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Abstract: The need for time and attention, given by the doctor to the patient, due to the increased
volume of medical data to be interpreted and filtered for diagnostic and therapeutic purposes has
encouraged the development of the option to support, constructively and effectively, deep learning
models. Deep learning (DL) has experienced an exponential development in recent years, with a major
impact on interpretations of the medical image. This has influenced the development, diversification
and increase of the quality of scientific data, the development of knowledge construction methods
and the improvement of DL models used in medical applications. All research papers focus on
description, highlighting, classification of one of the constituent elements of deep learning models
(DL), used in the interpretation of medical images and do not provide a unified picture of the
importance and impact of each constituent in the performance of DL models. The novelty in our
paper consists primarily in the unitary approach, of the constituent elements of DL models, namely,
data, tools used by DL architectures or specifically constructed DL architecture combinations and
highlighting their “key” features, for completion of tasks in current applications in the interpretation
of medical images. The use of “key” characteristics specific to each constituent of DL models and
the correct determination of their correlations, may be the subject of future research, with the aim of
increasing the performance of DL models in the interpretation of medical images.

Keywords: medical image analysis; types of data and datasets; methods of incorporating knowledge;
deep learning models; applications in medicine

1. Introduction

The performance of deep learning architectures (DL) has a continuously improved by
increasing the number and quality, respectively diversification data resources similar to
medical data, developing specific methods of integrating data into DL models according to
the objectives for which they were built and perfecting the construction of DL models used
in medical applications.

Deep learning (DL) has experienced an exponential development of medicine, but
applications in interpretations of medical imaging are in continuous development. DL
has managed to achieve performance in diagnosis, classification, detection, segmentation,
reconstruction of medical images [1] but also in achieving the correlation between image
diagnosis and patient survival, predicting new directions of development [2].

The novelty in our paper consists in the unitary approach, of the constituent elements
of DL models, namely, data, tools used by DL architectures or specifically constructed DL
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architecture combinations and highlighting their “key” features, for completion of tasks in
current applications in the interpretation of medical images.

In this article we present in primarily, a unitary, complete, up-to-date analysis of
scientific data, methods of knowledge incorporation, a classification and description of
DL models according to the structure and objectives for which they were designed and
presentation of medical applications according to these tasks. Secondly, it describes the
specific correlations between data, data integration methods, deep learning models used in
the interpretation of diagnostic medical images and their applications in medicine. Finally
presents problems and future challenges.

The structure is composed of Section 2 describes types of images, medical data used
by deep learning architectures, Section 3 describes DL models according to the objectives
for which they were created, medical application, associating the types of data, Section 4
methods of incorporating images, information and medical data, in addition to the objective
of DL. Section 5 contributions of the methods of incorporating images, information and
medical data in medical applications, Section 6 research issues and future challenges.

Methodology:
We have identified and selected significant research papers published in 2009–2020,

mainly from 2016 and 2020, with some papers from 2021. We focus on papers from
the most reputable publishers, such as IEEE, Elsevier, Springer, MDPI, Nature, SPIE,
PLOS, Wiley, RSNA, SCIRP. Some works have been selected from arXiv. I have re-
viewed more than 273 papers on different DL topics. There are 17 works from 2021,
56 works from 2020, 56 works from 2019, 38 works from 2018, 58 works from 2017,
25 works from 2016 and 10 work from 2015. This indicates that this review focus on
the latest publications in the field of DL. The selected papers have been analyzed and
reviewed for: descriptions types of images, medical data used by deep learning ar-
chitectures (Section 2), descriptions DL models according to the objectives for which
they were created, medical application, associating the types of data (Section 3), meth-
ods of incorporating images, information and medical data, in addition to the objective
of DL (Section 4), contributions of the methods of incorporating images, information
and medical data in medical applications (Section 5), research issues and future chal-
lenges (Section 6). Most keywords used for search criteria for this review work are (Deep
Learning and Data types), (Deep Learning and Data Sets), (Deep Learning and Methods
of Incorporation of Medical Knowledge and Data), (Deep Learning Models and Mod-
els), (Deep Learning and Architectures), ((Deep Learning) and (Medical Image Analysis)
and (Detection/Classification/Segmentation/Localization/Reconstruction/Recovery)),
(Deep Learning and Detection/Classification/Segmentation/Localization/Reconstruction),
(Deep Learning and Images and Applications in Medicine), (Deep Learning and Interpreta-
tion Medical Images). Figure 1 shows our search structure of the survey paper.
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2. Scientific Data and Dataset
2.1. Types of Images and Datasets in the Medical Domain

Medical data, types of images, images from time series, audio-video data represent
unstructured information have a need for labeling because they make the process of data
extraction difficult because they suffer high levels of noise and variability, and classical
deep learning architectures achieve low performance in interpretations of medical images.

The interpretation of medical images in diagnostic radiology through the use of deep
learning architectures has applications in cancer diagnosis, with satisfactory results in the
diagnostic detection of breast cancer, lung cancer, glaucoma and skin cancer.

CT, PET-CT, MRI, X-rays, Ultrasound, Diagnostic Biopsy, Mammography and Spec-
trography are the most used imaging and exploratory investigations in the process of
image interpretation, in the objective of extracting characteristics, reducing or enlarging
the size, in the group, segmentation and classification of images and by using integration
methods contribute to the performance of deep learning models, see Figure 2 [3].
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Figure 2. Imaging and exploratory investigations in the process of image interpretation.

Acronyms: MRI Magnetic Resonance Images, CT Computed Tomography, SLO Scan-
ning Laser Ophthalmoscopy images, X-ray on weakly-supervised classification and local-
ization of common thorax diseases.

Larger datasets, compared to the small size of many medical datasets, result in better
deep learning models [4]. The large and well-annotated data sets are: ImageNet, COCO 2,
(open source) medical data sets, see Figure 3.

Acronyms: MRI Magnetic Resonance Images, CT Computed Tomography, SLO Scan-
ning Laser Ophthalmoscopy images, The Alzheimer’s disease neuroimaging initiative
(ADNI), Automated cardiac diagnosis challenge (ACDC), The autism brain imaging
data exchange (ABIDE), Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases (Chestx-ray14), The
lung image database consortium (LIDC) and image database resource initiative (IDRI)
(LIDC-IDRI), Algorithms for automatic detection of pulmonary nodules in computed to-
mography images (LUNA16), Large dataset for abnormality detection in musculoskeletal
radiographs (MURA), Machine learning algorithms for brain tumor segmentation, pro-
gression assessment, and overall survival prediction in the brats challenge (BraTS2018),
Locating blood vessels in retinal images (STARE), Digital database for screening mammog-
raphy (DDSM), Automated mining of large-scale lesion annotations and universal lesion
detection with deep learning (DeepLesion), Cardiac Magnetic Resonance Images (Cardiac
MRI), International skin imaging collaboration (ISIC).

The knowledge of experienced clinical-imagists, follow certain characteristics in im-
ages, namely, contrast, color, appearance, topology, shape, edges, etc., contributes to the
performance of medical image interpretation through the use of deep learning models,
namely, anomaly detection by identifying the characteristics in the image; image segmenta-
tion; image reconstruction; combining two different images into one [5].
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The knowledge of imaging doctors can be classified as follows:

1. Low-level medical data

• Areas of attention of physicians in medical images [6],
• Disease characteristics [7],

2. High-level medical data

• Labels–Diagnostic pattern [8],

3. Diagnostic training model that represents specific data identified by doctors [9].

The type and volume of medical data, the labels, the category of field knowledge
and the methods of their integration into the DL architectures implicitly determine their
performance in medical applications.
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2.2. Types of Images and Medical Data Used for Diagnosis–Classification of Diseases in
Medical Images

We will further expose, the types of medical images and data used in diagnosis-
classification, segmentation, detection, reconstruction, recovery and, respectively, the
generation of medical reports.

Natural images–from natural datasets, ImageNet 1 (over 14 million images tagged in
20 k categories) and COCO 2 (with over 200 images annotated in 80 categories).

Medical images-from medical datasets of the same diseases in similar and different
ways or from different diseases [10].

High-level medical data (diagnostic pattern), low-level medical data (areas of images,
disease characteristics).

Specific data identified by doctors (attention maps, hand-highlighted features) increase
the diagnostic performance of deep learning networks (no comparative studies have been
conducted).

2.3. Types of Images and Medical Data Used for Diagnosis Detection of Lesions and Abnormalities
in Medical Images

Large natural images (ImageNet) are incorporated for the detection of characteristics
in the medical images. Natural images are used in multiple applications.

Medical images are used in multiple applications. Multi-modal medical images, PET
images are incorporated for the detection of lesions in CT scans.

High-level medical data (diagnostic pattern), low-level medical data (areas of images,
disease characteristics).

Specific data identified by doctors (attention maps, hand-highlighted features) increase
the diagnostic performance of deep learning networks (no comparative studies have been
carried out).

