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Hulshoff Pol1

1 Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands, 2 Donders Institute for Brain, Cognition and Behaviour, Centre for

Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen,The Netherlands

Abstract

Background: Functional neural networks in the human brain can be studied from correlations between activated gray
matter regions measured with fMRI. However, while providing important information on gray matter activation, no
information is gathered on the co-activity along white matter tracts in neural networks.

Methodology/Principal Findings: We report on a functional diffusion tensor imaging (fDTI) method that measures task-
related changes in fractional anisotropy (FA) along white matter tracts. We hypothesize that these fractional anisotropy
changes relate to morphological changes of glial cells induced by axonal activity although the exact physiological
underpinnings of the measured FA changes remain to be elucidated. As expected, these changes are very small as
compared to the physiological noise and a reliable detection of the signal change would require a large number of
measurements. However, a substantial increase in signal-to-noise ratio was achieved by pooling the signal over the
complete fiber tract. Adopting such a tract-based statistics enabled us to measure the signal within a practically feasible
time period. Activation in the sensory thalamocortical tract and optic radiation in eight healthy human subjects was found
during tactile and visual stimulation, respectively.

Conclusions/Significance: The results of our experiments indicate that these FA changes may serve as a functional contrast
mechanism for white matter. This noninvasive fDTI method may provide a new approach to study functional neural
networks in the human brain.
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Introduction

Neurobehavioral functions depend on a dynamic flow of

information between various gray matter brain regions which

are interconnected via white matter pathways [1,2]. Activation of

the human brain’s gray matter regions have been extensively

studied with neuroimaging techniques such as functional magnetic

resonance imaging (fMRI), positron emission tomography (PET),

single photon emission computed tomography (SPECT), electro-

encephalography (EEG) and magneto-encephalography (MEG).

However, these techniques do not provide information on the

white matter pathways and their corresponding activity. Imaging

techniques such as DTI [3,4] in combination with fiber

tractography [5–7] allow us to non-invasively study the anatomy

of these pathways-but not their activity. In this paper we present a

functional diffusion tensor imaging (fDTI) method that is able to

detect task-related changes in FA that may represent the activity of

white matter tracts. Directly testing the white matter tracts for

activation would provide us with a unique opportunity to study the

connections of neural networks that become active during various

cognitive functions. In addition, it may allow the study of

dysfunctional neural networks in patients with neurological and

psychiatric diseases, such as schizophrenia in which structural and

functional brain abnormalities have been found [8–10].

In DTI the diffusion profile of water molecules is measured. In

white matter fibers, which are formed by large numbers of

heavily myelinated axons running in parallel, the diffusion is

more hindered in the radial directions (i.e. perpendicular to the

fibers’ principal direction) than in the direction parallel to the

fibers. As a result, the diffusion profile in white matter is

elongated (cigar shaped), pointing in the direction of the fibers. In

DTI the diffusion profile is represented by a positive definite

tensor of which the major eigenvector with eigenvalue l1

represents the direction parallel to the fibers and both minor

eigenvectors with eigenvalues l3 and l3 represent the radial

directions.
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The fractional anisotropy [11] (FA) defined by:
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is a relative measure which describes the variance between the

levels of diffusion measured in the different directions. It is

therefore not sensitive to fluctuations in the diffusion unweighted

(b = 0 s/mm2) image, which serves as normalization factor in the

eigenvalue computation. This in contrast to other measures such

as radial diffusivity defined by (l2+l3)/2, parallel diffusivity

defined by l1, or mean diffusivity defined by (l1+l2+l3)/3, which

are sensitive to intensity fluctuations in the diffusion unweighted

image, for instance due to task-related onset changes in T2
* (the

basis of the fMRI BOLD contrast). The FA is therefore well suited

to study activation-related changes in white matter as it is

insensitive to possible task-related T2
* changes in neighboring gray

matter.

fDTI is based on the assumption that changes in FA are a sign

of local fiber activity. We hypothesize that morphological changes

of glial cells (in particular oligodendrocytes) lead to shape changes

of the extra-cellular space (ECS) [12–14] and, in turn, lead to a

measurable increase in FA. Indeed, changes in the diffusion profile

due to changes in the ECS in white matter have been shown in

vitro using diffusion weighted imaging in the rat optic nerve [15].

An earlier study [16] reported that electrical stimulation induced

significant changes in the diffusion properties of brain tissue in

rats. Using intrinsic optical signal (IOS) measurements [17] slowly

varying activity-related signal changes were measured in the rat

optical nerve and were attributed to glial cell swelling. However, a

study using the real-time tetramethylammonium (TMA+) ionto-

phoretic method in combination with IOS measurements [18]

showed that the concentration of TMA+ in the extra cellular space

(ECS) did not change although similar changes in the IOS signal

were measured. Therefore the authors concluded that it was

unlikely that glial cell swelling was the primary mechanism for

these IOS changes and they suggested that a more plausible

explanation may be found in morphological changes of glial cells.

A recent study [19] showed that increased levels of potassium lead

to changes in both IOS values and MRI proton density

measurements for gray and subcortical white matter in rats,

suggesting that activity-related changes in the ECS of gray matter

as well as white matter can be measured using MRI. The authors

therefore conclude that cell swelling arising from neuronal

depolarization is detectable with fMRI-like acquisitions.

