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Abstract

Motivation: Genome sequencing projects sometimes uncover more organisms than expected, es-

pecially for complex and/or non-model organisms. It is therefore useful to develop software to

identify mix of organisms from genome sequence assemblies.

Results: Here we present PhylOligo, a new package including tools to explore, identify and extract

organism-specific sequences in a genome assembly using the analysis of their DNA compositional

characteristics.

Availability and implementation: The tools are written in Python3 and R under the GPLv3 Licence

and can be found at https://github.com/itsmeludo/Phyloligo/.

Contact: ludovic.mallet@inra.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of sequencing technologies has enabled to target the

genome of complex non-model organisms and communities of organ-

isms. Some of these non-model organisms can be challenging to isolate

from their environment or cannot be cloned in vitro. They might alterna-

tively be compulsorily associated with cognate commensal or parasitic

organisms, or even embedded within a host. Consequently, genome as-

sembly datasets sometimes include DNA from unexpected sources like

mixture of untargeted species, but may also contain organelles or even la-

boratory contaminants. The presence of additional untargeted species

was indeed reported in several recent genome assemblies, for instance in

the draft assembly of domestic cow (Merchant et al., 2014), in several

isolates of the phytopathogenic fungi Magnaporthe oryzae (Chiapello

et al., 2015) or recently in the tardigrade genome (Delmont and Eren,

2016). Such mixed assemblies may produce several biases and problems

in downstream bioinformatics analyses and raise the need for tools able

to deal with mixed-organism DNA assemblies.

Several tools were recently designed or used to detect and filter

untargeted organisms from sequence datasets. A first type of ap-

proach, used by khmer software (Crusoe et al., 2015), is to compute

k-mer frequencies on short reads to pre-process and filter read data-

sets prior to de novo sequence assembly. Other packages like

Blobtools (Kumar et al., 2013) and Anvi’o (Eren et al., 2015) com-

bine sequence properties (GC content, oligonucleotide profile) and

additional information such as depth of coverage, similarity to pub-

lic databases and reference gene sets to identify untargeted species

using both raw reads and assembled contigs of a genomic dataset.

Finally, a last type of approach is to use software dedicated to meta-

genomic species read binning, such as CONCOCT (Alneberg et al.,

2014) that use sequence composition and coverage across multiple

samples to automatically cluster contigs into genomes or Kraken

(Wood and Salzberg, 2014) that relies on exact alignment of k-mers

to a k-mer reference database to assign taxonomic labels to metage-

nomic DNA.
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Here we present PhylOligo, a toolset designed to explore, segment

and subtract untargeted material from assembled sequences using an

ab initio alignment-free approach relying only on the intrinsic oligo-

nucleotide signature of an assembled genomic dataset. Compared to

existing software, PhylOligo provides several features to explore

assemblies, including: (i) a customizable oligonucleotide pattern,

including continuous and spaced pattern k-mers (B�rinda et al., 2015;

Leimeister et al., 2014; Noé and Martin, 2014). (ii) handling bare

contig-level assemblies (raw reads and coverage information are not

required for detecting untargeted species) (iii) an interactive

cladogram-based visualization of the contig signature similarity and

cumulative size to explore the signature clusters to profile putative

additional materials (iv) an effective sliding window-based partition-

ing scan of the assembly based on a supervised learning and a double-

threshold system asserting that regions are labelled as untargeted or-

ganism when meeting two criteria: (i) being distant enough from the

host sequence oligonucleotide profile (first threshold) and (ii) being

close enough from a cluster of untargeted sequences previously se-

lected by supervised learning (second threshold).

Our strategy present several advantages. (i) Unlike approaches

that process short read datasets prior to the de novo sequence assem-

bly and use sequence homology information, PhylOligo allows the

identification of potentially uncharacterised and distantly related se-

quences in already assembled genomic datasets, the handling of any

type of genome assembly, shunning the dependency on the availabil-

ity of raw sequencing reads data, additional data and patchiness of

knowledge in databases; (ii) The double-threshold species-specific

filtration prevents the removal of HGTs and the subsequent frag-

mentation of the assembly; (iii) Learning the compositional profile

on longer and assembled sequences such as contigs compared to

unassembled reads, allows for a refined oligonucleotide profile, un-

biased from heterogeneous sequencing depth along the sequence.