2.4. Types of Images and Medical Data Used for Diagnosis–Segmentation into Medical Images

Natural Images, ImageNet, PASCAL VOC “static data” set, Sports-1M video datasets [11].
Medical images, (CT, MRI, Angio-CT, butt eye images, annotated retinal images) used

in multiple applications.
External medical data and images of other diseases, dataset 3DSeg-8 [12].
High-level and low-level medical data, e.g., anatomical aspects of the image, shape,

position, typology of lesions integrated into segmentation tasks, example of the ISBI
2017 dataset used in skin injury segmentation. Many applications use additional data
with satisfactory results to improve CT image segmentation tasks in order to improve
applications for MRI use [13].

Medical data from doctors, hand-made features, hand-highlighted features, are first
processed from the reference images. These features are used in the BRATS2015 dataset in
input-level merging image segmentation applications.

2.5. Medical Data and Manual Features Used for Image Reconstruction

X-ray projections in CT or spatial frequency information in MRI) [14,15], image recon-
struction with optical diffuse tomography (DOT), reconstruction of magnetic resonance
imaging by compressed detection (CS-MRI) [16], reconstruction of the image with dif-
fuse optical tomography (DOT) of limited-angle breast cancer and limited sources in a
strong scattering environment [17,18], recovery of brain MRI images, target contrast using
GAN [19] are methods based on deep learning have been widely applied in this area.

2.6. Medical Data and Manual Features Used for Image Recovery

Knowledge from natural images, medical datasets for example, age and sex of patients,
characteristics extracted from health areas.
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2.7. Medical Data Used to Generate Medical Reports

Subtitling medical images, templates from radiologist reports, visual characteristics of
medical images, generating reports using the IU-RR dataset.

3. DL Models Description and Classification According to the Tasks in Medical
Images Analyses

We will describe the deep learning architectures in relation to the purpose and tasks for which
they were designed, namely, diagnosis-classification, detection, segmentation, reconstruction.

3.1. DL Architectures Designed for Diagnosis–Classification in Medical Images

CNN, AlexNet, GoogLeNet, VGGNet, ResNet, DenseNet are used for diagnosis,
classification, diseases.

GoogLeNet, VGGNet, ResNet are used for diagnosis, classification of superficial and
deep corneal ulcers with accuracy of over 90%.

DenseNet [20] used for diagnostic classification of lung nodules on X-Rey with accu-
racy of over 90% Architectures designed to detect objects in natural images used to detect
objects in medical images.

3.2. DL Architectures Designed for Diagnosis Detection of Lesions, Abnormalities in
Medical Images

Two-stage models for injury and organ detection consist of a network of regional
proposals (RPN) that involves the locations of candidate objects and a detection network
that selects regional proposals are Faster R-CNN [21] and Mask R-CNN [18,22].

Models with a faster and simpler stage, which go over the stage of the proposal of the
region and run the detection directly, taking into account the probability that the object will
appear at every point in the image such as YOLO (You Only Look Once) [23], SSD (Single
Shot MultiBox Detector) [9] and RetinaNet [24].

Combined FCN and GAN architectures, through PET images are generated first from
CT scans then synthesized PET images are used in a false positive reduction layer [18,25].

3.3. DL Architectures Designed for Diagnosis Segmentation of Medical Images

Three categories can be exemplified: FCN-based models [26]; U-Net-based models [27];
GAN-based models [28].

3.3.1. FCN Achieves Goals of Segmenting the Medical Image with Good Results

Types of FCN: Cascading FCN [29,30], parallel FCN [31] and recurrent FCN [32] also
achieve medical image segmentation goals with good results.

3.3.2. U-Net-Based Models

U-Net [27] and its derivatives segment the medical image with good results. U-Net is
based on the FCN structure, consisting of a series of convolutional and devolutionary layers
and with short connections between equal resolution layers. U-Net and its variants such as
UNet ++ [33] and recurrent U-Net [34] perform well in many medical image segmentation
tasks [18,35].

3.3.3. GAN-Based Models

GAN is a type of mixed architecture (supervised and unsupervised) called semi-
supervised architecture, an architecture composed of two neural networks, a generator and
a discriminator or classifier, which compete with each other in a contradictory formation
process [28]. In models, the generator is used to predict the target mask based on encoder-
decoder structures (such as FCN or U-Net) [18]. The discriminator serves as a form
regulator that helps the generator achieve satisfactory segmentation results [16,33]. GAN
has use in the generation of synthetic instances of different classes.
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3.4. DL Architectures Designed for Diagnosis, Classification, Segmentation, Detection and
Reconstruction of Medical Images

Deep auto-encoders (AUD) are included in the type of unsupervised learning that
uses unlabeled input data, there is no a priori knowledge, and the results to be obtained
from the processing of input data are unknown, and can learn to organize information
without providing an error calculation to evaluate the possible solution [36,37]. The main
feature of the autoencoder is represented by the input and output layers have the same
size, and the output must reproduce the input, while the hidden layers are smaller in size
because the input patterns are progressively encoded and decoded throughout the process,
and has the ability to extract the fundamental characteristics of the input, being used to
reduce the size of the data, but also to reduce noise in input data (such as images). They are
often used for data reconstruction (image and signal), denoising or augmentation [37,38].

3.5. Medical Applications of DL Models According to the Scope for Which They Were Used,
Classification, Segmentation, Detection and Reconstruction of Medical Images

DL architectures, e.g., CNN, U-Net, ResNet, VGGNet, AlexNet, RNN, GAN, DBN,
YOLO and respectively, the types of combined architectures VGGNet + CNN, CNN +
LSTM, GAN + U-Net, VGGNet + U-Net, RCC + U-Net which have as tasks classification,
segmentation, detectionand reconstruction of medical images are the most used and have
the best performance and contribution to medical applications (see Table 1) [39].

Table 1. Medical applications of DL models according to the scope for which they were used [39].

Task Contribution Model

Classification

Benefit from unlabelled data for
lung tumour stratification DBN [40]

Introduction of a transfer learning
approach in rectal cancer prediction CNN [41]

Identification of bladder tumour
sub-types from histopathological

images
ResNet [42]

Improvement in breast tumour
estimation by considering a large

set of risk factors
CNN [43]

Estimation of the cancer grade CNN [44]

Estimation of the cancer type CNN [45,46], ResNet [47]

Limitation of overfitting GAN [48], ResNet [49]

Analysis of the particular
characteristics of the heart by using

echocardiograms
ResNet [50]

Improvement in bone image quality U-Net [51]

Analysis of the impact of gender on
skeletal muscles CNN [52]

Automatic estimation of brain
diseases risk AlexNet [53], CNN [54]

Improvement of accuracy and
efficiency in COP diseases

ResNet [55], VGGNet + CNN
[56], DBN [57]

Analysis of interstitial lung diseases CNN [58]
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Table 1. Cont.

Task Contribution Model

Estimation of the normal levels of
the pancreas CNN [59,60]

Improvement in image quality CNN [61], CNN + LSTM [62]

Improvement in accuracy in
abdominal ultrasounds CNN [63]

Detection

Optimal localization of lung cancer
sub-types CNN [64]

Low-cost object detection for
malaria YOLO [65]

Improvement in image accuracy in
neoplasia analysis ResNet [66]

Segmentation

Analysis of colour contrast and
parameter variability issues in

pancreatic tumour
U-Net [67]

Impact of dimension variations on
DL model performance in thyroid

melanomas
U-Net [68]

Limitation of the overfitting
problem in bone cancer CNN [69], GAN + U-Net [70]

Improvement in image accuracy in
lung and prostate cancer U-Net [71,72], GAN [73]

DL model for multi-step integration
and registration error reduction in

atrial fibrillation analysis
CNN + LSTM [74]

Accuracy in the analysis of irregular
pelvic hematoma images U-Net [75]

Improvement in aortic disease
analysis with the introduction of

new accuracy measures
U-Net [76]

Introduction of the transfer learning
approach in atrium study U-Net [49]

Analysis of the impact of the image
quality in osteoarthritis U-Net [77], RCNN [78]

Introduction of transfer learning
and attention mechanism in the

study of the knees
VGGNet + U-Net [79]

Improvement in image accuracy of
the cartilage

U-Net [80], HNN [15], U-Net
+ GAN [81], RCNN

Combination of the region-based
approach with U-Net for bone

diseases
RCC + U-Net [82]

Limitation of overfitting in White
Matter analysis GAN [83]

Colour quality improvement in
orbital analysis U-Net [84]

Segmentation of lung lobe using
different types of datasets U-Net [85]

Analysis of image effects in
neoplasia and catheter detection U-Net [66], RNN [86]
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Table 1. Cont.

Task Contribution Model

Reconstruction

Improvement in the Signal-to-Noise
Ratio Multi-data integration CNN [87]

Improvement in image quality at high
levels in the study of coronary diseases CNN [88]

Application of CNNs to computed
tomography for chest digital images CNN [89]

Introduction of a DAE as a priori model
for noise density in magnetic resonance DAE [90]

Analysis of perturbation effects CNN [91]

Introduction of transfer learning into
magnetic resonance CNN [92]

Limitation of overfitting CNN + GAN [93]
Acronyms: Deep Network of Beliefs (DBN), Generative Adversarial Network (GAN), Tensor Deep Stacking
Network (TDSN), Convolutional Neural Network (CNN), Visual Geometry Group Network (VGG Net), Fully
Convolutional Network (U-Net), Residual Neural Network (ResNet), You Only Look Once (YOLO), Recurrent
Neuronal Network (RNN), Long Short-Term Memory (LSTM).