With respect to the measurement of activation in gray matter

there is an ongoing discussion whether diffusion-weighted MRI

provides a more direct way to measure activation than functional

MRI methods that are based on vascular responses such as BOLD

contrasted fMRI. Le Bihan and colleagues [20] hypothesized that

for functional imaging of gray matter diffusion-sensitized images

can be used to measure neuronal activity-related cell swelling. This

would provide a more direct way to measure neuronal activation

than standard BOLD contrasted fMRI does. The results of their

experiments not only suggested that the measured diffusion-

sensitized MRI signal changes could be linked to activity-related

cell swelling but also that the delay between stimulus onset and

measured signal change was notably smaller for the diffusion-

sensitized MRI signal than the delay between the stimulus onset

and the BOLD fMRI signal. However, another study [21], which

compared signal changes induced by neuronal activation and

signal changes due to hypercapnia, was not able to replicate this

difference in delays. Moreover, the results of that study suggested

that even with strong diffusion weighting vascular effects could not

be ruled out as a possible source for the measured task-related

MRI signal change.

With respect to the measurement of activity in white matter,

several different physiological processes-other than morphological

changes of glial cells-that are part of (or accompany) fiber activity

could, in theory, alter the diffusion profile and therefore the

measured FA-value as well. For instance, the changes in FA-value

may also have been altered by local changes in capillary blood flow

[3], in capillary blood volume [22] or by activity-related anisotropic

magnetic susceptibility variations [23]. These other possible

explanations for the observed task-related changes in FA should

be considered and will be addressed in the discussion section.

Normal activity-induced changes in the diffusion profile of white

matter are expected to be very small as compared to the

physiological noise [24] and a reliable detection of the signal

change would require a large number of measurements. But if it is

assumed that activity-related FA-signal changes extends the whole

tract, then a substantial increase in signal-to-noise ratio can be

achieved by pooling the signal over the entire tract. It is the

adoption of a tract-based statistics -rather than a voxel-based

statistics- that enables us to measure the signal within a practically

feasible time period. The principle of the fDTI method is outlined

in Figure 1.

To assess the validity of the fDTI method, eight healthy right-

handed subjects participated in both tactile and visual fDTI

experiments. Afterwards, three other subjects participated in a

second, time course experiment. The second experiment provided

more specific information on when the maximum of the measured

signal change is found for the different types of stimuli.

Throughout the rest of this paper we will refer to the first

experiment as the fDTI experiment and to the second experiment

as the time course experiment. These experiments were approved

by the medical ethical committee for human subjects of the

University Medical Center Utrecht, The Netherlands, and all

subjects provided written informed consent prior to participation.

Materials and Methods

fDTI experiment
In the tactile experiment the subjects were instructed to keep

their eyes closed for the duration of the whole experiment. During

the active condition, the palm and fingers of the subject’s right

hand were brushed in a random fashion by an investigator. In the

visual experiment the subjects were instructed to look at a red

fixation cross that was projected on the center of a screen visible

from inside the scanner at all times. During the active condition a

black and white checkerboard was shown that alternated at a

frequency of 8 Hertz. During the rest condition only the red

fixation cross was visible. In both fDTI experiments the same

active versus rest paradigm was used and the scan parameter

settings were identical. These two fDTI experiments were selected

for their expected lack of overlap in activated tracts, which allowed

us to study both the method’s specificity and sensitivity. Moreover,

a subject’s response was not required in either of the tasks reducing

the chance of task-related motion artifacts.

For each fDTI experiment a separate anatomy scan, a

conventional high-resolution DTI scan and an fDTI scan were

acquired (see MRI scan acquisition). The subjects left the scanner

room to rest between the two experiments for at least 15 minutes.

For one subject the results of the visual task were excluded because
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of visibility problems of the checkerboard reported afterwards. The

conventional DTI-scan was used for reconstruction of the tracts

(Figure 1a) using the FACT-algorithm [25]. The anatomy scan was

used for inter-subject registration and visualization of the results. We

did not use cardiac gating as it would lengthen the acquisition time

considerably. Identical timing parameters for the visual task and the

tactile task were used to make direct comparison possible between

the results of the tactile and visual task.

MRI scan acquisition. For the fDTI experiment the

following scans were acquired on a Philips Achieva 1.5 Tesla

whole-body MR scanner (Intera Achieva, Philips, Best, The

Netherlands). First, a T1-weighted whole brain scan was acquired

for anatomical reference. Next, a conventional transverse single

shot spin-echo, echo planar imaging (SS-EPI) DTI scan was

acquired for reconstruction of the white matter tracts in the whole

brain (acquisition matrix = 128696; FOV = 240 mm; 60 slices;

slice-thickness = 2.5 mm; no gap; TE = 86 ms; TR = 10 000 ms;

parallel imaging SENSE factor = 2; 32 different diffusion gradient

directions with b-factor = 1000 s/mm2; scan duration = 354 s).

The functional time series of DTI scans (the fDTI set) were

acquired during the execution of an alternating sequence of a

neurobehavioral task and a resting condition. A total of 29

transverse SS-EPI DTI scans (acquisition matrix = 64664;

FOV = 256 mm; 40 slices; slice-thickness = 4 mm; no gap;

TE = 74 ms; TR = 6000 ms; parallel imaging SENSE

factor = 2.5; 1 scan without diffusion gradients and 6 non-

collinear diffusion gradient directions with b-factor = 1000 s/

mm2; scan duration per DTI scan = 60 s) were collected (15

during the resting condition and 14 during the active condition;

beginning and ending with a resting condition).

