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. ininflammation. Particularly circulating IL-13, IL-6 and IL-8 are unregulated in systemic and chronic

inflammatory conditions. Hypercoagulability is an important hallmark of inflammation, and these cytokines
are critically involved in abnormal clot formation, erythrocyte pathology and platelet hyper-activation, and
these three cytokines have known receptors on platelets. Although these cytokines are always unregulated
in inflammation, we do not know how the individual cytokines act upon the structure of erythrocytes and
platelets, and which of the viscoelastic clot parameters are changed. Here we study the effects of IL-13,
IL-6 and IL-8 at low physiological levels, representative of chronic inflammation, by using scanning electron
microscopy and thromboelastography. All three interleukins caused the viscoelastic properties to display
anincreased hypercoagulability of whole blood and pathology of both erythrocytes and platelets. The most
pronounced changes were noted where all three cytokines caused platelet hyper-activation and spreading.
Erythrocyte structure was notably affected in the presence of IL-8, where the morphological changes
resembled that typically seen in eryptosis (programmed cell death). We suggest that erythrocytes and
platelets are particularly sensitive to cytokine presence, and that they are excellent health indicators.

Complex interactions exist between cytokines and inflammation, and specifically the interleukin family plays
a fundamental role in systemic inflammation. Particularly IL-13, IL-6 and IL-8 are present in whole blood, and
measurable (in pg.mL™') in most systemic inflammatory conditions. An important hallmark of systemic inflam-
mation is a pathological coagulation potential, and hypercoagulation is also found in (most) inflammatory con-
ditions (discussed extensively in refs 1-12).
Proinflammatory cytokines are capable of activating the coagulation system and also play an important role in
the down-regulation of important physiological anticoagulant pathways!?. Also, plasma levels of several inflam-
mation markers have been found to be associated with future cardiovascular risk in a variety of clinical settings'*.
The coagulation system is primarily triggered in response to damage to the endothelium, which allows the expo-
sure of blood clotting factors to extravascular tissue. In healthy individuals, hemostasis is closely regulated by
several anticoagulant mechanisms that balance the procoagulant forces and thus preventing untimely vascu-
lar clotting®®. Pro-inflammatory cytokines and chemokines can affect all coagulation pathways'¢. Therefore the
intricate relationship between the presence of cytokines resulting in inflammation and hyper-coagulation, are
particularly relevant in the pathogenesis of vascular disease. See a high-level overview (Fig. 1) that illustrates how
coagulation is affected by inflammation and a changed cytokine profile; adapted from refs 17-21.
In this paper, we are particularly interested in the effects of circulating IL-13, IL-6 and IL-8 on both erythro-
cytes (RBCs) and platelets, and how exposure to these interleukins may affect platelet and RBC structure during
inflammation.
Interleukin 1 Receptor 1 (IL1R1) and its ligand, IL13, are unregulated in cardiovascular disease and infection?2.
IL-103 is also known to be present in autoimmune conditions and contributes to several chronic diseases, includ-
. ing atherosclerosis and type 2 diabetes*~**. IL-1c and IL-10 have a natural antagonist, IL-1Ra and both bind to
. the same receptor molecule, IL-1 receptor 1; see refs 26,27 for extensive discussion on the role of particularly

IL-10 in inflammation. Bursts of IL-1(3 are involved in acute attacks of systemic or local inflammation, and also in
. myocardial infarction or stroke?. IL-10 also plays a significant role in the inflammation induced by Helicobacter
© pylori®®. RBCs do not have an IL-13 receptor binding site, but platelets express the IL1R1 receptor, and respond to
: IL-1B; and in e.g. maturing thrombi platelets can accumulate IL-132*%,
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Figure 1. The intricate relationship between inflammation and hyper-coagulation. This diagram focuses
on the bidirectional relationship between inflammation and coagulation and the role that increased pro-
inflammatory cytokines in both acute and chronic systemic inflammation plays in the activation of the
coagulation system.