4. DL Model Description and Classification According to Medical Data Types Used,
Objectives and Performances in Medical Applications
4.1. DL Models According to the Characteristics and Tasks for Which They Were Designed

CNN (convolutional neural network) are popular in areas where the shape of an object
is an important feature, such as image analysis [5,39,94,95], particularly in the study of
cancers and bodily injuries in the medical sector [96,97] and video analysis [39,98].

CNN contains convolutive layers, grouping layers, dropout layers, and an output
layer, hierarchically positioned that each learn stun specific characteristics in the image [99].

CNN in image analysis has low performance when high-resolution datasets are
considered [100] and when localization over large patches is required, especially in medical
images [101,102].

We will synthesize in Figure 4 Classification of DL models according to the character-
istics and tasks for which they were designed, classification of DL models according to the
characteristics and tasks for which they were designed and describe them later [102].

DL architectures classification [103]:
Supervised DL models:

• Recurrent Neural Networks (RNN), Long short-term memory (LSTM), Gated Recur-
rent Unit (GRU),

• Convolutional Neural Network (CNN)
• Generative Adversarial Network (GAN).

Unsupervised deep learning models:

• Deep Network of Beliefs (DBN),
• Deep Transfer Network (DTN),
• Tensor Deep Stack Networks (TDSN),
• Autoencoders (AE).
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CNN’s performance is strongly influenced by the selection of hyper-parameters. Any
small changes in hyper-parameters will affect CNN’s overall performance. Therefore,
careful selection of parameters is an extremely significant problem that should be taken
into account during the development of the optimisation scheme.

Impressive and robust hardware resources, such as GPs, are needed for an effective
CNN workout. Moreover, they are also needed to explore the effectiveness of using CNN
in intelligent and embedded systems.
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Exploitation of depth and various structural adaptations is significantly improved in
CNN’s learning capacity. Replacing the traditional layer configuration with blocks leads
to significant progress in CNN’s performance, as shown in recent literature. Today, the
development of new and efficient block architectures is the main trend in the new research
models of CNN architectures. HRNet is just one example that shows that there are always
ways to improve the architecture. Cloud-based platforms are expected to play a key role in
the future development of DL computing applications [104].

Several deep learning, computer assisted diagnosis (CAD) systems for digital breast
tomosynthesis (DBT) are currently available and many new systems will be developed.
However, there are still many challenges to overcome. As Wang et al. [105] have recently
demonstrated, published models for the full-field digital mammography (FFDM) classifica-
tion fail when applied to different datasets, even when these data sets include purchases
using similar equipment. For FFDMs, deep learning-based detection models have proven
to be performing with almost human precision [106]. As more studies and data become
available, there is no reason to believe that this should be different for DBT. However,
the trained radiologist can adapt when analyzing different data sets, indicating that high-
performance deep learning models still lack the “key” characteristics that differentiate the
disease from normal [107].

Image analysis performance is enhanced by the use of the following architectures:
AlexNet, VGGNet and ResNet, YOLO or U-net that we describe below:

AlexNet was proposed by Krizhevsky et al. [97] for the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2012 [39].

AlexNet [103] consists of 8 layers, 5 layers of convolution and 3 dense, fully connected
layers, overlapping overlay, abandonment, data augmentation, ReLU activations after
each convolutive layer and fully connected, SGD with impulse [97]. AlexNet is used for
image recognition in image analysis and is usually applied to issues involving semantic
segmentation and high-resolution data classification tasks [39,70,73].

VGG (Visual Geometry Group): Consists of 13 convolution layers (in VGG16) &
16 convolution layers (in VGG19), 3 dense layers, pooling and three RELU units, very
small responsive fields [108]. VGG is used for object recognition, classification of medical
images [109,110] and image segmentation [18,36] VGG loses accuracy when the depth
becomes too high.

ResNet (Residual Neural Network): Contains closed units or closed recurring units
and has a strong similarity to recent successful elements applied in RNNs [103]. ResNet is
characterized by: residual mapping, identity function, and a two-layer residual block, one
layer learns from the residue, the other layer learns from the same function and has high
level of performance in image classification [111] and audio analysis tasks [39,112].

GoogLeNet is built from 22 deep LAYERS CNN and 4 million parameters and con-
tains several layer filters and stacked convolution layers [113]. It was used for batch
normalization, image distortions, and RMSprop [103].

U-Net, developed by Ronneberger [101], addresses the problem of locating images
of a standard CNN by extracting data features followed by reconstruction of the origi-
nal dimension through an upsampling operation. U-Net is a type of Enconder-Decoder
network in which the codification output belongs to the input space. U-Net is used in
single-stage segmentation and classification [114], specifically in the location of cancerous
lesions [38,115,116]. SegNet [39,117] is a U-Net variant that uses maximum grouping
indices in the upsampling step that reduces the complexity of U-Net space [118].
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RNNs were developed by Rumelhart et al. [119] using with efficiency the correlations
existing between input data of a prediction problem, through which they process sequen-
tial data in relation to text analysis [84,119,120] in electronic medical records to predict
diseases [121,122] and speech recognition [123]. RnN variants are: one-way, learning from
the past and predicting the future and bidirectional that uses the future to restore the
past. RNN has the following variants: LSTM, GRU, Recursive NNs and two-way RNNs
(BiRNN). LSTMs were introduced by Hochreiter and Schmidhuber [39,103,124] and consist
of: the gate of oblivion that alleviates the escape and explosion gradient, the entrance gate
and the exit gate, the last two track the flow of data coming in and out of the cell. They
were used in speech recognition [45], path prediction [46] and medical diagnosis [64], in
which the authors proposed an LSTM network, called DeepCare, combining different types
of data to identify clinical diseases.

GURs (recurrent unit gated) created by Kyunghyun Cho et al. in 2014 [48], solve the
problem of increasing the time complexity of LSTM, when large amounts of data are used.
The GRU consists of a reset gate in which it is decided how much information from the
past is transmitted in the future, and an update gate that decides how much information
from the past can be forgotten. GRU and LSTMs have similar applications especially in
speech recognition [39,125].

The two-way recurring neural network and the Boltzmann BRNNs introduced by
Schuster and Paliwal [44] are characterized by the fact that the hidden state is updated by
using past information, as in a classic RNN, and by using information related to future
moments. They were applied in handwriting and speech recognition, where they are
used to detect missing parts of a sentence in a knowledge of the other words [41,126].
BM models are a family of RNNs that are easy to implement and that reproduce many
probability distributions, BMs are used in image classification. BMs combined with other
models are used to locate objects [39,40,127]. In the classification of images, BMs are used
to identify the presence of a tumor [128]. BM models are slow and ineffective when the
data size increases exponentially due to the complete connection between neurons [129].
A restricted BM was proposed in which relaxing the connections between neurons of the
same or one-way connection between neurons would solve the problem of the classic BM
model [5].

AEs, developed by Rumelhart et al. [119], consisting of encoder and decoder, with the
aim of reducing the size of the data through significant representations and learning data
characteristics for the reconstruction of outputs. They are used in applications in medical
image analysis [72,130], natural language processing [67] and video analysis [68].

Additional variants of AE that can be found in the literature are variational AE (VAE).
In a VAE, the encoder is represented by the probability density function of the input into
the feature space and, after the encoding stage, a sampling of the new data using the PDF
is added. Differently from the DAE and the SAE, a VAE is not a regularized AE, but is part
of the generation class [39].

GAN it is used to generate synthetic training data from original data using latent
distribution [131]. It consisted of two networks, a generator estimates false data from input
data, and a discriminator, which differentiates fake data from real data and separates it in
order to increase the quality of the data generated. GAN has two problems: the problem of
the collapse of the mode, and the fact that, can become very unstable [103].

DBN: The DBN (Deep Network of Beliefs), created by Hinton [132], consists of two
networks that build each other: of beliefs represented by an acyclic graph composed of
layers of stochastic binary units with weighted and respectively weighted connections,
restricted Boltzmann Machines which is a stochastic. DBNs are applied in image recognition
and speech recognition, in classification to detect lesions in medical diagnosis and, in video
recognition to identify the presence of persons [133], in speech recognition to understand
missing words in a sentence [134] and in application on physiological signals to recognize
human emotion [39,135,136].
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DTN contains a characteristic extraction layer, which teaches a shared feature subspace
in which marginal source distributions and target samples are drawn close and a layer of
discrimination that match conditional distributions by classified transduction [103,106].

TDSN contains two parallel hidden representations that are combined using a bilinear
mapping [137]. This arrangement provides better generalization compared to the architec-
ture of a single module. The prejudices of the generalizers with regard to the learning set
shall be inferred. It works effectively and better than an eco-validation strategy when used
with multiple generalizers compared to individual generalizers.

