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Immune checkpoint receptors are key players in regulating the immune response. They
are responsible for both generating an immune response sufficient to kill invading
pathogens, balancing the same response, and protecting against tissue destruction or
the development of autoimmune events. The central role of the co-inhibitory receptors
also referred to as inhibitory immune checkpoints, including PD-1 and CTLA-4 has
become especially evident with the cancer treatments targeting these receptors.
Blocking these pathways enhances the immune activity, resulting in both an increased
chance of cancer clearance, at the same time induction of immune-related adverse events
(irAE). Some of these irAE progress into actual autoimmune diseases with autoantibodies
and symptoms, undistinguished from the naturally occurring diseases. This review will
take advantage of the lessons learned from immune checkpoint blockade and relate this
knowledge to our understanding of the same pathways in naturally occurring autoimmune
diseases, mainly focusing on rheumatic diseases.

Keywords: PD-1, checkpoint inhibition therapy, autoimmunity, co-inhibitory receptors, immune related adverse
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INTRODUCTION: BALANCING HEALTH AND DISEASE

The immune system is unique when it comes to its ability to protect our body and maintain
homeostasis. It can both defend us against foreign pathogens and at the same time recognize and
accept self-antigens. This equilibrium is also essential in avoiding cancer and controlling aging.
Owing to the complexity of this system, we seem to be only scratching the surface in our
understanding of the plethora of factors involved in this balanced regulation.

For T cells, the evolvement of a healthy immune system starts in the thymus where CD4 and
CD8 T cells undergo positive and negative selection, to ensure an optimal reactivity to foreign
antigens, and high tolerance towards self (1). Once out of the thymus, these cells will use an array of
mechanisms when encountering a foreign antigen. The innate immune system is the first line of
defense, subsequently resulting in the activation and recruitment of T cells and finally initiating an
adaptive immune response. For antigen presenting cells to successfully activate a T cell, the T cell
will need a second signal through an immune checkpoint, or co-receptor, which will be upregulated
upon T cell receptor signaling or by cytokines (2, 3). The activation of co-receptors can either lead to
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increased activation of the T cell or inhibit the activation
resulting in a dampened response or even anergy. The
outcome from the balanced signaling between the multiple
co-receptors thus determines the fate of an antigen-activated T
cell. Often, the presentation of a high-affinity antigen that is
significantly different from self, will result in an upregulation of
the co-stimulatory receptors (CSR), like CD28 or 4-1BB, leading
to full activation of the T cell (4). If the presented antigen
resembles self or is of low affinity, upregulation of co-
inhibitory receptors (CIR), including programmed death-1
(PD-1) and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) will be more pronounced (5, 6). These pathways will
cause downregulation of the T cell activation, including
diminished cytokine production, less proliferation, and reduced
motility (7). Failure in balancing this second signal may cause
chronic infections, cancers, or autoimmune diseases. The innate
immune system can also initiate a chronic inflammatory
condition, often referred to as autoinflammation. This topic is,
however, beyond the scope of this review (8). In the following, we
will focus on the CIR, their ligands, and their role in the
development of autoimmune diseases. We consider this with
the lessons learned from cancer treatment using immune
checkpoint inhibitors (ICI), resulting in various inflammatory
conditions, referred to as immune-related adverse events (irAE).
RESULTS: THE FIRST 10
YEARS OF IMMUNE CHECKPOINT
INHIBITOR THERAPY