IL-6 is a multifunctional cytokine that regulates the immune response, haemopoiesis, the acute phase
response, inflammation® and the central nervous system?®"2. Its expression is high and transiently unregulated in
nearly all pathophysiological inflammatory conditions and also in autoimmune diseases®***. IL-6 trans-signaling
is also critically involved in the maintenance of a disease state, by promoting transition from acute to chronic
inflammation?®. IL-6 exerts its biological activities through two molecules: IL-6R (IL-6 receptor) and by the
membrane-bound 3-receptor glycoprotein 130 (gp130)°1%. Transduction of the signal is mediated by gp130 and
also by trans-signaling, where IL-6 binds to soluble forms of the IL-6R (sIL-6R). These agonistic IL-6/sIL-6R
complexes can in principle activate all cells due to the uniform expression of gp130 (which is present on all
cells)*343738 Resting platelets also express gp130 on their membranes, and in the presence of IL-6 (produced by
stressed endothelial cells), platelet-derived IL-6 trans-signaling happens, and could be crucial in the development
of inflammation within a damaged vessel*® and in platelet thrombogenicity*.

IL-8 is also a well-known circulating inflammatory cytokine**2. Macrophages and other cell types such as
epithelial cells, airway smooth muscle cells and endothelial cells produce IL-8. There are many receptors on the
surface membrane capable of binding IL-8; the most frequently studied types are the G protein-coupled serpen-
tine receptors CXCR1 and CXCR2#**, Platelets may have IL-8 receptors, and it was found that IL-8-dependent
activation of washed platelets may happen, leading to procoagulant activity*.

Plasma and serum levels of IL-1f3, IL-6 and IL-8 are measured in pg.mL™! and the mean concentrations of
healthy individuals and those with inflammatory conditions are typically as follows:

o IL-13,+0.7-1.1 pg.mL"! in healthy individuals and*® and +30 pg.mL " in unstable angina pectoralis'*.

o IL-6: £4 pg.mL~! in healthy individuals and levels in psoriasis +14 pg.ml~14’.

o IL-8: +14pg.mL! in healthy individuals and in patients with active psoriasis: £40 pg.mL~!% and unstable
angina pectoralis'.

After taking all the evidence into consideration, we note that there is no research that we could find, that
specifically looks at the individual effects of the 3 cytokines on RBCs and platelets, to determine their individual
effects, using specifically ultrastructure. The question also arose: are all cytokines equal or is there 1 signal one
among the 3 that has a more pronounced effect than the others. Our hypothesis therefore is that IL-13, IL-6 and
IL-8 individually cause changes to the coagulation profiles and to platelets due to their binding to platelets; but
that IL-6 might possibly show the most effects on RBCs, due to the fact that it has an universal binding site on all
cells, including RBCs. We tested this hypothesis by looking at clotting, platelet hyper-coagulation and eryptosis,
adding these cytokines individually, at low concentrations, and used thromboelastography and scanning electron
microscopy to test our hypothesis. We also compared the results from this study with ultrastructural research
previously done using blood from inflammatory conditions, with known cytokine upregulation.

Materials and Methods
Ethical statement. This study was approved by the Ethical Committee of the University of Pretoria (South
Africa). A written form of informed consent was obtained from all healthy donors (available on request). The
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THROMBOELASTIC PARAMETERS

R value: reaction time measured
in minutes

Time of latency from start of test to initial fibrin formation
(amplitude of 2 mm); i.e. initiation time

K: kinetics measured in minutes

Time taken to achieve a certain level of clot strength (amplitude
of 20 mm); i.e. amplification

A (Alpha): Angle (slope between
the traces represented by R and K)
Angle is measured in degrees

The angle measures the speed at which fibrin build up and cross
linking takes place, hence assesses the rate of clot formation; i.e.
thrombin burst

MA: Maximal Amplitude
measured in mm

Maximum strength/stiffness of clot. Reflects the ultimate
strength of the fibrin clot, i.e. overall stability of the clot

Maximum rate of thrombus
generation (MRTG) measured in

Dyn.cm~2s7!