These DTI scans started with a calibration period of

12 seconds. For a stimulus period the stimulus started at the

beginning of the calibration to eliminate possible onset effects of a

BOLD related signal during the acquisition of the data (BOLD

signal has a time-to-peak that is typically below 10 seconds). Next,

two diffusion unweighted volumes (which are averaged) with a

total duration of 12 seconds were acquired, followed by 6 diffusion

weighted volumes (36 seconds) using the following diffusion

gradient scheme: (Gx, Gy, Gz) = (1, 0, 0), (0, 1, 0), (0, 0, 1),

(2K!2, 0, 2K!2), (K!2, K!2, 0), (0, K!2, K!2), where the x-,

y-, and z-axis correspond to the patient’s right-left, anterior-

posterior, and feet-head direction, respectively. The first 4 DTI

Figure 1. Overview of the fDTI analysis. (a) The fDTI method starts with the reconstruction of anatomical tracts in the brain without any region
specific selection criteria using conventional fiber tracking. All the tracts (here the total count for the whole white matter was 20,193 tracts) are then
tested individually for activation. (b) The blue colored tract is an example tract used to explain the test for activation. (c) In the fDTI method the FA-
values during rest are compared to the FA-values during the task. These changes in FA-value are encoded per voxel using a series of ‘+’s and ‘2’s. If
the FA-value of an active period (gray column) was higher than the average FA-value of its temporal neighbors (both resting periods, shown in a
white column) then a ‘+’ was assigned, and otherwise a ‘2’, here shown for the individual red voxel. Note that the test for activation is done over the
complete tract, and not at the level of individual voxels, as we assumed that during a task the whole tract is active. In this way the statistical power is
increased allowing subtle FA-changes to be detected. (d) The FA-values measured for all 43 voxels that are part of the tract that is tested. The
numbers shown for each active period at the lower part of the graph (in red) depict the number of ‘+’s encoded over all 43 voxels of the tested tract.
The total number of ‘+’s found was 322 from a total of 516 (12643) signs. The sign-test yielded p = 0.000000001 for the tested tract and remained
significant at the 0.05 level even after Bonferroni-correction for the total number of tracts tested (Bonferroni corrected threshold is 0.05/
20193 = 0.000002). (e) In this timing plot of a stimulus and resting epoch pp stands for preparation phase (12 s), b0 denotes the time period in which
the b = 0 s/mm2 volume is acquired (12 s), and b1000 denotes the time period in which the six b = 1000 s/mm2 volumes are acquired (36 s). The
green and blue arrows denote where (according to the results of the time course experiment) the maximum signal change is expected for the tactile
and visual stimulus, respectively. (f) shows the matrix with all the signs of the active tract. The ‘+’s are represented by black and white denotes the
‘2’s. This sign matrix shows that the positive correlation of the tract with the task is likely to represent signal changes over large parts of the tract
over a considerable time period.
doi:10.1371/journal.pone.0003631.g001
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scans were disregarded to eliminate possible onset effects (for

example, due to heating of the scanner gradients) leaving 13 rest

scans and 12 active scans.

Post processing. The diffusion unweighted scan of the first

fDTI image was used to compute the rigid body transformation that

aligns the first fDTI image with the conventional DTI image. Because

the application of parallel imaging substantially reduces susceptibility

artifacts (e.g. nonlinear spatial deformations) we assumed that rigid

body transformations could be used in this registration step. All other

images in the fDTI set were then registered (using cross correlation)

towards the first fDTI image. In this step each diffusion weighted scan

in the other series was registered to its corresponding diffusion-

weighted scan of the first fDTI image. Subsequently the FA was

computed for each separate voxel of each image in the fDTI set. The

conventional DTI image was used to reconstruct the tracts for the

whole brain with an in house implementation of the FACT algorithm

[25]. Parameter settings: minimum FA.0.2, maximum angle

between current major eigenvector and previous major eigenvector

,26 degrees, average maximum angle between current major

eigenvector and major eigenvectors of neighboring voxels (R-value)

,37 degrees, minimum tract length 50 mm, number of tract starting

points per voxel = 8.

Statistical analysis. Considering that the FA-signal change

extends over the whole tract we postulated that a switch to

statistical testing at the level of complete tracts instead of single

voxels, yields the necessary increase in statistical power (see the

legend of Figure 1 for a detailed explanation). However, white

matter voxels that are part of an active tract may all have different

baseline FA-values and their (non Gaussian) distributions are likely

to differ as well. Because of these differences in baseline FA-values

the comparison between active and rest FA-values should be done

per voxel in order to keep the within variation as low as possible.

Also, because of the expected different distributions, the

conservative nonparametric sign-test [26] was used as a test-

statistic because this test does not require normally distributed

data. For each separate voxel that was part of the tested tract, the

FA-values measured during the active conditions were compared

to rest FA-values and were encoded by a series of ‘+’ and ‘2’ signs

as follows. An active condition was assigned a ‘+’ if its FA-value

was higher than the average of the FA-values of its two temporal

neighbors (the rest conditions just before and just after the rest

conditions), otherwise a ‘2’ was assigned. To test if a complete

tract was active, the sign-test was applied to the set of ‘+’ and ‘2’

signs combined for all voxels that were part of the tract. Thus, if

the number of voxels which are part of the tract that is tested for

activation is n and the number of signs per voxel is m, then the

sign-test is applied to a set of n6m signs. If, by using the sign-test

with a significance threshold of p,0.05, the number of ‘+’s found

differed significantly from what was expected according to the

binomial distribution with equal probabilities for ‘+’ and ‘2’, the

tract was considered active. When all tracts were tested for activity

in this manner, the significance level of 0.05 should be properly

adjusted to correct for multiple testing. In this study the Bonferroni

correction was used.