DIM maximizes mutual information between an input and output of a highly flexible
convolutive encoder [103,138] by forming another neural network that maximizes a lower
limit on a divergence between the marginal product of encoder input and output. Estimates
obtained by another network can be used to maximize the reciprocal information of the
features in the input encoder. The memory requirement of the DIM is lower because it
requires only encoder not decoder.

4.2. Combinations of Different DL Models Depending on the Type of Data Involved in the Problem
to Be Solved

DL models can be combined in five different ways depending on the type of data
involved in the problem to be solved. Of these, three types of HA (hybrid architectures),
namely the integrated model, the built-in model and the whole model.

In the integrated model, the output of the convolution layer is transmitted directly
as input to other architectures to the residual attention network, the recurrent convolu-
tive neural network (RCNN) and the model of the recurrent residual convolutive neural
network (IRRCNN) [103,139].

In the built-in model (the improved common hybrid CNN-BiLSTM), the size reduction
model and the classification model perform together, the results of one represent the inputs
for the other model. In the model (EJH-CNN-BiLTM), several basic models are combined.

In the transfer learning model (TL) is trained and uses the same type of problem.
CNN models that use the TL model are VGG (e.g., VGG16 or VGG19), GoogLeNet (e.g.,
InceptionV3), Inception Network (Inception-v4), Repiuled Neural Network (e.g., ResNet50),
AlexNet. Joint AB based DL combines max pooling, and careful sharing [103].

4.3. Combinations of Different DL Models to Benefit from the Characteristics of Each Model with
Medical Applications Are: CNN + RNN, AE + CNN and GAN + CNN

CNN + RNN are used for the capabilities of the CNN feature extraction model and the
RNNs [140]. Because the result of a CNN is a 3D value and an RNN works with 2D-data, a
remodeling layer is, associated between CNN and RNN, to convert production of CNN
into an array. CNN + RNN have been successfully applied in text analysis to identify
missing words [141] and image analysis to increase the speed of magnetic resonance
image storage [49,50]. CNN + RNN variants are obtained by replacing the Standard RNN
component with an LSTM component [39,48,65].

AE + CNN architecture combines AE as a pre-training model when using data with
high noise levels, and a CNN as a feature extractor model. AE + NVs have an application
in image analysis to classify noisy medical images [76] and in the reconstruction of medical
images [86,130].

GAN + CNN combines GAN as a pre-workout model to moderate the problem of
over-mounting, and a CNN, used as a feature extractor. It has applications in image
analysis [39,88,142].

The DL architectures applied especially in image analysis are CNN, AE and GAN.
NVs preserve the spatial structure of the data, and are used as feature extractors (especially
U-Net), AEs reduce the characteristics of complex images in the analysis process, and
GANs are pre-training architectures that select input categories to control overfitting.
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U-Net + Kite-Net + Attention U-Net + HarDNet-MSEG ahitecture, the DL model
imagined by Luca, A.R. & all [143], combined model it designed takes into account the
key features of the architectures involved: U-Net will be enhanced with a block context
aggregation encoder and still retains the low-level image features that result from U-
Net, but will generate slightly finer segmentation without adding costs due to context
aggregation blocks; Kite-Net will contain a unit with attention gates and a Kite-Net decoder,
in this way add a benefit of attention to the details of Kite-Net; a partial decoder like the one
in the HarDNet-MSEG architecture used as the new U-Net decoder to reduce training time;
U-Net Attention that suppresses irrelevant regions, key features, does not add significant
computing costs, with a slightly smoother segmentation of image features. This combined
DL model is not demonstrated in practice being a project [143,144].

4.4. Applications in Medicine and the Performance of DL Models Depending on the Therapeutic
Areas in Which They Were Used

We further highlight the acquisitions in the study of deep learning and its applications
in the analysis of the medical image [41]. You can easily identify references to image labeling
and annotation, developing new deep learning models with increased performance, and
new approaches to medical image processing:

• diagnosis of cancer by using CNN with different number of layers [145],
• studying deep learning optimization methods and applying in the analysis of medical

images [146],
• development of techniques used for endoscopic navigation [147],
• highlighting the importance of data labelling and annotation and knowledge of model

performance [148,149],
• perfecting the layer-wise architecture of convolution networks [103], lesson the cost

and calculation time for processor training [150],
• description of the use of AI and its applications in the analysis [103] of medical

images [151],
• diagnosis in degenerative disorder using deep learning techniques [152] and,
• detection of cancer by processing medical images using the medium change filter

technique [153],
• classification of cancer using histopathological images and highlighting the rapidity

of Theano, superior tensor flow [153],
• development of two-channel computational algorithms using DL (segmentation, ex-

traction of characteristics, selection of characteristics and classification and classifica-
tion, extraction of high-level captures respectively) [154],

• malaria detection using a deep neural network (MM-ResNet) [155].

We will exemplify in Table 2 [37] applications in medicine and the performance of DL
models depending on types of medical images and the therapeutic areas in which they
were used.
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Table 2. Objectives and performance of DL models in medical applications classified according to the therapeutic areas.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

Mammography

Mammography images 45,000 images Diagnosis of breast
cancer CNN AUC of 0.90 Oncology [40]

Mammography 667 benign, 333
malignant

Diagnosis of early
breast cancer Stacked AE AUC of 0.89 Oncology [127]

Mammography images,
biopsy result of the

lesions
600 images biopsy

Differentiation
benign lesions one
malignant masses

CNN AUC of 0.80 Oncology [125]

Mammography images 840 mammograms
images

Evaluate the risk of
coronary disease

used breast arterial
calcification classifier

CNN Misclassified cases of
6% Cardiovascular [71]

Digital mammograms 661 digital images Estimation of breast
percentage density CNN AUC of 0.981 Oncology [80]

Mammography images Mammograms from 604
women

Segment areas in the
breast CNN AUC of 0.66 Oncology [49]

Digital mammograms
images

29,107 mammograms
images Probability of cancer CNN AUC of 0.90 Oncology [87]

Ultrasound

Image of the heart 2D

400 images with five
different heart diseases

and 80 normal
echocardiogram images

Segment left
ventricle images with

greater precision
Deep belief networks Hammoude distance

of 0.80 Cardiovascular [77]

Ultrasound images
306 malignant tumor
images, 136 benign

tumors images

Detect and
differentiate breast

lesions with
ultrasound

CNN, AlexNet, U-Net,
LeNet

0.91 and 0.89
depending on the

data
Oncology [65]

Transesophageal
ultrasound volume and

3D geometry of the
aortic valve images

3795 volumes from the
aortic valves from 150

patients

Diagnose,
stratification and

treatment planning
for patients with

aortic valve
pathologies

Marginal space deep
learning

Position error of 1.66
mms and mean

corner distance error
of 3.29 mms

Cardiovascular [45]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

Radiography

Radiography images 7821 subjects CAD for diagnosis of
knee osteoarthritis Deep Siamese AUC of 0.66 Traumatology [141]

Radiography images 420 radiography
images

Osteoarthritis
diagnosis CNN AUC of 0.92 Traumatology [81]

Radiographs

112,120 frontal view
chest 17,202 frontal

view chest
radiographs with

abinary class label for
normal vs abnormal

Abnormality
detection in chest

radiographs
CNN

AUROCs of 0.960
and 0.951. AUROCs

of 0.900 and 0.893
Radiology [78]

Slide image

Pathology cancer
images (hematoxylin

and eosin)

5202 images
tumorinfiltrating

lymphocytes

Study of tumor tissue
samples. Localize

areas of necrosis and
lymphocyte
infiltration

Two CNNs AUC of 0.95 Oncology [118]

Giemsa-stained thin
blood smear slides

cell images
27,558 cell images Screening system for

Malaria CNN AUC of 0.94 Infectious Disease [121]

Microscopy image
patches 249 histologic images

Classification of
breast cancer

histology microscopy
images

CNN and SVM

AUC of 0.77–0.83 for
carci-

noma/noncarcinoma
classification

Oncology [134]

Microscopy
histopathological

images

7909 images of breast
cancers

CAD for breast
cancer

histopathological
diagnosis

CNN AUC of 0.93 Oncology [135]

Microscope images 200 female subjects
aged from 22 to 64

Cervix cancer
screening Multiscale CNN

Mean and standard
deviation of 0.95 and

0.18
Oncology [88]

Whole-slide prostate
histopathology

images

2663 images of
prostate

histopathology
images

Whole-slide
histopathology

images to outline the
malignant regions

CNN Dice coefficient of
0.72 Oncology [78]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

Ocular fundus

2D images 243 retina images Diagnose retinal
lesions CNN

Precision recall curve
of 0.86 in

microaneurysms and
0.64 in exudates

Ophthalmology [120]

2D images 85,000 images
Diabetic retinopathy
detection and stage

classification
Bayesian CNN AUC value of 0.99 Ophthalmology [42]