The maximum velocity of clot growth observed or maximum rate
of thrombus generation using G, where G is the elastic modulus
strength of the thrombus in dynes per cm~2

Time to maximum rate of
thrombus generation (TMRTG)
measured in minutes

The time interval observed before the maximum speed of the
clot growth

The clot strength: the amount of total resistance (to movement of
the cup and pin) generated during clot formation. This is the total
area under the velocity curve during clot growth, representing
the amount of clot strength generated during clot growth

Total thrombus generation (TTG)
measured in Dyn.cm™2

Table 1. TEG parameters typically generated for whole blood.

methods were carried out in accordance with the approved guidelines. Blood was collected and methods were
carried out in accordance with the relevant guidelines of the ethics committee (ethics number: 506/2014 and
298/2016: E Pretorius and J Bester: principal investigators for use of control blood; ethics number for Alzheimer
type study: 81/2013; ethics number for Parkinson’s disease study: 80/2013; ethics number for Type II study:
68/2014; and ethics number for rheumatoid arthritis study: 462/2013). We adhered strictly to the Declaration of
Helsinki.

Concentration of interleukins used. We exposed healthy whole blood to a final exposure concentration
of 20 pg.mL~! IL-18, 15 pg.mL~" IL-6 and 40 pg.mL~! IL-8, for 10 minutes at room temperature, as these con-
centrations are in line with concentrations of these cytokines found in plasma and serum of systemic chronic
inflammation'#*%4. Concentrations of cytokines are mostly measured in either plasma or serum. We took excep-
tional care to determine from literature the concentrations in healthy and diseased individuals. We then decided
on concentrations that are low, even for systemic inflammation (but higher than in healthy individuals); and not
nearly as high as is found in acute inflammation. The interleukins were purchased from Sigma (catalogue num-
bers: IL-103: 19401, IL-8: 1645, IL-6: 12786).

Healthy volunteer details and blood collection. Blood samples were obtained from 10 healthy indi-
viduals of ages ranging from 18 to 60. Blood was collected in one 4.5 mL citrate tube. This collection was done by
a medical doctor and all handling of samples were performed under very strict aseptically conditions, in order to
prevent contamination of samples.

Inflammatory patient details and blood collection. In this paper, we include SEM micrographs taken
as part of previous published papers, to support the in vitro results presented here*®->2. The inflammatory blood
sample preparation was done as discussed for the healthy volunteers and also in the various papers itself.

Data sharing. Raw data, extensive SOPs for TEG and SEM, including original images without color and
micrographs can be accessed at: https://1drv.ms/f/s!AgoCOmY3bkKHbAmM9Z0xJbqtthTA, and on the corrre-
sponding author’s researchgate profile, https://www.researchgate.net/profile/Etheresia_Pretorius, as raw data.

Thromboelastography. Coagulation parameters, using whole blood (WB) of healthy individuals, were
done using thromboelastography (TEG). WB collected in citrate tubes were left for 30 minutes at room tempera-
ture before the experiment was started. 30 minutes after blood was drawn in citrated tubes, the WB was incubated
for 10 minutes with each of the interleukins at the final exposure concentration mentioned above. 340 pl of the
interleukin-incubated WB and naive WB were placed in a disposable cup in a computer-controlled TEG hemo-
stasis system (Model 5000, Hemoscope, Niles, IL), with addition of 20 pul CaCl, as the last step to initiate clotting.
Thrombelastographic data was collected until maximum amplitude (MA) is reached or 60 min had elapsed®*—%.
See Table 1 for the parameters that are obtained when whole blood-clotting profiles are studied using the TEG;
this table was adapted from refs 59-61. TEG is typically used to determine clot formation and clot strength®2.
Statistical analysis was done with the program StatsDirect and p-values were obtained using non-parametric
Mann-Whitey analysis.

Scanning electron microscopy. After the blood was collected (also left in citrate tubes fro 30 minutes) and
incubated with the interleukins for 10 minutes, 10 ul of WB with added interleukins and naive WB were placed
directly on a glass cover slip, fixed, dehydrated, dried, mounted and coated with carbon according to previously
described methods®. A high-resolution crossbeam 540 Zeiss scanning electron microscope was used to study the
surface morphology of erythrocytes and platelets. Micrographs were taken at 1kV. Due to the high quality of the
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TEG Results of Naive Whole Blood With and Without Added Interleukins