One of the central features in cancer development is the escape of
immune surveillance. One mechanism exploited by cancer cells
is the upregulation of ligands for the CIR, causing infiltrating
immune cells to be shut down, thus avoiding immune mediated
killing (9). Immune checkpoint inhibitors block CIR or their
ligands. The first drug on the market targeted CTLA-4 (10, 11)
and has in conjunction with ICI towards the PD-1 pathway,
revolutionized cancer treatment. As a result of the increased
immune activation, irAE and reduced cancer burden often goes
hand-in-hand. However, these drugs provide valuable insight
into the understanding of the role of CIR in the development of
autoimmunity. In some cases, irAE become chronic conditions,
closely resembling an autoimmune disease. Presentation with a
full-blown debut of an autoimmune disease, even with
autoantibodies is described (12, 13). IrAE are seen with a large
variation in intensity, but are very common and affect 50%-70%
of patients in monotherapy and more than 90% in combination
therapy (12). Often, combination therapy targets both CTLA-4
and PD-1, which makes it difficult to pinpoint a specific clinical
manifestation of one or the other. Despite several years in use, it
remains difficult to predict which patients will respond to the
treatment, and the search for prognostic biomarkers is ongoing
(14). The development and treatment of irAE are often the
governing steps for patients in ICI treatment. In patients with
known systemic immunological disorders, ICI treatment is still
limited to very few trials. Worsening, or flare in their disease
Frontiers in Immunology | www.frontiersin.org 2
seems to closely follow tumor regression (15). Considering the
occurrence of irAE, it is appealing that the CIR pathways play a
prominent role in the development of autoimmune
diseases (Figure 1).

Many irAE tend to fade or disappear when the ICI treatment
is ceased. These irAE thus deviate from what we normally see
when examining an autoimmune disease. This supports a role
for CIR serving to decrease immune activation, and their
absence, or reduced function, leading to temporary symptoms
or disease. Contrarily, upon considering the cases where the
irAE progress into chronic diseases, these indicate that the
dysfunction of CIR can induce a break in tolerance leading to
autoimmunity (16). The factors determining these two different
outcomes remain to be understood. More than 40% of the irAE
develop into chronic conditions, often less responsive to
steroids (17). The inflammatory conditions often present
within the first 2-6 weeks of therapy, but may also arise
already after the first treatment, or not until after several
years of treatment (17, 18). Although autoimmune diseases
are closely associated with HLA genotypes only a few studies
have investigated the association between irAE and HLA type,
and with no clear conclusion (19, 20).

It does occur that irAE are much more common than their
“counter” autoimmune disease. One case is hypophysitis, an
autoimmune reaction in the pituitary gland, very rare in its
idiopathic form, but with an overall incidence after ICI treatment
reported in a recent meta-analysis as 14%. This is a relatively
common irAE, and also of significant severity, subsequently
demanding life-long treatment as multiple hormonal axes are
involved, and the damage is irreversible (21). Primary
hypophysitis is not associated with systemic inflammation, and
CIR have to our knowledge, not been investigated in the
development of primary hypophysitis, where the mechanisms
responsible for development are still largely unknown (22).

From a clinical viewpoint, it remains a challenge to treat
patients with irAE especially if the symptoms become chronic, or
hinder continued treatment of the oncologic disease. The first
line of treatment is often corticosteroids, especially if these can be
used locally (23, 24). However, systemic corticosteroid treatment
results in both reduced antigen recognition and ability for
cellular toxicity, especially ADCC. The use of systemic
corticosteroid treatment thus raises a concern about the
continued efficacy of the ICI to induce tumor eradication (25).
This has resulted in a general consent to reducing corticosteroids
to a minimum as quickly as possible, and a tendency to use
disease-modifying anti-rheumatic drugs (DMARD) to reach
control of the irAE. Anti-TNF antibodies and anti-IL-6R
antibodies are the mainly used therapies, but large-scale and
long-term studies are still not carried out (26, 27). Therefore, a
better understanding of this area is needed, to improve treatment
for both the cancer and the irAE.
THE CD28/B7 FAMILY