Images

6679 images from
Kaggle’s Diabetic

Retinopathy
Detection

Detect retinal
hemorrhages CNN AUC of 0.894 and

0.972 Ophthalmology [47]

Images
168 images with

glaucoma and 428
control

Detect and evaluate
glaucoma

CNN: ResNet and
U-Net

AUC of 0.91 and 0.84
respectively Ophthalmology [128]

Images 90,000 images with
their diagnoses

Predict the evolution
of diabetic

retinopathy
CNN AUC of 0.95 Ophthalmology [51]

Images 7000 colour fundus
images

Image quality of
diabetic retinopathy CNN Accuracy of 100 % Ophthalmology [52]

AREDS (age related
eye disease study)

image

130,000 fundus
images

Diagnosis of
Age-related Macular

Degeneration
CNN 94.97 sensitivity and

98.32 % specificity Ophthalmology [156]

Fundus images

219,302 from normal
participants without

hypertension,
diabetes mellitus

(DM), and any
smoking history

Predict age and sex
from retinal fundus

images
CNN AUC 0.96 Ophthalmology [157]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

Dermoscopy

Images
350 images of

melanomas and 374
benign nevi

Acral lentiginous
melanoma diagnosis CNN AUC of over 0.80 Oncology [129]

Clinical images 49,567 images Recognize nails
nychomycosis lesions Region-based-CNN

AUC of 0.98, AUC of
0.95, AUC of 0.93,

AUC of 0.82
Dermatology [130]

Myocardial perfusion
images 1638 patients Obstructive coronary

disease prediction CNN
Sensitivity value of

0.82 and 0.69 for both
use cases

Cardiovascular [91]

Arterial labeling
Arterial spin labeling

(ASL) perfusion
images

140 subjects Monitoring cerebral
arterial perfusion CNN AUC of 0.94 Cardiovascular [44]

Frames from endoscopy Frames from
endoscopy videos

205 normal and 360
abnormal images

Detection and
localization of

gastrointestinal
anomalies

CNN AUC of over 0.80 Gastroenterology [72]

Tracking dataset
multi-instrument

Endo-Visceral Surgery
and multi-instrument

in vivo

Single-instrument
Retinal Microsurgery
Instrument Tracking

dataset,
More-instrument

Endo-Visceral
surgery and

multi-instrument
in vivo images

940 frames of the
training data (4479

frames) and 910
frames for the test
data (4495 frames)

Detect the
two-dimensional

position of different
medical instruments

in endoscopy and
microscopy surge

Convolutional
Detection regression

network
AUC of 0.94 Robotic Surgery [76]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

CT/PET-CT/SPECT

Nuclear MRIs 3D 124 double
echography

Diagnose possible
soft tissue injuries

Deep Resolve, a
3D-CNN model MSE of 0.008 Traumatology [53]

Retinal 3D images
obtained by Optical

Coherence
Tomography

269 patients with
AMD, 115 control

patients

Retina age-related
macular

degeneration
diagnostic

CNN AUC of 0 Ophthalmology [158]

123I-fluoropropyl car-
bomethoxyiodophenyl

nortropane
single-photon

emission computed
tomography (FP-CIT
SPECT) 2D images

431 patient cases

Automatic
interpretation system

in Parkinson’s
disease

CNN AUC of 0.96 Neurology-
Psychiatry [84]

Abdominal CT 3D
images 231 abdominal CT

Classify tomography
and evaluate the

malignity degree in
gastro-intestinal
stromal tumors

(GISTs)

Hybrid system
between

convolutional
networks and

radiomics

AUC of 0.882 Oncology [83]

CT image patches 2D 14,696 images Diagnose interstitial
lung disease CNN AUC of 0.85 Pneumology [46]

3D MRI and PET

93 Alzheimer
Disease, 204 MCI
Mild Cognitive

Impairment
converters and
normal control

subjects

Diagnose early
Alzheimer disease

stages
Multimodal DBM AUC of 0.75–0.95 Neurology-

Psychiatry [41]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

MRI

Diffusion-weighted
imaging maps using

MRI

222 patients. 187
treated with rtPA

(recombinant
tissue-type

plasminogen
activator)

Decide Acute
Ischemic Stroke

patients’ treatment
through volume

lesions prediction

CNN AUC of 0.88 Neurology-
Psychiatry [122]

Magnetic resonance
images

474 patients with
schizophrenia and

607 healthy subjects

Schizophrenia
detection

Deep discriminant
autoencoder network Accuracy over 0.8 Neurology-

Psychiatry [124]

Gadoxetic
acid–enhanced 2D

MRI

144,180 images from
634 patients

Staging liver fibrosis
through MR CNN

AUC values of 0.84,
0.84, and 0.85 for

each stage
Gastroenterology [64]

Resting state
functional magnetic
resonance imaging

(rs-fMRI), T1
structural cerebral

images and
phenotypic
information

505 individuals with
autism and 520
matched typical

controls

Identify different
autism spectrum

disorders
Denoising AE Accuracy of 0.70 Neurology-

Psychiatry [126]

3D MRI and PET

93 Alzheimer
Disease, 204 MCI
Mild Cognitive

Impairment
converters and
normal control

subjects

CAD for early
Alzheimer disease

stages
Multimodal DBM

Accuracy of 0.95, 0.85
and 0.75 for the three

use cases

Neurology-
Psychiatry [41]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

CT/PET-CT/SPECT

CT images, MRI
images and PET

images
6776 images

Classify medical
diagnostic images
according to the

modality they were
produced and

classify illustrations
according to their

production attributes

CNN and a synergic
signal system AUC of 0.86 Various [159]

CT image 2D
63,890 patients with
cancer and 171,345

healthy

Discriminate lung
cancer lesions in
adenocarcinoma,

squamous and small
cell carcinoma

CNN
Log-Loss error of

0.66 with a sensitivity
of 0.87

Oncology [160]

CT 2D images
3059 images from

several parts of
human body

Speed up CT images
collection and

rebuild the data
Dense-Net and CNN RMSE of 0.00048 Various [142]

CT images 3D

6960 lung nodule
regions, 3480 of

which were positive
samples and rest

were negative
samples (nonnodule)

Diagnose lung cancer
in low-dosage CT

Eye-tracking sparse
attentional model

and CNN
Accuracy of 0.97 Oncology [90]

CT images 2D and
text (reports)

9000 training and
1000 testing images

Processing text from
CT reports in order

to classify their
respective images

CNN AUC of 0,58,
0,70–0.95 Various [92]

Computed
tomography (CT)

Three datasets:
224,316, 112,120 and

15,783

Binary classification
of posteroanterior

chest x-ray
CNN 92% accuracy Radiology [161]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

MRI

Clinical
characteristics and

MRI 3D

135 patients with
short-, medium- and
long-term survival

Predict the survival
of patients with

amyotrophic lateral
sclerosis

CNN Accuracy of 0.84 Neurology-
Psychiatry [67]

Optical coherence
tomography images

52,690 AMD patients’
images and 48,312

control

Differentiate
Age-Related Macular
Degeneration lesions
in optical coherence

tomography

Modification of
VGG16 CNN

AUC of 0.92, AUC of
0.93 and AUC of 0.97
for the different use

cases

Ophthalmology [68]

Lung computed axial
tomography 2D

images and breast
ultrasound lesions

520 breast sonograms
from

520 patients (275
benign and 245

malignant lesions)
and lung CT image

data from 1010
patients (700

malignant and 700
benign nodules)

CAD system to
classify breast

ultrasound lesions
and lung CT nodules

Stacked denoising
AE AUC of 0.94 Oncology [58]

MRI 2D
444 images from 195

patients with
prostate cancer

Prevent errors in
diagnosing prostate CNN AUC of 0.94 Oncology [88]

MRI 2D

MICCAI 2009 left
ventricle

segmentation
challenge database

Determinate limits
between the

endocardium and
epicardium of the left

ventricle

RNN with automatc
segmentation

techniqes

AUC of 1.0 in the
best case Cardiovascular [132]
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Table 2. Cont.

Type of Data Sample Objective Model Design Results Therapeutic Area Paper

MRI

CT images, MRI
images and PET

images

6776 images for
training and 4166 for

tests

Classify medical
diagnostic images
according to the

modality they were
produced and

classify illustrations
according to their

production attributes

CNN and a synergic
signal system AUC of 0.86 Various [159]

Functional MRI
68 subjects perform 7
activities, and a state

of rest

Analyze cerebral
cognitive functions

3D CNN, resting
state networks AUC of 0.94 Neurology-

Psychiatry [140]

Liver MRIs

522 liver MRI cases
with and without

contrast for known or
suspected liver

cirrhosis or focal liver
lesion

Screening system for
undiagnosed hepatic
magnetic resonance

images

CNN

Reduces negative
predictive value and

leads to greater
precision

Gastroenterology [50]

MRI images

1064 brain images of
autism patients and

healthy controls.
MRI data from 110
multiple sclerosis

patient

Evaluate the quality
of multicenter

structural brain MRI
images

CNN AUC 0.90 and 0.71 Radiology [55]

Acronyms: AMD age-related Macular Degeneration, CAD Computer Aided Diagnosis, CNN Convolutional Neural Network, MRI Magnetic Resonance Images, PET Photon EmissionTomography, CT Computed
Tomography, OCT Optical Coherence Tomography, D dimensions, AUC Area Under the Curve, MSE Mean Squared Error, RMSE Root Mean Square Error, DSC Dice Similarity Coefficient.
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5. Description of Methods for Incorporating Data Types and the Applications in
Which They Are Used
5.1. Schematically Present the Methods of Knowledge Incorporation and the Types of Data Used for
DL Objectives in the Interpretation of Medical Images

We will exemplify the methods of incorporation of medical knowledge and data ac-
cording to the purpose of DL models in medical applications, namely, diagnosis-classification,
detection, segmentation, reconstruction and recovery of medical images, generation of
medical reports, see Figure 5.
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Figure 5. Knowledge incorporation methods and data types used for DL objectives in the interpretation of medical images.