Multi-subject averaging. To compare the results of the

tactile and the visual fDTI experiment at a group level the

individual results were placed in a common space as follows. For

each subject a binary map of the complete set of voxels that

coincides with the active tracts found was placed in one common

space using the affine transformation that registers the subject’s

anatomy scan with the Montreal Neurological Institute MNI-305

template. The affine transformation was computed using the

ANIMAL algorithm [27] and the resampling of the binary maps

was performed using linear interpolation. Each of the transformed

maps was then blurred with a 3-dimensional Gaussian kernel with

a full width at half maximum of 7 mm (to partially overcome

spatial inter-subject variability) followed by a threshold at a value

of 0.1 yielding a second binary map. The result of this procedure is

that the binary voxel representation of an active tract in the second

binary map is a dilated version of the binary voxel representation

of an active tract in the first binary map. Finally these binary maps

of the subjects were accumulated and overlaid on the subjects’

average anatomy. Thus the value of a (colored) voxel represents

the number of subjects for which an active tract can be associated

with that voxel.

Average percent FA-signal change. For each subject the

per voxel average percent FA-signal change ( (FAtask2FArest)/

FArest)6100% was computed for the FA time series of the voxels

that are part of active tracts. The per voxel average percent FA-

signal change values were computed and were averaged over all

active voxels of all subjects yielding an overall average percent FA-

signal change. Likewise, the per voxel average percent signal

change for the same set of active voxels was computed for the

parallel diffusivity, the radial diffusivity and the mean diffusivity.

Estimation of the contribution of blood volume

changes. To obtain a coarse estimate of the maximum

contribution of possible task-related blood volume changes to the

measured signal we used a two-compartment model [28]

consisting of an intra- and extravascular component. The signal

Sr during rest condition was modeled by:

Sr~S0 fre
{bDz 1{frð Þe{bDbrain

� �
and the signal Sa during active condition was modeled by:

Sa~S0 difae{bDzde 1{fað Þe{bDbrain
� �

where S0 is the baseline signal without diffusion weighting, fr and fa
are the volume fractions of the intravascular component during

rest and activation, D is the apparent diffusion coefficient (ADC) of

the vessel, Dbrain is the ADC of brain tissue, and di is a composite

coefficient for intravascular and de for extravascular contributions

to the signal changes (reflecting T2 and potentially apparent T1

activation related changes). The following parameter settings were

used: fr = 0.01 (for white matter, the fraction of the microvascular

tissue is in the order of 1% [29,30]); fa = 0.015 (i.e. 50% change in

volume fraction with activation, based on [31]); b-factor = 1000 s/

mm2; D = 161023 mm2/s (capillaries). Assuming that the

extravascular component contains white matter two different

ADC values ranges for brain tissue were used

Dbrain = [2.4661024 mm2/s, 5.2361024 mm2/s] (radial) and

[1.5161023 mm2/s, 1.8361023 mm2/s] (parallel) [32]. The

composite coefficients were set to di = 1.2 (here the estimate for

gray is matter used) and de = 1 (no extravascular contribution). The

range of the relative signal change (Sa2Sr)/Sr in the radial direction

is [21.261023, 23.5061025] and the parallel direction range is

[8.2761023, 1.3261022] which correspond to changes in ADC in

the range [1.2461026 mm2/s, 3.5061028 mm2/s] (radial

diffusion) and [28.2361026 mm2/s, 21.3161025 mm2/s]

(parallel diffusion), respectively. Thus the maximum signal

changes induced by blood volume are therefore estimated for

radial diffusivity between 0.50% and 0.01% and for parallel

diffusivity between 20.54% and 20.72%.

Time course experiment
Considering the results of the fDTI experiment the signal

contrast between stimulus and rest conditions was expected to be
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maximal when the diffusion gradient direction is perpendicular to

the tract. Because the ‘‘tracts of interest’’ were known beforehand

(i.e. the sensory thalamocortical tract and the optic radiation), for

the time course experiment, a single diffusion gradient direction

was selected that is perpendicular to the tract of interest. By

selecting only one diffusion gradient direction instead of six

(necessary to compute the FA) the temporal resolution was

increased to 2.6 seconds.

MRI scan acquisition. The scans for the time course

experiment were acquired on a Philips Achieva 3 Tesla whole-

body MR scanner (Intera Achieva, Philips, Best, The

Netherlands). For the time course experiment with the tactile

stimulus, a transverse SS-EPI diffusion weighted scan with 80

diffusion weighted volumes was acquired with the same diffusion

gradient applied in the subject’s left-right direction for each of

these diffusion weighted volumes (acquisition matrix = 80680;

FOV = 2006200 mm; 28 slices; slice thickness 7.5 mm; no gap;

TR = 2852 ms; TE = 68 ms; diffusion gradient b-factor = 1000 s/

mm2; parallel imaging SENSE factor = 3; total scan duration

239 s). Note that for this experiment no diffusion unweighted

volumes were acquired because this would decrease the temporal

resolution. The scan was repeated 5 times and anisotropic voxels

aligned with the tracts of interest were used to reduce partial

voluming to increase the signal to noise ratio. The same tactile

stimulus was used as in the tactile fDTI experiment. The stimulus

started at the 4th scan and ended after the 26th scan (stimulus

duration 60 s). The scan parameters for the time course

experiment with the visual stimulus were identical to the scan

parameters for the time course experiment with the tactile stimulus

except that the slice direction was set to coronal and that the

diffusion gradient was applied in the subject’s upper-left bottom-

right direction (the usage of a combined diffusion gradient in the

visual task was necessary to keep the TE of the visual task identical

to the TE of the tactile task). The stimulus used was the same

stimulus as used in the visual fDTI experiment and the stimulus

started at the 4th scan and ended after the 26th scan. The

conventional DTI scan used in the time course experiment was

identical to the one described in the fDTI experiment.

Post processing. For the analysis of the scans of the time

course experiment with tactile stimulation all voxels that were part

of the tracts connected to the left sensory thalamocortical tract

were selected. From these voxels, 25 voxels with the highest MRI

signal (averaged over all scans) were selected being the ‘‘voxels of

interest’’ for these voxels a task-related signal change was

expected. These voxels were selected in this way because a high

MRI signal is expected in white matter when the direction of the

diffusion gradient is perpendicular to the tract’s main direction.