The CD28/B7 family of CSR and CIR is probably the best
described among all co-receptors. CD28 was the first identified
June 2022 | Volume 13 | Article 883733
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CSR and is crucial for optimal T cell activation (28). Signaling
through the CD28 pathway induces complete T cell activation
with increased motility, proliferation, and cytokine production
including IL-2 and IFN-y. CD28 signals downstream through
PI3K and PKC0, finally resulting in phosphorylation of AKT and
NFkB. Mice lacking CD28 have a reduced immunoglobulin
concentration and class switch, as well as decreased levels of
IL-2. However, cytotoxic T cells do develop in these mice, and
they do not succumb to infections (29). CD28 is necessary for the
development of Tregs, but also favors the development of
immune reactive T cells. Despite promising evidence (30),
targeting CD28 in autoimmunity has not reached common
clinical use, and especially for rheumatoid arthritis (RA), the
focus has been on targeting CTLA-4, which also binds CD80, and
competes with CD28 (31). This review will primarily focus on
CIR, and the role of CD28 will not be discussed further. The two
Frontiers in Immunology | www.frontiersin.org 3
other two important members in the CD28/B7 family are CTLA-
4 and PD-1, these being CIR (Figure 2).
THE PD-1 PATHWAY

PD-1 is a trans-membranous receptor mainly expressed by
activated lymphocytes, however PD-1 expression has been
described on several other cell types and in multiple tissues
(32, 33). PD-1 has two ligands, PD-L1 and PD-L2 (34, 35).
Engaging the PD-1 receptor causes phosphorylation of the ITSM
motif and recruitment of SHP2, subsequently resulting in
dephosphorylation of PI3K and AKT, eventually causing
reduced activity in NFkB and thereof, a decreased T cell
activation (3, 36, 37). Cancer cells utilize the expression of
PD-L1 to silence inhibitory signals from cytotoxic T cells and
FIGURE 1 | Schematic drawing of the interaction between an activated T cell and a cancer cell. The cancer cell exploits the PD-1 pathway, reducing T cell activity.
When blocking the PD-1 pathway with antibodies, the T cell becomes sufficiently activated to kill the cancer cell. As a response to increased T cell activation and
inflammation, immune related adverse events (irAE) develop. These target different organs and resembles known autoimmune diseases present in the same organ.
Created with BioRender.com.
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other host immune cells. PD-1 or PD-L1 expression is often used
as a marker (though poor) to identify tumors where treatment
with ICI seems feasible (38). The PD-1 pathway not only signals
through the PD-1 receptor; reverse signaling through PD-L1 is
described, increasing cell survival and decreasing type 1 IFN
responsiveness (39). This can be exploited by cancer cells, further
supporting tumor growth and immune avoidance. PD-L1 reverse
signaling is also crucial for chemokine-mediated dendritic cell
migration from the skin to the lymph node (40). The role of
reverse signaling in autoimmunity remains to be clarified.

Both PD-1 and its ligands are present in soluble (s) forms. These
have been investigated as biomarkers of inflammatory diseases and
multiple cancers. Most evidence suggests that levels of the soluble
receptors increase as a response to inflammation. The functional
role, if any, still remains up for debate. The soluble forms have been
suggested to both increase immune activity by blocking the PD-1
pathway and decrease immune activity by positively engaging the
PD-1 pathway. The role of the soluble forms is further complicated
when recombinant proteins are used as surrogates for the soluble
forms in both in vivo and in vitro studies (41–44).

The PD-1 pathway is central in maintaining immunological
balance (33) and knockout mice of the PD-1 receptor causes
lupus-like disease at a late stage in life (45).

PD-1 inhibitors are better tolerated than CTLA-4 inhibitors,
but irAE affecting the joints, lungs and thyroid are more
common (12). Hypothyroidism is the most common
endocrinopathy seen in 6-10% (46)whereas newly onset T1DM
is seen in about 1% of patients. In the development of childhood
T1DM, polymorphisms in the PD-1 receptor are associated with
an increased risk of T1DM. Patients with newly onset T1DM
have decreased numbers of circulating CD4+PD-1+ T cells, and
PD-1 fails to upregulate on peripheral T cells (47). The PD-1 axis
is only scarcely investigated thyroid autoimmunity, but
polymorphism in the PD-1 gene is associated with an
increased incidence of autoimmune thyroiditis (48). Increased
Frontiers in Immunology | www.frontiersin.org 4
numbers of PD-1 infiltrating T cells are also seen in autoimmune
thyroiditis (49). With hypothyroidism being one of the most
prominent irAE after PD-1 blockade, this pathway might be
more important than previously considered in the development
of thyroid autoimmunity.

