decrease the sensitivity in depicting small veins. On the other
hand, physical loss of venous structures at mesoscopic level
is usually concomitant with other MR-visible pathologies such
as venous thrombosis or microbleeds. Thus, we conclude that
the contrast changes of small veins on SWI are mainly coming
from altered level of tissue venous oxygenation caused by
neurodegeneration instead of vessel degradation. These findings
underline the importance of SWI being a potential imaging
marker of neurodegeneration for designing and interpreting
future neuroprotective treatment trials.

Despite there being a strong correlation between WM
venous density and fractional volume indices, we did not find
a correlation between WM venous density and total WMHs
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FIGURE 2

Representative images of T1-MPRAGE, T2-FLAIR, and minimum intensity projection (mIP) of SWI images of four representation groups: (A) with
no apparent neurodegeneration and low WMHs load; (B) with no apparent neurodegeneration and high WMHs load; (C) with apparent
neurodegeneration and low WMHs load; and (D) with apparent neurodegeneration and high WMHs load.

FIGURE 3

Relationship of WM venous density to GMF, BPF, and WMHs. (A) Scatter plot between WM venous density and GMF. (B) Scatter plot between WM
venous density and BPF. (C) Scatter plot between periventricular WM venous density and periventricular WMHs load. (D) Scatter plot between
WM venous density and total WMHs load.

load (Figure 3D). Regional analysis of the periventricular
territory also revealed no significant correlation between
periventricular WM venous density and Pv-WMHs (Figure 3C).
As Figures 2, 4 show, regardless of the presence of WMHs,
the WM venous appearance was largely diminished with severe

neurodegeneration, while with higher WMHs load and without
apparent neurodegeneration, conspicuous venous visibility of
small veins (diameter 50-400 µ m) was still observed within
WMHs lesions. Our finding is consistent with other studies that
WMHs do not have significant effect on overall metabolic rate of
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FIGURE 4

Relationship of visibility of small veins to WMHs. (A) Representation of WMHs lesion (red) on SWI image of a patient with apparent
neurodegeneration. (B) SWI image with delineation of WMHs and veins within WMHs (blue) of a patient with no apparent neurodegeneration.
Conspicuous small veins were delineated penetrating or surrounding WMHs when patients have no apparent neurodegeneration, whereas
patients with apparent neurodegeneration have lower visibility of small veins.

FIGURE 5

Relationship of WM venous density to clinical cognitive evaluations. (A) Scatter plot between WM venous density and CDR-sum. (B) Scatter plot
between WM venous density and OMAT test score.

the brain (Thomas et al., 2017; Jiang et al., 2020). On one hand,
high visibility of venous vasculature in WMHs may indicate an
elevated level of deoxygenated hemoglobin in WMHs region.
Although the etiology of WMHs is still not fully understood,
growing evidence shows that WMHs may still be salvageable
tissue of ischemia origin (Prins and Scheltens, 2015). This
hypoxia metabolic stress may lead to higher oxygen extraction in
WMHs lesions in order to maintain appropriate neural activity.
As a result of increased level of deoxygenated hemoglobin in
the veins in WMHs with enhanced visibility, Yan et al. (2014)
showed that increased visibility of deep medullary veins in
leukoaraiosis. Kesavadas et al. (2010) also found that in carotid
stenosis, the extremely reduced cerebral blood flow (CBF) to

the brain could lead to the enhancement of the venous contrast
on the ipsilateral side of the insulted brain. On the other hand,
physical changes of venous structures, such as periventricular
venous collagenosis (Moody et al., 1995; Keith et al., 2017),
may be another factor that could alter the venous appearance
due to its association with hypertension (Zhou et al., 2015) and
disrupted venous functions (Haacke et al., 2021).