5.2. Classification in Medical Images
5.2.1. Methods of Incorporating Information

Transfer learning uses multimodal medical images and natural images.
Multitask learning uses medical data from other diseases.
Curriculum learning uses pattern training to incorporate medical data from doctors.
Network design uses diagnostic pattern from medical data from doctors.
Attention mechanism used areas doctors focus on from medical data from doctors.
Decision level fusion uses features doctors focus on from medical data from doctors.
Multi-task learning/network design used from medical data from doctors

5.2.2. Methods of Incorporation of Medical Data from Doctors for Diagnosis
and Classification

Imaging doctors when interpreting medical images use patterns or procedures in
diagnosing diseases. Incorporating these patterns and procedures from physicians into
deep learning networks increases their performance.

Types of medical data used in deep learning models for diagnosing the disease:

• paternal training,
• paternal diagnosis,
• target regions,
• hand crafted features (appearance, structures, shapes),
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• related diagnostic information
• other types of diagnostic-related information

(1). The training model consists in the curricular learning through which tasks,
images evolve from simple to complex in the training process. The curriculum involves a
suite of training samples classified in ascending order of learning difficulty. The training
model through curricular learning introduced into the deep learning network is developed
by [162].

(2). General models of diagnosis of doctors, namely, the patterns and procedures used
by imaging doctors when interpreting medical images. Radiologists diagnose imaging in
three stages in the interpretation of X-ray images of the chest: overview, local lesion regions
and subsequently combine general data [163].

(3). The use of the diagnostic pattern of radiologists for the diagnosis of thoracic
disease) by extracting and combining global and local traits is carried out in [163]. Target
regions or “attention maps”. Imaging doctors focus on specific areas in the diagnosis of
diseases, “warning maps”, which indicates the target areas when interpreting images.

(4). Attention features (appearance, structure, shapes), “handcrafted characteristics”,
as they are made by doctors, can be described characteristics, asymmetry, edge, color, mar-
gin, shape, micro-calcification and echo pattern, acoustic attenuation, side acoustic shade,
and also benign-malignant risk of pulmonary nodules is classified by six characteristics of
nodules: calcification, sphericality, edge, spiculation and texture and other.

(5). Related Diagnostic Information (Merger at Decision Level, Characteristics Level
Fusion, Imput-Level Fusion, Features as Labels).

Merger at decision-level. The CNN classifier model automatically extracts and com-
bines by merger at the decision-making level of handcrafted characteristics and extracted
characteristics (contrast, texture, spiculation of the image) from CNN, by merger-level
decision-level results from two classifiers [164].

Characteristic-level fusion. Feature-level fusion model combines two handcrafted
features, parameter less threshold adhesion statistics and gray-level co-occurrence ma-
trix, with the five groups of deep learning features extracted from five different deep
models [18,37].

Input-level fusion. Input-level fusion is achieved by the fact that handmade features
are used as patches that describe specific features and are used as input for CNN followed
by combination in solving the problem. In some models these patches are used as input
into DScGAN to increase diagnostic performance.

Using features as labels of CNN. Image classification labels and labels of handmade
features are included into deep learning patterns through the multi-task learning arhitecture
to increase their performance.

(6). Other Types of Diagnostic-Related Information (Additional Labels, Additional
Clinical Diagnostic Reports).

These are represented by additional labels and clinical diagnostic reports. Type of
additional category labels for medical images, normal, malignant or benign, condition of
the lesions is incorporated into a multi-task learning structure can improve the performance
of the diagnosis of major classification load [18].

Additional clinical diagnostic reports. The clinical report is a summary of descriptions
of the doctor made during the imaging examination.

5.3. Detection in Medical Images

We can exemplify four categories:

• paternal training,
• paternal diagnosis,
• target regions,
• hand crafted features (appearance, structures, shapes).
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5.3.1. Paternal Training Is the Resolution of Tasks with Increasing Difficulties That Use
Curricular Learning to Identify and Locate Lesions in Medical Images

CASED performs adaptive curriculum sampling to solve the problem of highly data
imbalance and makes it possible for the model to distinguish nodules from immediate
proximity and subsequently enlarges the hard-declassified global context, up to uniform
categories in the empirical data pool. In this way, CASED is the most performant and is
used in the detection of pulmonary nodules in thoracic CT [165].

LUNA16 also based on curricular learning is used in the detection of cardiac [166].

5.3.2. Paternal Diagnosis

Radiologists use patterns to locate lesions in medical images, namely:

1. Combine images in different settings (brightness and contrast),
2. Uses bilateral, transverse, adjacent images,
3. Radiologists combine collected images in different settings (brightness and contrast)

to locate lesions by visual interpretation of CT images. In the same way is built a
model with multi-viewing features (FPN) brightness and contrast, combined later
using an attention module that identifies the position with an increase in accuracy
compared to NIH DeepLesion [167].

4. Bilateral information is compared by radiologists when interpreting images.

5.3.3. Handmade Characteristics

Handmade characteristics, e.g., locations, structures, shapes are represented by “Hand-
Crafted Characteristics” for Identifying target objects, nodules or lesions in medical images.

5.3.4. Target Regions

The description of the target regions, e.g., information, radiological reports, additional
labels is extracted from the radiological information and coupled with the curricular
learning and the results are used by the network in the ascending order of the difficulties.

5.4. Segmentation of Lesions and Organs into Medical Images
5.4.1. Incorporation of Data from Natural Datasets or Medical Data Sets

Transfer learning uses data from natural images for performance in the segmentation
of the medical image. The transfer of the acquired data of a CNN arhitectures originally
trained for segmenting WM hyper-intensity on old low-resolution data to new data from
the same scanner, but with good image resolution is studied by [168].

Multimodal learning in which MRI, CT, are used simultaneously by pre-trained
architecture deep learning.

5.4.2. Incorporation of Knowledge from Doctors

Training pattern. For the segmentation of lesions into medical images deep learning
models used curriculum learning.

Diagnostic pattern. Specific patterns used by doctors and embedded in the network.
Characteristics of the image (shape, location, topology).
Radiologists rely on certain characteristics of the image, shape, position, typological

lesions, when interpreting medical images.
There are three types of incorporation of features injuries from medical imaging in

deep learning architectures:

1. incorporating the characteristics of the lesions in the post-processing stage,
2. incorporating the characteristics of the lesions as elements of regularization in the

loss function,
3. learning the characteristics of the lesion through generational models.
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5.4.3. Incorporation Handmade Characteristics from Doctors

For input fusion, handmade characteristics are transformed into input patches, sub-
sequently, the original image patches and the tagged patches are inserted into a deep
segmentation network [18].

5.5. Reconstruction of Medical Image

The objective is to reconstruct a diagnostic image from a series of measurements.

5.6. Recovery of Medical Image

Deep learning architecture use knowledge from natural images (pre-trained VGG
model based on ImageNet) or medical data.

5.7. Generating Medical Reports

The deep learning models for image subtitles have been successfully applied for the
automatic generation of medical reports [169,170]. Some templates in radiologist reports
are used during the sentence generation process [80,167].

Model-agnostic method attempts to learn the short description of the text to explain
this decision-making process [171] and transfer the visual characteristics of medical images
to a graph of anomalies [18].

Module to incorporate the pre-built graph on multiple findings of the disease to help
generate reports by using the IU-RR dataset [18,172].

5.8. Applications in Medicine, Methods of Incorporation of Types of Data, Datasets and
Their Correlation

Imaging doctors combine data from different stages and experiences as opposed to DL
models that incorporate the same types and modes of handcrafted features. Data quality
and volume, annotations and labels, identification and automatic extraction of specific
medical terms can help deep learning models perform in the tasks of image analysis [18]
Simultaneous incorporation of different medical knowledge types features, labels, into DL
architectures increases their performance (see Table 3) [102].

Table 3. Applications in medicine, methods of incorporation of types of data, datasets and their correlation.