Many patients also experience rheumatological toxicities and
close to 40% of the patients develop signs of inflammatory joint
pain (16). The rheumatological toxicities can develop into
diseases with autoantibodies, and both RA, scleroderma-like
disease (50, 51), polymyositis and Sjögrens are seen.

Especially blocking the PD-1 pathway can cause pneumonitis
which is a severe irAE, with high mortality. Especially, does pre-
existing pulmonary fibrosis increase the risk of anti-PD-1-related
pneumonitis (52, 53).

In accordance with the development of rheumatological irAE
thePD-1 pathway plays a significant role in several rheumatological
diseases including; RA, lupus (SLE), polymyalgia, polymyositis, and
SSc (54). In RA; we have reported PD-1 expression to be increased
both in the synoviumand in the peripheral circulation (55–57). The
increased expression correlates with disease activity, probably
representing an immune activation. Looking further into the
cellular and peripheral populations, PD-1 expression is associated
with a pathological T cell phenotype involved in B cell activation
and plasma cell maturation, resulting in increased antibody
production and disease severity (58, 59). However, PD-1
expression also characterize regulatory T cells (Treg) and Tex
which both are associated with less immune activation, and a
better prognosis in autoimmune diseases (32, 57).

Looking into SLE the picture remains complicated. Genetic
variances in the PD-1 gene are considered related to the
development of the disease (60), and PD-1 expression is
upregulated and associated with disease severity (61, 62).
Recent bioinformatic and multi-omics approaches have made
it evident that PD-1 is expressed on multiple different cell types,
which are not solemnly associated with immune down regulation
FIGURE 2 | Simplified schematic illustration of CIR and CSR discussed in this review. Some receptors have binding partners which is illustrated by dotted lines. The
function on the T cell by the receptor is indicated with a “+” for T cell activation and a “-” when T cell activity is decreased. Created with BioRender.com.
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(58). The distinction between the different cell types expressing
PD-1 is especially important in the understanding of how the
PD-1 pathway is associated with disease activity and severity in
SLE, where it is demonstrated that the increased PD-1 expression
is especially seen in T helper cell populations with more pro-
inflammatory properties (63). This has become evident that
especially T peripheral helper cells (Tph) cells are upregulated
in SLE -supporting the close association with autoantibodies in
this disease (64). Turning to Treg, the expression of PD-1 is not
reported different in SLE patients, however, the expression of
PD-L1 is suggested decreased in SLE Treg, and in accordance is
negatively correlated to disease activity (65). Despite lupus-like
disease being one of the clinical manifestations in PD-1 KOmice,
SLE as an irAE is relatively rare (66). It could be hypothesized
that diseases largely driven by auto antibodies will take a long
time to develop. When more patients will initiate early treatment
with ICI, potentially increasing both survival and treatment
duration, SLE-like disease could become a more common irAE.

Systemic scleroderma (SSc) is also a rheumatic disease, where
autoantibodies play a significant role. Again, few cases have been
reported after ICI treatment (12, 67). In SSc, a dysfunctional
PD-1 pathway has been correlated with disease outcomes and
clinical parameters (68). Raised levels of sPD-1 and sPD-L2 has
been associated with increased skin thickness. In SSc patients, the
numbers of PD-1–expressing cells within the Treg cell subset and
within gdT cells (69) were significantly increased compared to
those of healthy subjects. Increased frequency of T lymphocytes
co-expressing PD-1 and T cell immunoreceptor with Ig and
ITIM domains (TIGIT) was also observed in SSc patients. This
accumulated expression of multiple CIR is in accordance with
the hallmarks of exhausted T cells (Tex).

In in vivo models of mice with Topoisomerase I(Top-I)–
induced SSc, production of IL-10 by Top-I specific B cells in
cultures with T cells and Top-I protein was significantly higher
than that by conventional B cells, this effect could be overcome
by injection with recombinant chimeric PD-1-Fc and PD-L2-Fc
(68), thereby supporting activation of the PD-1 pathway. Thus,
substantiating the regulatory effect of PD-1 in maintaining
homeostasis. Suggesting that interaction of PD-1 and PD-L2 is
required for the production of IL-10 by B cells during T cell–B
cell autoantigen-specific cognate interactions in SSc.