R K Angle MA MTRG TMRTG TTG
Healthy individuals | 8.95 (£1.9) | 3.6 (4:0.98) | 47.8 (£7.6) | 54.4 (+4.1) | 4.0 (+1.4) | 12.96 (+3.2) | 595.9 (£114.2)
With added IL-13 7.6 (£3.0) | 4.1(£1.2) |40.1(£7.0) | 46.6 (£6.1) | 2.7 (£1.1) | 10.9 (£3.7) | 436.9 (£108.4)
P-value 0.36 0.10 0.06 0.002 0.04 0.18 0.002
With added IL-6 7.3 (£2.5) | 3.4 (£1.03) | 48.6 (£9.9) | 50.3 (£3.2) | 3.4 (£0.9) | 10.5(£3.8) | 508.4 (+75.4)
P-value 0.16 0.80 0.85 0.03 0.30 0.045 0.03
With added IL-8 52(40.78) | 8.3(£3.4) | 31(£6.4) | 31(£4.99) | 1.3(£04) | 6.4(F£2.1) 227.6 (+£49.9)
P-value 0.0014 <0.0001 0.0002 <0.0001 <0.0001 0.0020 <0.0001

Table 2. TEG results of naive whole blood with and without added interleukins, showing medians,
standard deviations and P-values (2-sided P-value taken) (Mann-whitney analysis); significance indicated
inred.

== 100 nm

Figure 2. (A) A low magnification to show overall view with RBCs and a platelet with slight pseudopodia
formation due to contact activation. (B) Representative RBC from a healthy individual; (C) high magnification
of RBC membrane; (D) platelet showing slight pseudopodia formation due to contact activation. Micrographs
were taken at 1 kV using a crossbeam 540 Zeiss scanning electron microscope. No changes were done on actual
figures and color enhancement was done using Adobe®Photoshop CS6® version 13.0 x 64.

SEM images, no processing was done except to add color using Adobe®Photoshop CS6® version 13.0 x 64. For a
significant selection of our raw data see https://1drv.ms/f/s!AgoCOmY3bkKHbAmM9Z0xJbqtthTA.

To relate our in vitro results to actual in vivo results as seen in whole blood of actual patients with known
systemic inflammation, we add SEM micrographs from individuals with type II diabetes, rheumatoid arthritis,
Parkinson’s disease and Alzheimer’s type dementia.

Results

Table 2 shows the TEG whole blood results of the samples. Addition of the three cytokines to whole blood, all
showed an increased clotting potential, confirming their role in increased hypercoagulability, during inflam-
mation. Noteworthy changes in the following parameters are that the R-time was shortened with addition of
all three interleukins, with a decreased maximum velocity of clot growth (MA), as well as a decreased velocity
of clot growth (MRTG) and a decrease in time before maximum velocity of clot growth (TMRTG) and clot
strength (TTG). Significant changes in MRTG, TMRTG and TTG are indicative of specific modifications during
fibrin formation from fibrinogen, while the other parameters are indicative of interactions of all cellular compo-
nents involved in coagulation. From these results, IL-1(3 caused significant changes in the blood clotting profiles
(see Table 2). The resulting clot is formed faster, is significantly less stable (MA), with a significantly decreased
velocity (MRTG) to reach the maximum clot growth, resulting in a unstable and fragile clot. This is an indication
of clot hypercoagulability due to IL-13 exposure. IL-6 also caused the clot to form faster, it is also significantly
less stable, but it has a significantly decreased TMRTG and TTG, indicating that a unstable, fragile clot is formed
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Figure 3. (A,B) Representative RBCs and platelet clumps from a healthy individual, after whole blood was exposed
to IL-13; (C) high magnification of RBC membrane; (D) Platelet that shows spreading and hyper-activation.
Micrographs were taken at 1 kV using a crossbeam 540 Zeiss scanning electron microscope. No changes were done
on actual figures and color enhancement was done using Adobe®Photoshop CS6® version 13.0 x 64.