The MRI signals of these voxels of interest were normalized by

dividing their values by the (per voxel) medians. In contrast to the

fDTI experiment, only diffusion weighted (b = 1000 s/mm2) data

were acquired for the time course experiment, and thus no

normalization with respect to the diffusion unweighted signal

(b = 0 s/mm2) was possible, making these data susceptible to

global signal variation. To correct for the influence of global signal

variation, the MRI signal values of the voxels of interest were

covariated with the MRI signal values of voxels that had similar

signal intensity characteristics but were not expected to show a

task-related signal change: the ‘‘background voxels’’. These

background voxels were the 25 voxels with the highest average

MRI signal value selected from tracts that were not part of the

sensory thalamocortical tract. The 15 measurements (3 subjects; 5

measurements per subject) were averaged and smoothed using a

Gaussian kernel with sigma = 14 s. In a similar fashion the analysis

of the scans for the time course experiment with the visual stimulus

was carried out. The only difference was that the 25 voxels of

interest were selected from the optic radiation and that the

background voxels were selected from tracts other than the optic

radiation.

Results

Positively correlated active tracts (that is, active tracts that show

a significant positive correlation with the task) found for a single

subject during the tactile task and the visual task in the fDTI

experiment are shown in Figure 2. (See Movie S1 and Movie S2

for these fDTI results in combination with conventional fMRI

results.) The results of all individuals for the fDTI experiment were

placed in a common space to study the accumulated activation

patterns for each task separately (Figure 3). For the tactile task,

positively correlated activation was most consistently found for the

afferent tracts of the left sensory thalamocortical tract and the

splenium of the corpus callosum (Figure 3a). Negatively correlated

activation was most consistently found for the afferent tracts of the

right sensory thalamocortical tract (Figure 3b). For the visual task,

positively correlated activation was most consistently found for the

genu and splenium of the corpus callosum and to a lesser extent

for the tracts of the right sensory thalamocortical tract (Figure 3c).

For the visual task, negatively correlated activation was most

consistently found for both left and right optic radiations. The

average percent FA-signal change, averaged over all active tracts

of all subjects were 0.98% and 21.40%, for the tactile positive and

negative correlating tracts, and 1.06%, and 21.45%, for the visual

positive and negative correlating tracts, respectively. The results

for the average percent signal change for the same set of active

tracts computed for the radial diffusivity was: 21.49%, 1.91%,

21.38%, 1.34%. For the parallel diffusivity the average percent

signal change was: 0.39%, 20.44%, 0.27%, 20.47% and for the

mean diffusivity: 20.03%, 0.08%, 20.21%, 0.04%. Note that the

average percent signal changes for radial diffusivity and parallel

Figure 2. Individual fDTI results for subject 5. (a) The
reconstructed tracts that were tested for activity using the fDTI
method. (b) Tracts that were found positively active during the visual
task (orange) and the tactile task (green). The lower images show the
tracts found for the left and the right hemisphere. During the tactile
task, positively correlated activation was found predominantly contra-
laterally for thalamocortical tracts running to the primary sensory
cortical area. Positively correlated activation during the visual task was
found amongst others for tracts that are part of the optic radiation.
doi:10.1371/journal.pone.0003631.g002
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diffusivity have opposite signs leading to reduced signal changes in

mean diffusivity as the radial diffusivity and parallel diffusivity

changes partially cancel each other out.

The results of the time course experiment showed that with the

same stimulus length for the tactile task and the visual task the

signal maximum was reached at 78 seconds and 98 seconds,

respectively (Figure 4).

Discussion

In this study we present a method to measure task-related FA

changes hypothesized to reflect white matter activity in the human

brain. We found expected activation patterns of white matter

tracts for both the tactile and the visual task albeit that for the

visual task the correlation between signal change and task appears

to be reversed. During the tactile task the sensory thalamocortical

tract was active while the optic radiation was active during the

visual task. These white matter tracts were expected to become

active based on their anatomical connections with the sensory and

occipital cortices, which are gray matter areas known to be

involved in tactile and visual tasks.

In the tactile task the majority of the subjects showed the

expected tactile task-specific white matter activation patterns.

Positively correlated activation was found for the left sensory

thalamocortical tract. The negatively correlated activation that

was found in the ipsilateral sensory thalamocortical tract may

reflect a suppression of inputs from the opposite hand as reported

earlier during fMRI experiments [33,34].

In the visual task, the majority of subjects showed positively

correlated active callosal tracts connecting homotopic visual

regions [35] crossing the splenium as well as positively activated

tracts in the frontal region. However, because similar activation

patterns were found for the results of the tactile experiment we

must consider the possibility that these activation patterns are not

directly linked to the visual stimulus. Activation of the optic nerve

was less likely to be detected because of known large susceptibility

artifacts at the base of the brain. The most prominent activation,

as expected, was along the optic radiation [36].

The majority of subjects showed negatively correlated activation

in the optic radiation but deactivation of the optic radiation

(Figure 3d) is less likely during a visual task. If, however, the

underlying contrast mechanism does have a slow varying response

function, as is suggested by the time course experiment, a more

plausible explanation would be that this reversal of the sign of the

activation actually reflects a difference in time course of the

measured signal for the tactile and visual task. This could possibly

be due to the checkerboard stimulus being perceived as a more

intense stimulus than the tactile stimulus. Such an intensity

difference could lead to differences in the time needed for the

measured signal to reach its maximum or to return to baseline.