Dataset Images Methods of Incorporating
Information Application in Medicine

Data doctors focus on

Training pattern
high-level medical data, curriculum
learning

Training modelImages with
increasing complexity

• diagnosis-classification of breast
screening in DCE-RMN [61]

• application - the attention-based
curriculum, used in CNN, derived from
radiology reports [173]

• diagnosis of the proximal femoral
fracture in X-ray images [18,174]

• diagnosing of disease [18,175,176]

Diagnostic pattern, low-level medical
data, areas of images, characteristics of
diseases

General models of diagnosis of
doctors

• thoracic disease diagnosis [163]
• final prediction of the disease [177]
• diagnosis chest X-ray [178]
• dermoscopic diagnosis of the lesion [63]
• achieves mass identification accuracy in

the MommiNet network [179]
• diagnosis of skin lesions and

classification of thoracic disease [180]
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Table 3. Cont.

Dataset Images Methods of Incorporating
Information Application in Medicine

Area of interest, specific data
identified by doctors, attention maps “Attention maps” model of doctors

• glaucoma diagnosis [167]
• classification of images of tomography with

images of optical coherence of the retina
(OCT) [43]

• diagnosis of diabetic retinopathy [93]
• diagnosis of esophageal fistula to

radiotherapy [18,69]
• diagnosis of breast cancer [74]
• Detection of changes in lesions in

melanoma screening [18,75]

Attention characteristics

Hand-made characteristics

Characteristics level fusion +
Incorporation level fusion

• diagnosis-classification of lung nodules on
CT images [18,56]

• diagnosis of mammary ultrasound
images, [181]

Incorporation level fusion

• diagnosis of skin lesions [7]
• diagnosis-classification of mammographic

tumor [82]
• diagnosis of lung nodules [18,54]
• diagnosis of breast cancer [182]
• diagnosis-classification of cardiac slices [89]

Characteristics level fusion

• diagnosis of pulmonary nodules [183]
• classification of breast cancer in histological

images [146]
• diagnosis of glaucoma disease [184]
• diagnosis-classification of skin lesions [185]
• diagnosis-classification of lung

nodules [18,186]
• diagnosis of brain tumors [187]

Incorporation patch characteristics

MV-KBC
• diagnosis-classification of lung nodules [56]
• diagnosis-classification of thyroid

disease [188]

DSc-GAN
• diagnosis of thyroid nodules [18,189]
• diagnosis of breast cancer in

multi-sequence MRI [190]

As labels of CNNs

• diagnosis-classification of lung
nodules [191]

• differentiation (benign-malignant) of lung
nodules in CT scans [8]

• diagnosis of glioma [192]
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Table 3. Cont.

Dataset Images Methods of Incorporating
Information Application in Medicine

Other types of
information

Additional category label, BI-RADS
label (malignant/benign)

• predicts the sensitive, specific, balanced
result merged for images of glaucoma
in [193]

Additional clinical diagnosis reports
(abstract descriptions)

• Tie-Net classifies common thoracic
disease into chest X-rays [194]

• facilitates the interpretation of
pathological images of bladder
cancer [133]

Natural Datasets Images

Natural images
ImageNet 1 and COCO 2

Transfer learning
- fixed feature extracts
- initialization

• diagnosis-detection of lymph
node [18,195]

• diagnosis-detection of polyp and
pulmonary embolism [196]

• diagnosis-detection of breast
tumors [65]

• diagnosis-detection of colorectal
polyps [197,198]

Medical Datasets Images

Medical images
PET CT, Mammography, X-ray,
Retina-Net

Learning with more tasks (multi-task)

• PET image applications are
incorporated for the diagnosis-detection
of lesions in CT images of the liver [25]

• diagnosis-detection of liver
tumors [199]

• diagnosis-detection of breast
masses [200]

• diagnosis-detection of pulmonary
nodules in CT images [18,201]

• diagnosis-detection of retinal diseases
in the bottom of the retina [202]

• diagnosis-detection colitis in CT
images [203]

• intervertebral disc detection in X-ray
images [18,204]

• diagnosis-detection architectural
distortions in mammograms [18,205]

• diagnosis-detection breast tumors in
mammograms [18,206]

• diagnosis-detection of pulmonary lung
nodules in CT [207]

• diagnosis-detection of various lesions
(e.g., liver damage, lung lesion, bone
lesion, abdominal lesion) in CT
images [18,208]

• diagnosis-detection of malignant
lesions of the liver and reduce by 28%
false positive average per case [18,25]

• diagnosis-detection of breast masses
from digital tomosynthesis [200]
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Table 3. Cont.

Dataset Images Methods of Incorporating
Information Application in Medicine

Data doctors focus on

Training pattern
high-level medical data, curriculum
learning

Training model
Images with increasing complexity

• diagnosis-detection locates the lesion in
chest [173]

• diagnosis-detection of pulmonary
nodules in thoracic CT [18,165]

• diagnosis-detection of cardiac
landmarks [166]

Diagnostic pattern, low-level medical
data, areas of images, characteristics of
diseases

General models of diagnosis of
doctors

• diagnosis-detection of lung lesions
based on pneumonia COVID-19 [209]

• diagnosis-detection of dense vessels
and ischemia [210]

• diagnosis-detection of thrombus [211]
• diagnosis-detection of hemorrhagic

lesions [212]
• diagnosis-detection mammographic

mass [213]
• diagnosis-detection pulmonary nodule

in CT images [207]

Area of interest, specific data by doctors,
“attention maps”

Models explicitly incorporates
“attention maps”

• diagnosis-detection of thoracic
disease [173]

• diagnosis-detection of
mammograms [18,214,215]

Hand-crafted features Attention features

• diagnosis-detection mammographic
lesions [125]

• diagnosis detection of pulmonary
nodules [216]

• diagnosis-detection of thyroid nodules,
size and shape of the attribute of
nodules [18,189]

• diagnosis-detection of lymph nodes in
oncological imaging [217]

• diagnosis-detection of lung
lesions [18,218]

Natural Datasets Images

Natural images
ImageNet 1, COCO 2, Data Set Sports-1M
(1.1 million’s, video-sports) PASCALVOC
dataset

Transfer learning
- fixed feature extracts
- initialization

• diagnosis-evaluation of brain
tumors [18,219]

• diagnosis-evaluation of breast
tumors [200]

• diagnosis-evaluation of liver
lesions [220]

• diagnosis-evaluation of lesions of the
pancreas [221]

• diagnosis-segmentation of
intimate-media limits [18,196]

• diagnosis prenatal segmentation of the
ultrasound image [222]

• diagnosis-segmentation of the gland in
histopathological images [18,117]

• diagnosis-segmentation of the proximal
femur in 3D MRI [18,223]

• diagnosis-segmentation of multiple
sclerosis [224]
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Table 3. Cont.

Dataset Images Methods of Incorporating
Information Application in Medicine

Medical Datasets Images

Medical images
MRI data, CT angiography, 3DSeg-8
dataset

Learning with more tasks
(multi-task)

• diagnosis-segmentation of the left/right
lung [18,225]

• diagnosis of cerebral disease into
MRI [18,226,227]

• diagnosis-segmentation of heart vessel
without annotations used annotated
retinal images [228]

• diagnosis-segmentation of coronary
artery, with high accuracy [18]

Data doctors focus on

Deep learning:
FCN
U-Net
GAN

• diagnosis segmentation of
brain [18,227]

• diagnosis-segmentation of skin
lesions [229]

• diagnosis-segmentation of vessels [230]
• diagnosis-segmentation of anomalies in

the retina fundus images [231]

Data doctors focus on

Training pattern
high-level medical data, curriculum
learning

Training model
Images with increasing complexity
Self-paced learning (SPL)
SPL + active learning

• diagnosis-segmentation of CT images
with multiple organs [232]

• diagnosis-segmentation in 3D
pulmonary images [194]

• diagnosis-segmentation of liver
tumors [18,212]

• diagnosis-segmentation of the left
ventricle [18,233]

• diagnosis-segmenting of the finger
bones [18,234]

• diagnosis-segmentation of
vessels [18,235]

Diagnostic pattern
LIDC-IDRI dataset, BraTS 2018 dataset

General models of diagnosis of
doctors

• diagnosis on uncertain nodules [236]
• diagnosis-segmentation of heart [237]
• diagnosis-segmentation of the

liver [238]
• diagnosis-segmentation of raw tumors

and clinical target volume [18,239]

Area of interest
BRATS2015 dataset,
(ImageNet, video datasets
Used for 3D image segmentation)

The fusion at the feature level +
concatenate

• diagnosis-segmentation in
histopathological images [57]

• diagnosis-segmentation of
brain [18,240]

• diagnosis-segmentation of tumor
brain-MRI images [18,241]

• diagnosis-segmentation of cellular
nuclei [18,242]
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Table 3. Cont.