Figure 4. (A,B) Representative RBCs and platelet clumps from a healthy individual, after whole blood was
exposed to IL-6; (C) high magnification of RBC membrane; (D) Platelet that shows spreading and hyper-
activation. Micrographs were taken at 1 kV using a crossbeam 540 Zeiss scanning electron microscope. No
changes were done on actual figures and color enhancement was done using Adobe®Photoshop CS6® version
13.0 x 64.

faster. I1-6 therefore caused a more hypercoagulable clot than IL-13, likely due to a significant change to fibrin
(ogen). IL-8 caused significant changes in all TEG parameters, suggesting that it is the most potent procoagulant
cytokine from the 3 studied. It caused the clot to form faster, reaching clot strengh significanlty slower, with a
decreased thrombin burst, resulting in a slower fibirn cross-linking (indicated by the angle parameter). All of
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Figure 5. (A,B) Representative RBCs and platelet clumps from a healthy individual, after whole blood was
exposed to IL-8; eryptotic cells indicated with arrows. (C) High magnification of RBC membrane, showing
ultrastructural changes; (D) Platelet that shows hyper-activation. Micrographs were taken at 1kV using

a crossbeam 540 Zeiss scanning electron microscope. No changes were done on actual figures and color
enhancement was done using Adobe®Photoshop CS6® version 13.0 x 64.

the above-mentioned parameters contributes to a significantly unstable clot (shown by a significantly decreased
MA). IL-8 is therefore the cytokine that caused the most significant changes at all levels of coagulation, including
fibrin(ogen), thrombin and cellular interactions.

Figure 2A,B shows representative RBCs and a close-up of the membrane (120 000x machine magnification)
of a healthy individual is shown in Fig. 2C. Figure 2D shows a typical platelet, with slight pseudopodia formation
due to contact activation. Figures 3 to 5 shows similar micrographs where the three interleukins were added to
whole blood respectively.

It is also well-known that a general hypercoagulable state is present in various inflammatory conditions and we
and others have shown changes to RBC (eryptosis) and platelets hyper-activation in various conditions, including
type 2 diabetes, Parkinson’s disease, Alzheimer’s disease and rheumatoid arthritis*®->2 In all of these diseases, the
3 cytokines of interest in this paper, feature prominently as major mechanistic role players in the inflammatory
profiles of the diseases. See Fig. 6 to show micrographs that were taken as part of the previously mentioned stud-
ies, to support the evidence presented here. Obviously in these in vivo situations, all 3 cytokines are upregulated
simultaneously, and in this paper the idea is to show the effects of the individual cytokines.

As seen with the TEG results, the SEM confirms that all 3 cytokines act upon the cellular component of WB,
and causes platelet hyper-activation and specifically IL-8 causes changes that we relate to the initiation of RBC
eryptosis and visible structural changes to RBC membranes were noted (see Fig. 5).

Discussion
Increased levels of IL-103, IL-6 and IL-8 are known to play an important role in both acute and chronic inflam-
mation, with resulting pathological clotting. However, we know little about the effects of these interleukins on
the ultrastructure of RBCs and platelets or how they change the individual viscoelastic properties involved in clot
formation. As shown in Fig. 1, the interactions of the 3 cytokines are complex and IL-103, IL-6 as well as IL-8, and
their mechanism of action are typically implicated in pro-inflammatory induced coagulation'’-2!. IL-6 is primar-
ily involved in the up-regulation of tissue factor that brings about initiation of coagulation. IL-13 down-regulates
thrombomodulin and consequently causes defects in anticoagulant proteins, specifically impairing activation of
protein C. The activation of protein C (in a healthy individual) is an important step in the anti-coagulant pathway.
During IL-1f presence, as seen in inflammation, it acts as a procoagulant to impair protein C activity. In a healthy
individual, thrombomodulin has an anti-inflammatory activity, and down-regulation due to IL-13, impairs this
protective effect. IL-8 promotes procoagulant activity, by triggering platelet activation®. In various papers, others
and we have shown the effect of an upregulated inflammatory profile due to conditions like Alzheimer’s disease,
Parkinson’s disease, T2D and rheumathoid arthritis in blood of these patients. Various research papers that sup-
port the effects of these upregulated cytokines resulting in a dysregulated immune system, specifically resulting
in eryptosis, is therefore important to note-"2,

In this paper we used TEG to track clot formations over time and we used the standard procedure where we
measured clotting parameters, from clot initiation until maximum clot strength or stiffness of clot were reached
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Figure 6. Micrographs from inflammatory diseases where IL-103, IL-6 and IL-8 upregulation plays a
fundamental role in the pathogenesis and hypercoagulability of the diseases. (A) Alzheimer’s disease;

(B) Parkinson’ disease; (C) type 2 diabetes; (D) rheumathoid arthritis. Micrographs were taken at 1kV using
a crossbeam 540 Zeiss scanning electron microscope. No changes were done on actual figures and color
enhancement was done using Adobe®Photoshop CS6® version 13.0 x 64.