From an anatomical perspective, the venous vasculature
within the WMHs lesion does not drain blood solely from
WMHs, it also drains from subcortical gray matter and deep
white matter regions. The venous pathways could just trespass
into the WMHs. More importantly, in aging brains with
different severity of neurodegeneration, both total WMHs
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and Pv-WMHs were not significantly correlated with venous
density measures. The reduction in oxygen utilization caused by
neurodegeneration may play a more dominating role compared
to oxygen metabolism changes in WMHs. As WMHs are one of
the typical microangiopathy findings in the elderly, they could
provide insight in better understanding the pathologic pathway
between neurodegeneration and vascular degeneration in AD
and cognitive impairment (Haight et al., 2013; Kalaria and Ihara,
2013). In addition, vascular risk factors such as hypertension,
diabetes and hypercholesterolemia are assumed to be linked
with lower CBF. As a consequence of reduced perfusion, the
concentration of deoxygenated hemoglobin may be different
with low vascular risk populations and may result in altered
contrast of SWI venography. As lower CBF often co-exists with
neurodegeneration in aging brains, our results could provide
a clue that the venous oxygenation level changes caused by
neurodegeneration may outweigh the venous density changes
due to reduced blood flow.

Findings from our study also suggest associations of WM
venous density with clinical parameters. Although there is no
significant correlation, we observed that there is a positive
trend of WM venous density to CDR sum of boxes score,
indicating the potential alteration of oxygenation level with
different degrees of cognitive and functional impairment.
Previous studies such as Jiang et al. (2020) even found an
elevated venous oxygenation in dementia without vascular risk
factors. Thus, WM venous density may offer an alternative
approach and provide insight into changes of oxygen utilization
in various disease stages of MCI and dementia if a clear etiology
is specified.

In addition, we observed a significant association of WM
venous density to the OMAT score, which is one of the most
common and sensitive methods to test semantic fluency, and as a
measure for characterizing cognitive processing speed. Previous
studies that use functional near-infrared spectroscopy reported
decreased hemodynamic responses in MCI and AD patients
(Arai et al., 2006; Metzger et al., 2016; Katzorke et al., 2018),
revealing the change of pattern in neural activity during verbal
task. In addition, recent studies revealed that semantic fluency
is an efficient method for early dementia screening (McDonnell
et al., 2020) and semantic loss is correlated with AD-related
neurodegeneration and deteriorates faster in early stage of AD
(Vonk et al., 2020). Therefore, reduced WM venous density may
denote the reduction in oxygen utilization caused by reduced
neural activity in patients with a low OMAT score. The clinical
cognitive results suggest that WM venous density may be used as
a novel marker for venous oxygenation changes related to neural
activity in aging brains at different stages, even prior to overt
brain atrophy.

Several limitations should be noted in this study. First,
WM venous density is a less direct approach to quantitatively
describe the susceptibility difference in the veins compared
to quantitative susceptibility map (QSM), which would yield

venous susceptibility value. However, reconstruction of venous
susceptibility QSM has yet been standardized in clinical
applications, which still requires optimization in the data
processing pipeline for quantitative accuracy (Berg et al., 2021).
The major difficulty in using QSM is the partial volume effect
of small veins which makes oxygen saturation quantification
suspect. Therefore, the appropriate technique is required to
validate the consistency between venous density and QSM
approaches for future clinical applications. Second, venous
density can only be performed on a regional basis. However,
it is challenging to evaluate the venous density within the
WMHs lesions, as there is a large variation in the total
WMHs lesion load, making the quantification of WMHs-
specific venous density less consistent across all subjects. Third,
the lack of amyloid and tau biomarkers to define the cohort
may limit the results interpretation specifically to the AD
spectrum. Fourth, characterization of CBF, which could help
interpretation of our results, was not included in this study.
Finally, the sex difference is not compared for this study due
to the unmatched numbers of male and female participants.
The hematocrit difference in male and female may lead to
different oxygenation levels. Therefore, sensitivity of a gender-
specific difference measured by SWI venography needs further
evaluation.

Conclusion

Our study showed that reduced venous density on SWI is
associated with neurodegeneration characterized by fractional
volume indices in elderly brains, suggesting that a SWI
venous density measure could be used to monitor age-related
neurodegeneration. Diminished small vein visibility could be
associated with reduced oxygen utilization in neurodegenerative
structures but may be minimally altered in regions where
WMHs present. Furthermore, we demonstrated that reduced
WM venous density is associated with cognitive and functional
impairment and subjects’ increasing impairment showed lower
WM venous density.
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