Indeed the results of the time course experiment (Figure 4) suggest

a difference in when the signal maximum is reached. For the

Figure 3. Accumulated group fDTI results for the tactile and
visual task. For both tasks the accumulated group fDTI results were
computed and overlaid on the subjects’ average anatomy. The color of
the voxel represents the number of subjects for which active tracts are
found at that position. Red voxels denote positively correlated
activation (a,c) while blue voxels denote negatively correlated
activation (b, d). Note that for the visual task the slices for the
positively correlated activation (c) and negatively correlated activation
(d) were taken at different positions. The results for the positively
correlated activation showed that the majority of the positively
correlated activation (c) was found for tracts that were part of the
splenium. Negatively correlated activation (d) was found at the position
that corresponded with the optic radiation.
doi:10.1371/journal.pone.0003631.g003

Figure 4. Time course experiment. The time courses of the diffusion weighted MRI signal for the visual and the tactile task measured
perpendicular to the tract’s main direction using a single stimulus. An increase in glial cell volume is expected to lead to an increase of the measured
signal. The tactile and the visual stimulus period (red horizontal line) started at t = 12 s and ended at t = 72 s. a) The results represent the averages of
15 measurements (3 subjects; 5 measurements per subject) smoothed using a Gaussian kernel with sigma = 14 s. For the tactile stimulus (green) the
maximum signal was found at t = 78 s. For the visual stimulus (blue) the maximum signal was found at t = 98 s. b) The averages of the signals of the
background voxels that were used to correct for global signal variations (dashed blue line for the visual task and green dashed line for the tactile
task). Note that these signals were independently scaled for visualization.
doi:10.1371/journal.pone.0003631.g004
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tactile task the maximum signal is reached at 78 seconds, almost

directly after the end of the stimulation period. The maximum

signal for the visual task however is reached at 98 seconds. Thus

for checkerboard stimulation experiments using stimulation and

resting periods of 60 seconds, the signal maximum of a stimulation

period is not reached within the stimulation period itself but well

within the subsequent resting period. The substantial lag between

the end of the checkerboard stimulus and the signal maximum

could therefore result in an anti-correlation between the task and

the measured fDTI signal resulting in negative activation. This

because, for visual stimuli, the period of acquisition of the diffusion

weighted volumes (b1000) (see Figure 1e) of the resting period is

now positioned more closely in time to the (delayed) signal

maximum (Figure 1e blue arrow) than the b1000 of the stimulus

period itself.

Our fDTI method is based on the assumption that changes in

FA are a sign of local fiber activity. At this point the biophysical

underpinning of the measured fDTI signal is not known. Several

different physiological processes that are part of (or accompany)

fiber activity could, in theory, alter the diffusion profile and

therefore the measured FA-value. For instance, a possible

mechanism that could change the shape of the ECS and therefore

the measured FA-value is activity-related swelling of glial cells

[15]. As a result of neural fiber activity, the level of potassium (K+)

in the ECS increases (for sensory stimulation up to 0.4 mM and

for visual stimulation up to 1 mM [37,38]) and leads to cell

swelling of its surrounding glial cells (particularly oligodendrocytes

and fibrous astrocytes). This glial cell swelling would then lead to

anisotropic changes of the ECS in white matter [12,13]. Such an

anisotropic change of the ECS could result in a measurable

increase in FA because DTI with a diffusion weighting and echo

time as used in this study (b-factor = 1000 s/mm2, TE = 74 ms) is

believed to be primarily sensitive to the diffusion of water in the

ECS [39]. Indeed, changes in the diffusion profile due to changes

of the ECS in white matter have been shown in vitro using diffusion

weighted imaging in the rat optic nerve [15]. In that study a larger

relative decrease in diffusivity was found in the radial direction

than in the parallel direction as is reflected by an increased FA-

value. Also it was shown that the time required for full glial cell

swelling may involve tens of seconds or longer, depending on the

strength of the stimulus [13,40]. Intrinsic optical signal (IOS)

measurements during electrical stimulation of the rat optic nerve

[17] showed a response function that was in the order of tens of

seconds and was interpreted as a decrease of ECS volume due to

glial cell swelling. Interestingly, the measured IOS signal

continuously increased during the stimulation period and reached

its maximum well after the end of the stimulus period similar to the

results of our time course experiment. This similarity in time

course suggests that glial cell swelling could indeed be one of the

underlying physiological mechanisms that is responsible for the

measured FA-signal change. Considering their results a coarse

estimate can be made indicating that an increase of the

concentration of K+ in the ECS with 1 mM would lead to a

decrease of the ECS in the order of 1%. But how this 1% decrease

relates to changes in the measured FA-value is very difficult to

determine because the relation between the measured diffusivity

and ECS volume is not well understood [13,41].

Recent findings indicate that elevated levels of K+ in the ECS

not only result in volumetric changes but also result in complex

morphological changes of astrocytes [18,19,41–43]. If glial cell

swelling is the underlying mechanism of the signal changes

measured in this study then an overall decrease of the measured

diffusion profile (the mean diffusivity) would be expected.

However, if morphological changes of glial cells underlie the

measured signal changes then changes in the shape of the diffusion

profile (reflected by the FA) would be more probable then changes

in mean diffusivity. The results of the average percent FA-signal

change and the average percent signal change in mean diffusivity

do suggest that morphological glial cell changes are more likely to

be responsible for the measured signal changes measured in this

study then glial cell swelling because the changes in FA were larger

than the changes in mean diffusivity.

In gray matter an activity-related increase in blood flow in the

capillaries can be detected with intravoxel incoherent motion [3].