(MA), after addition of CaCl, to reverse the anti-clotting action of citrate. TEG therefore provides descriptive
clotting parameters over time. SEM ultrastructure, displays a single snapshot after 10 minutes exposure of WB to
the 3 interleukins, to visually show how the interleukins affect cell structure.

Our hypothesis stated that IL-13, IL-6 and IL-8 individually will cause changes to the coagulation profiles and
to platelets due to their binding to platelets; but that IL-6 might possibly show the most effects on RBCs, due to
the fact that it has an universal binding site on all cells, including RBCs. All 3 cytokines did indeed change clot-
ting profiles and caused platelet hyper-activation. Here we confirmed a changed clotting profile in the presence
of IL-1, IL-6 and IL-8, using TEG. IL-8 showed the most pronounced hypercoagulability in TEG, where all the
clotting parameters where significantly different to the naive whole blood parameters (Table 2). The very sensitive
SEM analysis showed changes in RBCs and platelets after exposure to all three interleukins. SEM analysis showed
that, with the addition of IL-103, IL-6 and IL-8 to whole blood (Figs 3 to 5), platelets were hyper-activated, showing
pronounced spreading, and clumped together. They were also closely associated and attached their pseudopodia
onto RBC membranes. Platelets have receptors for all three interleukins, however, IL-6, is the only one of the three
that actually has a receptor on RBCs; as in principle it activates all cells due to the uniform expression of gp130.
To our surprise and against our hypothesis (where we believed that possibly only IL-6 might cause eryptosis), the
addition of IL-8 not only showed the most pronounced effects on TEG parameters, but also on SEM, and it caused
some RBCs to become eryptotic (see Fig. 5A,B). The other 2 cytokines did not significantly affect RBC structure.
Most RBC membranes, in the presence of IL-8, showed pathological membrane changes (see Fig. 5C). Eryptosis is
RBC programmed cell death and has been discussed numerous times by”*-#2. It is characterized by cell shrinkage,
cell membrane blebbing and cell membrane phospholipid scrambling®; and it involves COX, PGE,, ceramide,
and activation of calpain. All of these biochemical changes inside the cell lead to the morphological pathology,
which is characteristic of eryptosis. These pathologies are visible as cell shrinkage, membrane scrambling and
membrane blebbing®>#2. We have previously reported eryptotic RBCs in inflammatory conditions like Parkinson’s
disease®? and Alzheimer’s disease®*, where IL-8 is also known to be unregulated. We show micrographs from such
individuals in Fig. 6. Although our results showed that IL-8 causes the most pronounced changes in WB, we could
not find literature evidence that IL-8 has receptors on RBC membranes. We could also not find evidence that pre-
vious researchers have found that IL-8 is associated with the induction of eryptosis, however, it is a well-known
activator of apoptosis (which is similar to eryptosis vs. programmed cell death)35%. It is also well known that IL-8
is closely involved in the traditional apoptotic pathways where e.g. COX and PGE, play important roles in apop-
tosis initiation. Although we do not have evidence that IL-8 indeed binds to an RBC receptor, we show here that
it does indeed causes the induction of eryptosis, confirmed by morphological changes.

RBCs and platelets are particularly sensitive to systemic inflammatory changes. Ultrastructure of RBCs, plate-
lets as well as viscoelastic properties of clots formed with whole blood, might give great insight on effects that
cytokines may have on the development of conditions like atherosclerosis, thrombosis and hypercoagulability.
These biophysical readouts are therefore excellent health indicators and may be exploited in therapeutic studies.
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