Taken together, it is clear that signaling through the PD-1
receptor decreases immune activation, and supports
immunological tolerance. However, PD-1 is expressed both by
exhausted T cells, but also as a result of activation. Therefore,
PD-1 can be expressed by T cell driving immune activation, but
also by T cells participating in lowering the immune reaction.
This adds to the complexity of the understanding of when and
how PD-1 expressing T cells are associated with disease activity
in inflammatory conditions.
CTLA-4

CTLA-4 is a transmembranous receptor expressed by activated
T cells. Expression is upregulated upon T cell antigen encounter,
Frontiers in Immunology | www.frontiersin.org 5
and as for PD-1, low affinity antigens will induce a higher
upregulation of CTLA-4. CTLA-4 binds to CD80/CD86 and
competes with CD28 upon this binding, but with a higher avidity
and affinity than CD28. A signal through CTLA-4 decreases
T cell activation by the SHP2 and PP2A pathways, with many
similarities to the PD-1 signaling pathway (70).

CTLA-4 is expressed by T cells, B cells, NK cells and
regulatory T cells (Treg) (71, 72). T cells only express low
levels of CTLA-4 on their surface, even when activated. CTLA-
4 is mainly localized intracellular, where CTLA-4 is found in the
golgi network, as well as in endosomes, secretory granules, and
lysosomal vesicles from where it is circulated to the surface. This
process is reviewed by Schneider et al (73).

CTLA-4 is also present in a soluble form, however, the
importance of this is still not fully elucidated. Studies do
support that sCTLA-4 plays an important role in keeping
optimal immune surveillance (74).

In CTLA-4 knock-out mice, severe lymphoid proliferation
and death appear, when the animals are 3-4 weeks old (75).
Although no disease equivalent is known in humans, the
importance of CTLA-4 in keeping tolerance is supported by
fact that polymorphisms in the gene are associated with an
increased risk of autoimmune disease. Importantly, these are
not allocated to one disease but include T1DM, thyroiditis, Mb
Addison, Crohn’s disease, RA, and multiple sclerosis, among
many others (76). Engaging this pathway with CTLA-4:Ig it has
been shown to be an effective treatment, highlighting that this
pathway plays a role in maintaining immune reaction during
autoimmune disease.

Antibodies targeting CTLA-4 are approved in multiple
cancers including; metastatic melanoma, hepatocellular, renal
carcinoma, mesothelioma, colon cancer, and non-small cell lung
cancer, and more will be included in the near future.
Monotherapy targeting CTLA-4 is associated with more severe
irAE compared with monotherapy targeting the PD-1 pathway
(12). This aligns with CTLA-4 KO mice having a much more
severe phenotype than PD-1 KO mice (45, 75). The most
common irAE from anti-CTLA-4 treatment are related to the
gut and skin. This suggests CTLA-4 has a functional implication
in preserving gut tolerance and supporting barrier functions (13,
77). Considering the evolving evidence of the major significance
of the microbiota in the development of autoimmune diseases,
including both rheumatic and gastrointestinal diseases, the role
of CTLA-4, in combination with PD-1 is further highlighted by
both their abilities to influence IgA synthesis and the
microbiome (78, 79). Controversially, the CTLA-4:Ig fusion
protein, Abatacept, was shown not to be clinically relevant in
controlling Crohn’s Disease or ulcerative colitis in a clinical trial
(80) . This does not exclude that CTLA-4 play an important role
in keeping optimal conditions in the non-inflamed gut. This
notion is supported by the observation that genetic changes in
CTLA-4 is associated with an early onset of Crohn’s disease (81).