Although intravoxel incoherent motion typically uses moderate

diffusion weighting (up to b = 700 s/mm2) it was suggested [28]

that even with stronger diffusion gradients as used in this study

(b = 1000 s/mm2) changes in blood flow in the smallest capillaries

could still contribute to the measured MRI signal. If the capillaries

in white matter have a preferential direction then the changes in

blood flow within a voxel may be anisotropic an alter the shape of

the diffusion profile, which would be reflected by a change in FA.

Another possible mechanism, closely linked to changes in blood

flow, that could lead to changes in FA would be an activity-related

increase in microvascular blood volume [22]. An increase in blood

volume within a voxel would result in a decrease of the volume of

the white matter’s parenchyma in that voxel [22] hence reducing

the fraction of tissue that is responsible for the measured

anisotropy with DTI. In addition, the dilatation of the blood

vessels may result in an anisotropic shape change of the extra-

cellular space (ECS).

Changes in the level of blood oxygenation resulting in changes

in local susceptibility (which is the contrast mechanism of BOLD-

fMRI) could also alter the FA-value. If the microvascular system in

white matter has a preferential direction within a voxel then

anisotropic task-related changes in susceptibility could potentially

contribute to the measured FA-signal change, as was shown in a

computer simulation [23]. However, the effect of possible task-

related anisotropic susceptibility changes on the FA measurements

is probably limited. If the capillary bed in white matter has a

preferential direction, then task-related changes in susceptibility

will be very small in all tracts for which the preferential direction of

the capillary bed runs parallel to the main magnetic field. This

because a change in the level of blood oxygenation in capillaries

running parallel to the main magnetic field does not lead to

changes in susceptibility [30]. But the results of the fDTI

experiments showed active tracts in all major directions. If task-

related anisotropic susceptibility changes do substantially contrib-

ute to the measured FA-signal changes then one would expect that

no active tracts were found in at least one of the major directions.

The last three possible mechanisms are all based on microvas-

cular changes. Using a two-compartment model [28] we estimated

that in the fDTI experiment the maximum activity-related signal

changes by blood volume changes is 0.5% for radial diffusivity and

for parallel diffusivity 20.72%. These results show that for parallel

diffusivity the task-related signal changes could, in theory, be

explained by activity-related blood volume changes. However, for

radial diffusivity the maximum possible task-related signal change

induced by the changes in blood volume are about three times

smaller than the measured average percent FA-signal change. This

suggests that the measured signal changes cannot be explained by

microvascular changes alone and that other contrast mechanisms

are responsible for the major part of the measured signal change.

The order of the acquisition of the different diffusion weighted

volumes of a single DTI scan may have an effect on the

measurements due to the slow varying time course of the measured

signal. Although the ordering itself could not be responsible for the

measured FA-signal change (as the ordering of the different
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diffusion directions is identical for the DTI scans collected during

rest as for the DTI scans collected during stimulation) it may

introduce different sensitivities in different directions. In future

experiments the influence of such possible order-specific effects

could be reduced by using a round robin scheme for the diffusion

gradients of consecutive DTI scans.

The sheer presence of a person at the entrance of the MRI bore

(e.g. to apply the tactile stimulus) can lead to changes in the

experienced main magnetic field strength within the scanner’s field

of view. However, it is not likely that these changes influence the

measurements because the FA is a relative measure and these

changes do not occur within a single fDTI acquisition.

Although the results of the time course experiment suggest the

need for different timing parameters for different types of single

stimulus intervals, it does not provide information on possible

saturation effects in the case when repetitive stimulation periods

are used. For glial cell swelling for example, saturation effects may

be due to a resting period that is too short to allow the glial cells to

shrink to their normal size. Additional experiments are needed to

study the fDTI signal during repetitive stimulation in order to

optimize the experimental design.

The results of the fDTI method are to a large extent determined by

the quality of the conventional DTI scan and the applied fiber

tracking algorithm. For instance, it is known that sensory information

enters the thalamus via the ventral spinothalamic fasciculus and is

then projected via the thalamus onto the sensory cortex via the

sensory thalamocortical tract. However, results for the tactile task

show some active tracts that appear to start in the thalamus and run

into the sensory cortex as expected, while other tracts appear to

originate in the pons, passing the thalamus and run directly towards

the sensory cortex. The latter tracts could be the result of the fiber

tracking algorithm erroneously combining separate fibers (in this case

tracts from the spinothalamic fasciculus and sensory thalamocortical

tract) into one single tract. Besides erroneously combining separate

tracts, the erroneously splitting of one tract into parts also occurs. For

instance, fiber tracking algorithms utilising the single tensor model

cannot adequately reconstruct crossing fibers [7]. Even if all

constituent (separate) parts of a set of crossing active fibers were

successfully reconstructed, these parts may be too short and therefore

insufficiently profit from the increased sensitivity of the tract based

statistics approach to be marked as active. The number of false

negatives of the fDTI method is therefore directly related to the

quality of the fiber tracking algorithm used.

One of the limitations of this study is the relatively large voxel

size used (64 mm3 in the fDTI experiment) which leads to

considerable partial voluming. This limits the detection of tract

activation to the major tracts such as the optic radiation and the

sensory thalamocortical tract. The latter, for instance, has a

diameter of several millimeters [44,45].

The sign-test, the statistical test used in this study to test for tract

activation, is a non-parametric statistical test that ignores the size of

the measured differences between active and rest conditions and

only takes the signs of these differences into account. This is an

important feature of the sign-test as the FA-value along a fiber tract

will vary considerably and the sizes of the task-related FA signal

changes at different levels of FA-values are incomparable. An

important aspect of tract-based analysis is that all direct compar-

isons of FA signals (when the FA-signal changes are encoded into a

series of ‘+’s and ‘2’s) are done within a voxel where the FA signals

for task and rest conditions will be of similar magnitude. As the sign-

test limits the effect of possible outliers it is very robust in the sense

that tracts will not be considered active on the basis of the FA signal

behavior of a few voxels alone (See Figure 5). This reduces the

chance of finding spurious active tracts, which is important because

the aim of this study was to show that the fDTI method can

successfully be applied to detect activation of white matter tracts.