Dataset Images Methods of Incorporating
Information Application in Medicine

Specific characteristics
(shape, location, topology)

In the post-processing stage

• diagnosis-segmentation identifying
locations of breast tumors [18,243]

• diagnosis-segmentation
anatomically [244]

• diagnosis-representation of anatomical
cardiac form [245]

In the loss function

• diagnosis-segmentation of cardiac RM
images [246]

• diagnostic-segmentation skin
lesions [247]

• diagnosis-segmentation of
kidney [18,248]

• diagnosis-segmentation of liver [18,249]
• diagnosis-segmentation of cardiac

MRI [18,250]
• diagnosis-segmentation of cardiac

MRI [237]
• diagnosis-segmentation of eye [85]
• diagnosis-segmentation of brain

MRI [18,251]
• diagnosis-3D segmentation of the fine

renal artery [18,252]
• diagnosis-segmentation of cervical

cytoplasm’s [18,253]
• diagnosis-segmentation of

scapula [18,254]
• diagnosis-segmentation of liver [18,255]
• diagnosis-segmentation of

carotid [18,256]
• diagnosis-segmentation of head and

neck [18,257]

Data doctors focus on

Series of measurements Reconstruction of medical image

• magnetic resonance imaging
reconstruction by compressed
detection [258]

• image reconstruction with diffuse
optical tomography (DOT) of limited
angle breast cancer and limited sources
in a strong scattering environment [17]

Content-based image (CBIR)
External medical datasets and natural
images

Recovery of medical image

• brain tumor recovery [259]
• X-ray image Recovery [18,260]
• image recovery with chest X-ray [261]
• image recovery with X-ray thoracic

pathology [18,262]
• features extracted from health areas can

also be injected into the features
extracted from the entire image for high
recovery accuracy [18,263]
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Table 3. Cont.

Dataset Images Methods of Incorporating
Information Application in Medicine

Templates from the report of
radiologist
Visual characteristics of medical images,
IU-RR datasets, text templates

Generating Medical Reports

• some templates from the reports of
radiologists are used during the process
of generating sentences [80,167]

• model-agnostic method to learn the
short description of the text to explain
this decision-making process [18,171]

• transfers the visual characteristics of
medical images to a graph of anomalies,
then retrieves text templates based on
anomalies and their attributes for
thoracic X-ray images [18,167]

• incorporate the pre-built graph
(modeled with a CNN graph) on
multiple findings of the disease to help
generate reports by using the IU-RR
dataset [18,172]

6. Conclusions

In this paper, as a research novelty, we approached in a unitary way, the constituent
elements of DL models:

• Updated presentation of data types, DL models used in medical image analysis;
• Correlation and contribution to the performance of DL models of the constituent

elements: data type, incorporation methods and DL architectures;
• Features and “key” tasks of DL models for the successful completion of tasks in

applications in the interpretation of medical images.

The quality of the data and their volume, annotations and labels, the identification
and automatic extraction of specific terms, from reports, guides, books in the medical
field, can increase the diagnostic accuracy of doctors and help deep learning models
perform in the tasks of image analysis. Doctors use a descriptive language, namely,
contour, contrast, appearance, localization, topology, etc., or compare bilateral images. The
incorporation of these representations, attributes from images, in DL architectures increase
their performance.

Imaging doctors combine data from different stages and experiences as opposed to DL
models that incorporate the same types and modes of handcrafted features. Data quality
and volume, annotations and labels, identification and automatic extraction of specific
medical terms can help deep learning models perform in the tasks of image analysis [18].
Incorporating these features, labels, into DL architectures increases their performance [102].

The diagnostic model, the training model simultaneously incorporates high-level and
low-level knowledge (handcrafted features, anatomical priorities). High-level medical
data is incorporated as input images, and low-level medical data is learned using specific
network structures [18,237] and along with direct networking, information from low-level
medical data can also be used to design training commands when combined with the easy-
to-use training model [18,173]. Simultaneous incorporation of different medical knowledge
types can increase performance of deep learning patterns in medical applications.

DL can be a support in solving complex problems, with uncertainties of options in
investigations and therapy and could help medically and by filtering, providing data from
literature. This aspect leads to a personalized medicine of the patient’s disease with diag-
nostic and therapeutic options based on scientific evidence. Another aspect is represented
by the time encoded by the doctor in patient care, time gained by the constructive and
effective support of DL in medical decision-making and synthesis activities.
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The use of “key” characteristics specific to each constituent of DL models and the
correct determination of their correlations, may be the subject of future research, with the
aim of increasing the performance of DL models in the interpretation of medical images.

7. Research Problems

Problems in medical image analysis can be categorized as follows:

• identification and automatic extraction and standardization of specific medical terms,
• representation of medical knowledge,
• incorporation of medical knowledge.
• Problems in medical image analysis are related to:
• medical images provided as data for deep-street models require: quality, volume,

specificity, labelling.
• providing data from doctors, descriptive data, labels are ambiguous for the same

medical and non-standard references.
• laborious time in data processing are problems to solve in the future.
• lack of clinical trials demonstrating the benefits of using DL medical applications in re-

ducing morbidity and mortality and improving patient quality of life [39,102,264,265].

Full analysis of the mechanism of realization of medical applications, from data,
databases, methods of incorporation of knowledge into DL models and improvement of
DL models to their performance transposed into medical applications lead to the following
problems to be solved: identification and automatic extraction of specific terms from medi-
cal documents, representation of medical knowledge, incorporation of medical knowledge.

Specific medical terms and descriptive attributes corresponding to diseases in medical
images, by incorporating in DL models improve their performance and therefore involve
solving problems related to the identification and automatic extraction of specific terms
from medical documents, the presentation of medical knowledge, the incorporation of
medical knowledge.

Problems in medical image analysis are related to quality, volume, specificity and
data labelling in medical images used for a particular action by DL. Also, the provision
of data from doctors, handmade, ambiguous expressions for the same medical references,
uncertain limits of segments in images, low resolution of images, annotations, labels and
laborious time in data processing are problems to solve in the future.

Another problem is the lack of clinical trials demonstrating the benefits of using DL’s
medical applications in reducing morbidity and mortality and improving the quality of life
of patients.

8. Future Challenges

These consist of domain adaptation, knowledge graph, generational models, and
network architecture search techniques.

The adaptation of the domain consisted of transferring information from a source
domain to a target domain, such as adversarial learning [266], makes it narrow the domain
change between source and target domain in input space [267], feature space [268,269] and
output space [270,271]. It can be used to transfer knowledge of one set of medical data
to another [212] even when they have different modes of imaging or belong to different
diseases [18,168,272]. UDA (unsupervised adaptation of the field) that uses medical labels has
demonstrated performance in disease diagnosis and organ segmentation [18,81,188,255,273].

The knowledge graph, which has the specificity of incorporating multimodal med-
ical data achieves performance in the analysis of the medical image and the creation of
medical reports [167]. The graphs of medical data describing, the relationship between
different types of knowledge, the relationship between different diseases, the relationship
between medical datasets and a type of medical data, help the models of deep learning to
perform [274].

Generative models, GAN and AE are used for segmentation tasks in particular. GAN
uses MRI datasets for CT image segmentation [18,225,272]. GAN is a type of unsupervised
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deep learning network used in medical image analysis. AE are used in extracting charac-
teristics, shape priorities in objects such as organs or lesions, completely unsupervised and
are easily incorporated into the process of network training [18,85,237].

In traditional machine learning, the common learning process is separated and is
carried out only on certain models, data sets and tasks. Therefore, knowledge is not
retained or transferred to each other models. Instead, in deep learning, transfer learning
can use knowledge such as the weights and characteristics of a pre-trained model to prepare
a new model, as well as to address problems in the task that has a smaller amount of data.
Transfer learning with deep learning patterns is faster, has improved accuracy and/or
needs less training data [275].

A new approach to transfer learning, to address the problem of lack of data training
in medical imaging tasks is represented by the technique of learning by transfer called
dual transfer learning. Using the characteristics learned to improve the performance of
other tasks by, such as classification in skin lesions, such us, benign and malignant or in the
case of breast lesions to classify histological mammary images into four classes: invasive
carcinoma, in situ carcinoma, benign tumor and normal tissue [276].

Using cloud computing provides a solution for managing the enormous amount of
data. It also helps to increase efficiency and reduce costs. In addition, it offers the flexibility
to train DL architectures [104].

With the recent development of computing tools, including a chip for neural networks
and a mobile GPU, we will see more deep learning applications on mobile devices. It will
be easier for users to use DL [104].

Network Architecture Search Technique (NAS) can automatically identify a certain
network architecture in computer vision tasks [277] and promises that use and performance
in the medical field [18,278].

With audacity, hope and confidence in the realization of our scientific desires we,
authors, we launch an appeal to the international scientific forum with the aim that the
following ideas will be put into practice at the initiative of some standard researchers in
the field, “voices heard and heard” and who have the power to flesh them out:

• the establishment of a federation institution integrating scientific data and products
specific to the field;

• value categorization of industry-specific achievements;
• launching challenges to be developed and completed;
• facilitating the free circulation of discoveries, methods, formulas of scientific products

within this federation institution;
• establishing the board of the federation institution through the input and integration

of “consequential brains” in the field;
• the creation of a Hub of Ideas under coordination within the federation board with

assignment of themes for development on specific teams;
• joint effort for an idea launched within the federation institution;
• an inventory of functional applications and methods, performing in the specific field;
• the creation of a financing system to support and implement ideas specific to the field;
• integration of researchers with notable ideas and performance limited funding or

access to knowledge by belonging to geographical areas or institutions under repre-
sented internationally in the specific field.
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