CTLA-4 functions in humans are elucidated by the in vivo use
of CTLA-4-Ig fusion protein, used for the treatment of various
immunological diseases. Abatacept was the first CTLA-4-Ig
molecule to be approved for humans and has since been
June 2022 | Volume 13 | Article 883733
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followed by Belatacept, with a higher affinity for CD86, making it
10-fold more potent in vitro, than Abatacept (82). These two
CTLA-4-Ig molecules have been investigated in multiple
autoimmune disorders, including RA, T1DM, diffuse
cutaneous systemic sclerosis (dcSSc), psoriasis, and SLE. Both
have also been tested, as inducers of tolerance to specific antigens
upon organ transplantations. Especially Belatacept has shown to
be efficacious in renal transplantation (83).

RA is by far the disease with the highest number of reports, as
Abatacept has been approved for the treatment of moderate to
severe disease for several of years (84). Its efficacy is in line with
anti-TNF-antibodies (85). Since anti-CTLA-4 antibodies are
used to treat cancer, it is tempting to suspect that treatment of
RA with Abatacept would increase the risk of developing
malignancy. However, no clear picture emerges. Some studies
have reported a small increased risk, others none (86–88).

This naturally led to the question of why treatment with
CTLA-4:Ig in RA, does not result in a greater increase in their
cancer risk when blocking CTLA-4 in cancer results in
autoimmunity. RA is dominated by a high number of both Tex
cells and senescent T cells (89, 90), similar to chronic infections
diseases. In patients with chronic hepatitis C, antiviral treatment
lead to a decreased number of Tex cells (91). Assuming that
Abatacept will do the same in RA the risk of developing cancer
will also decrease as Tex favors cancer development. Therefore, it
is a balanced outcome of disease activity, disease length, and
treatment, thus explaining the low or absent risk of developing
cancer in the Abatacept studies. The understanding of CTLA-4’s
role in RA mainly comes from studying the effects of Abatacept.
One major point of action shown for Abatacept is the
downregulation of cytokine production in co-cultures, resulting
in significantly lower concentration of IL-2, TNF-a and IL-1b
(92). Additionally, data suggest that macrophages shift from an
M1 to an M2 phenotype, when cultured in the presence of
Abatacept (93), favoring a less inflammatory environment.

Fully in line with CTLA-4 function, Abatacept treatment
slightly decreases but does not completely inhibit a vaccination
response (94, 95).

In SLE and other inflammatory connective tissue diseases,
Abatacept has shown efficacy in animal models, but generally
failed in clinical studies (96, 97). Since the first casuistic report of
Abatacepts efficacy in SSc, a phase II study has supported CTLA-
4s possible role in the treatment of this disease (98, 99). Evidence
on CTLA-4’s role in initiating connective tissue diseases remains
to be fully elucidated, and most evidence is only on the genetic
polymorphisms of CTLA-4 being associated with an increased
risk of connective tissue diseases (100).
LAG-3

Lymphocyte activation gene 3 (LAG-3) is still one of the less
described CIR. LAG-3 is expressed upon T cell activation and has
high homology with CD4. LAG-3 only binds to stabilized MHC
class II molecules, suggesting that this inhibitory pathway exerts
its functions when the T cells encounter antigens with a high
Frontiers in Immunology | www.frontiersin.org 6
specificity (101–103). Several other ligands for LAG-3 have been
described. Among these, are Fibrinogen-like Protein 1 (FGL-1),
L-selectin, and Galectin-3 (Gal-3) (104–106). As LAG-3 is also
present in a soluble form, these multiple ligands and potential
large multimeric formations suggest that the functionality of
LAG-3 is complex. LAG-3 regulates T cell proliferation and
homeostasis of both effector T cells and Tregs (107, 108).

Single LAG-3– and PD-1–deficient mice display minimal
immunopathologic sequelae, double LAG-3/PD-1 knockout mice
develop lethal systemic autoimmunity. Thoughmice lacking LAG-
3 do not develop spontaneous autoimmune disease in non-
autoimmune prone mouse strains, LAG-3 induced lethal
myocarditis in BALB/c mice deficient for the gene encoding for
PD-1. In addition, LAG-3 deficiency alone accelerated T1DM in
nonobese diabetic(NOD) mice (10). Moreover, a cytotoxic LAG-3
Ab has been evaluated in a nonhuman primate model of delayed-
type hypersensitivity (109). Contrarily, in a phase I clinical trial
investigating psoriasis the depletion of LAG-3–positive T cells was
linked to a reduced Th1-driven skin inflammation, lasting even in
the absence of the depleting antibody (110).