Moreover, the partitioning process of PhylOligo provides the possi-

bility to detect and split chimeric sequences or mis-scaffolding;

2 Workflow strategy

Our strategy includes 3 main steps: (i) assembly exploration using an

interactive tree visualization based on oligonucleotide profiles com-

puted from all genomic contigs, (ii) oligonucleotide profile prototype

learning based on contig subsets selected by the user at nodes of the

tree and (iii) assembly partitioning to locate organism-specific regions

and classify contigs or segments according to the learned prototypes.

2.1 Assembly exploration
PhylOligo allows for a visual exploration of the compositional similarity

distribution and structure of the contigs in an assembly based on either

continuous (k-mers) or spaced-pattern oligonucleotide frequencies. The

oligonucleotide profile of each contig is computed and a pairwise dis-

tance matrix based on metrics including Euclidean or Jensen-Shannon is

produced (Fig. 1A) to generate an interactive Neighbour-Joining tree.

Branch width is drawn proportional to the cumulated length of the con-

tigs in a clade, allowing the user to track where the main part of the as-

sembly clusters (assumed to correspond to the targeted organisms) and

what significant clades branch out as hint for separate organisms (see

Fig. 1B). Thanks to the Ape package (Paradis et al., 2004), sequences

from a clade are interactively selected on the tree and exported to fasta

files to learn a prototype of their oligonucleotide profile. An alternative

unsupervised clustering method relying on HDBSCAN (Campello et al.,

2013) and t-SNE (van der Maaten and Hinton, 2008) for visualization

is also implemented (Fig. 1C).

2.2 Prototype learning
ContaLocate then allows the learning of oligonucleotide profiles

from the main and presumed additional organisms identified by

user-selected subsets from the previous step. These subsets must cu-

mulate at least 50 Kb in order to generate an accurate prototype suf-

ficiently representative of an organism. Learning subsets can be

generated or complemented from public sequences, specialised data-

bases (Ménigaud et al., 2012) or other tools (Alneberg et al., 2014;

Eren et al., 2015; Kumar et al., 2013).

2.3 Assembly partitioning
The assembly is then scanned with sliding windows to locate

organism-specific regions using oligonucleotide divergences computed

against the targeted and the additional profiles. The distribution of the

divergence against both is used to establish two thresholds best separat-

ing the different modes in the density functions (see Fig. 1D). The

thresholds are visually validated by the user and can also be adjusted

manually. Genomic regions with a divergence simultaneously crossing

respective thresholds to the targeted and to the additional profiles are

labelled as part of the additional organism and exported as a GFF file.

3 Results

3.1 Synthetic datasets
We evaluated the performances of PhylOligo by generating artificial

contaminations on 32 contig datasets generated by GRINDER (Angly

et al., 2012) from real Refseq genome data (see section 6.1 of

Supplementary Material for detailed protocol). The species were

chosen to cover the main domain of life (archea, bacteria, fungi,

protozoa and vertebrate) and different degrees of genome complexity,

content, length and composition. We benchmarked the automatic ver-

sion of PhylOligo that uses the unsupervised HDBSCAN clustering

and evaluated performances by using three indicators: (i) the cluster

specificity i.e. the maximum fraction of contaminant in a cluster, (ii)

the cluster sensitivity, i.e. the fraction of the whole contaminant

A B
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Fig. 1. Visualization and interactive exploration of assemblies. (A) Pairwise

compositional divergence of contigs produced by PhylOligo. Contigs are re-

ordered by hierarchical clustering. (B) Contig tree produced by PhylOligo on

the tardigrade genome. The clade in red is the current selection pointed by

the user. (C) Contigs clustered by HDBSCAN on oligonucleotide frequencies,

Data from Magnaporthe oryzae. Red and blue are predicted clusters, grey are

unclassified. The hyperspace is reduced to 2 dimensions with t-SNE.

(D) Determination of the untargeted threshold in ContaLocate based on the

distribution of distances between the untargeted clade and the scanning win-

dows over the whole assembly (Color version of this figure is available at

Bioinformatics online.)