The LAG-3 pathway is shown to be involved in the
development of irAE such as colitis, RA, and diabetes (111,
112). Evidence from mouse studies suggests efficacy in cancer
treatment, especially in combination with either anti-PD-1 or
anti-CTLA-4 therapy. This has led to a recent study evaluating
the effects of anti-LAG-3 antibodies in combination with anti-
PD-1 antibodies, versus anti-PD-1 as monotherapy in patients
with advanced melanoma (113). Here, addition of anti-LAG3
increased to the progression-free survival, but also increased the
rate of irAE. With special relation to rheumatology, arthralgia
was the most commonly increased irAE induced after targeting
LAG-3. This supports LAG-3’s role in joint diseases. Currently,
drugs that either augment LAG-3’s effects or deplete activated T
cells that express LAG-3 are under development for chronic
inflammatory diseases (114).

Despite emerging clinical trials with both agonistic and
antagonistic antibodies targeting LAG-3, it is important to
recognize that the knowledge of LAG-3 in relation to
autoimmune disease is still rather limited. We have reported
that LAG-3 could play a role in juvenile rheumatoid arthritis,
supporting that LAG-3 could be important for immunoreactions
and immune maturation during infancy (115).

Apart from the immune checkpoint molecules described here,
many more are known, but few of these have reached the level of
clinical studies. Among these are 4-1BB, TIGIT, TIM-3, B7-H3,
B7-H4, ICOS to mention a few. The next decade will lead to new
and interesting descriptions of effects and irAE that will help us
to a better understanding of the immune system.
CONCLUSION

Integrating our knowledge of irAE provides a better
understanding of the role of CIR in both the initiation and
progression of inflammatory diseases. It is suggestive that CIR
may participate in the break of tolerance, but also in keeping the
June 2022 | Volume 13 | Article 883733
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diseases in a chronic state. Which additional factors are needed
for a break of tolerance when CIR are blocked, remains to be
understood. It has also become evident that not all autoimmune
diseases are represented equally in the irAE spectrum. Apart
from myositis and myocarditis, inflammatory connective tissue
diseases like SLE and SSc are still not as common as arthritis and
polymyalgia. Among endocrinopathies, the thyroid gland is
much more commonly affected than the pancreas. The reasons
for this could be plenty. One is the time perspective as ICI
treatment has only been around for less than a decade, and both
diabetes and connective tissue diseases may develop over a
longer period of time. For connective tissue diseases, especially
considering that autoantibodies are present years before the
development of clinical symptoms (116–118), which suggests a
prolonged period to induce the disease. Also, the presence of
these autoantibodies may be crucial for initiating the disease, and
targeting two CIR may not be enough for autoantibodies to
develop. Future observational studies with long term follow-up
could change this picture.

With ICI drugs coming to the market targeting different CIR,
we might see a more specific organ preference, depending on the
targeted CIR and thereby reflecting the pathology of the
“natural” autoimmune disease. A blurred picture is starting to
emerge, where we see a tendency for CTLA-4 blockade to induce
gut affection more often than blockade of the PD-1 pathway. By
Frontiers in Immunology | www.frontiersin.org 7
contrast, PD-1 and LAG-3 blockade more often result in
pneumonitis and joint affection (119).

Our knowledge of CIR role is mainly associated with adults.
Our major expositor to different antigens is highest during the
first part of life, supporting that CIR play distinct functions
dependent on age. We do, however, still know very little of their
function in the early stages of life.

Taken together, it is clear that we have only scratched the
surface, when it comes to understanding the complexity immune
checkpoint molecules have on development of diseases related
to immunosurveillance.
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