3284 L.Mallet et al.



aggregated in the cluster and (iii) an hybrid score, which indicated the

best computed value of the product of cluster specificity and sensitiv-

ity. We used PhylOligo default parameters on all the combinations of

the 32 simulated genomes assemblies. We also evaluated the impact

of the k-mer parameter by panelling continuous and spaced-pattern k-

mers on a focus subset of ten pairs (see results in Table 1). Complete

results are detailed in section 6.2 of Supplementary Material. Overall,

the benchmark demonstrates a great ability to discriminate contamin-

ant clusters with very high specificity and good sensitivity, suited with

the requirements for supervised learning and partitioning. Concerning

k parameter impact, we obtained best results according to our hybrid

score for two spaced patterns: 11001 (mean:0.8133, median: 0.9499)

and 110101 (mean:0.8344, median:0.9459). Continuous k-mers of

length 4 and 5 also performed well but with slightly lower scores (me-

dian scores of 0.7909 and 0.9305 for k¼4 and 5 respectively).

3.2 Real datasets
PhylOligo has been successfully applied to identify untargeted large bac-

terial regions in four out of nine fungal genomic datasets of

Magnaporthe (Chiapello et al., 2015). GOHTAM (Ménigaud et al.,

2012) taxonomical assignment of these additional regions confirmed

their homogeneity and origin from Burkholderiales. Targeted Blast

comparisons indicated that some of these supplementary regions were

almost identical to Burkholderia fungorum sequences (100% identity

for 16S, recA and gyrB genes) suggesting an origin or relatedness to one

or several bacterial isolate(s) of this species. PhylOligo was applied to

filter genome assemblies, validated with BUSCO (Sim~ao et al., 2015)

and DOGMA (Dohmen et al., 2016) (see Supplementary Material) and

allowed to continue further bioinformatics analyses without rebuilding

the costly initial genome assembly and annotation processes.

PhylOligo was also used to explore the scaffolds of the tardigrade

assembly (Boothby et al., 2015), for which a multiple contamination

was previously proposed (Delmont and Eren, 2016; Koutsovoulos

et al., 2016). We compared the the topology of the compositional

cladograms established with PhylOligo on both the initial and the fil-

tered assembly obtained with Anvi’o (Eren et al., 2015). Our results

showed that the cladogram produced with PhylOligo exhibited a top-

ology where the curated assembly was monophyletic, with a sequence

subset and topology highly concordant with the results of Anvi’o (see

Supplementary Material Section 5.2).

3.3 PhylOligo performances
PhylOligo handles assembly contigs up to a count of several dozen

thousand on a modern workstation within minutes and up to few

hundred thousand on a high-memory server. Input sequences can be

quality- filtered or sub-sampled with a preprocessing tool to allow

for improved signal and quick tests. Several parallel computation

optimizations and data compression methods including HDF5 are

available to improve performance on larger datasets.
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Table 1. Impact of k-mer pattern on the hybrid score (best com-

puted value of the product of cluster specificity and sensitivity) for

10 pairs of simulated data

K-mer pattern

Species mix 111 1111 11111 11001 110101 111001

S.enterica in A.fumigatus 0.39 0.79 0.94 0.45 0.93 0.97

B.cereus in C.canadensis 0.99 0.99 0.98 0.99 0.98 0.99

B.mallei in H.sapiens 1.00 0.99 0.99 0.99 0.99 0.99

A.fulgidus in P.tetraurelia 0.99 0.99 0.99 0.99 0.99 0.99

A.fumigatus in P.tigris 0.96 0.96 0.93 0.95 0.95 0.95

G.intestinalis in X.tropicalis 0.95 0.99 0.95 0.99 0.96 0.98

S.enterica in T.vaginalis 0.41 0.50 0.70 0.72 0.71 0.72

B.cereus in A.australis 0.73 0.73 0.71 0.72 0.71 0.72

S.cerevisiae in T.vaginalis 0.60 0.56 0.49 0.57 0.51 0.58

S.pombe in T.vaginalis 0.65 0.61 0.43 0.58 0.47 0.58

Mean 0.69 0.74 0.75 0.81 0.83 0.78

Median 0.73 0.79 0.93 0.95 0.95 0.95

Min 0.01 0.01 0.15 0.45 0.47 0.05

Max 1.00 0.99 0.99 0.99 0.99 0.99
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