Moreover, we applied the conservative Bonferroni correction for

multiple testing thereby assuming that each test for fiber activation is

an independent test. However, this is not the case as fibers may

(partly) overlap and as a consequence the Bonferroni correction is

too conservative. On the other hand the degrees of freedom for the

sign-test are based on the assumption that the signals of

neighbouring voxels are independent and a violation of this

assumption may lead to an overestimation of fiber activation.

Further research is needed to obtain a better estimate of the

required correction factor for multiple testing.

To make sure that these findings do not depend on the choice of

a particular statistical analysis method used the data was also

analyzed using parametric statistics. In this analysis conventional t-

statistics as in ROI/VOI based fMRI (here a VOI was defined by

the voxels that were part of the tract that was tested for activation)

were used. First, t-tests are used to test differences in mean FA

value between active and rest conditions per voxel. Second, a t-test is

used to test whether the average t-value of all voxels in the VOI

(i.e. the tract to be tested for activation) is significantly greater

than-or smaller than zero. In that case the tract is considered to

show a positive correlation or negative correlation, respectively.

Note, that in this particular case we conduct a t-statistic over t-

values and not a t-statistic over b-values because at this stage we

only want to establish tract activation. The results of this analysis

did not change our findings. In Figure 6 the results of the analyses

based on the sign test as well as on parametric statistics are shown

for a single subject.

Figure 5. Histogram distributions of voxels that are part of
active fibers. Here two histograms are shown of the number of ‘+’s
per voxel, for all voxels along active fiber tracts, separately for positive
correlation and negative correlation, combined for all subjects. In the
case that there would not be an activity-related signal change, the
distribution of +’s in these voxels would follow a normal distribution
(solid red line). If only a small group of voxels (the active voxels) is
responsible for a tract to be considered active then these voxels must
show a high correlation (i.e. a high number of +’s) with the task while
the distribution of +’s of the other (non-active) voxels that are part of
the active tract would remain unchanged. This would result in a
histogram built up from a large and a small normal distribution. The
large group of non-active voxels would produce the original (large)
normal distribution (solid red line) while the small group of active
voxels would produce a second smaller distribution left (negative
correlation) or right (positive correlation) from the original distribution.
However, if not a small group but the majority of the voxels along the
active fibers belong to the set of active voxels, one would expect a
single normal distribution which is shifted to left (negative correlation)
or to the right (positive correlation). Left, the histogram for the
(positive) active voxels for the tactile task is shown while on the right
side the histogram for the (negative) active voxels of the visual task is
shown. Both histograms appear to follow a single normal distribution
but are shifted to the right (positive correlation with tactile task) or to
the left (negative correlation with visual task). This suggests that the
task-related signal changes found with fDTI indeed occur along large
parts of the fibers and are not confined to small parts of the fibers.
doi:10.1371/journal.pone.0003631.g005
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It was shown that the FA measure is robust against noise

induced bias for higher values (FA.0.4) but it is not rotationally

invariant when 6 different diffusion gradients are used (here used

in fDTI data acquisition) [46]. Possible effects of this rotational

dependency on the fDTI results are expected to be very limited

because deviations due to this dependency form a constant factor

within a voxel over the subsequent rest and task conditions

(assuming no gross subject motion).

In conclusion, we propose a non-invasive method to identify

white matter tract activation in-vivo. Active tracts were identified

using a tract-based statistical analysis. The results of the

experiments indicate that the task-related FA signal changes can

be detected but have a low temporal resolution (tens of seconds),

which is in line with previously reported results of glial cell swelling

in white matter. Furthermore the results suggest that there may be

a relation between the time the signal reaches its maximum and

the intensity of the presented stimuli. The low temporal resolution

as well as the possible dependency on stimulus intensity should be

to taken into account in the design of future experiments. We

believe that the fDTI method may become a valuable tool to study

the brain’s active connections that could help us to get a better

understanding of the functional architecture of the neural

networks in the human brain.

Supporting Information

Movie S1 fDTI data combined with fMRI data for the tactile

stimulus (subject #5). The left and right thalamus were

automatically segmented using the anatomy scan and are shown

in dark green and dark red respectively.

Found at: doi:10.1371/journal.pone.0003631.s001 (5.27 MB

MPG)

Movie S2 fDTI data combined with fMRI data for the visual

stimulus (subject #5). The left and right thalamus were

automatically segmented using the anatomy scan and are shown

in dark green and dark red respectively.

Found at: doi:10.1371/journal.pone.0003631.s002 (4.92 MB

MPG)

Acknowledgments

The authors wish to thank Dr. David Norris, Dr. Rick Dijkhuizen and Dr.

Hans Hoogduin for their helpful comments.

Author Contributions

Conceived and designed the experiments: RCWM HGS MPZ AvdS RSK

HEHP. Performed the experiments: RCWM MPZ. Analyzed the data:

RCWM. Contributed reagents/materials/analysis tools: RCWM. Wrote

the paper: RCWM HGS MPZ AvdS RSK HEHP.

References

1. Catani M, Ffytche DH (2005) The rises and falls of disconnection syndromes. Brain.

2. Mesulam M (2005) Imaging connectivity in the human cerebral cortex: the next

frontier? Ann Neurol 57: 5–7.

3. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, et al. (1986) MR
imaging of intravoxel incoherent motions: application to diffusion and perfusion

in neurologic disorders. Radiology 161: 401–407.

4. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion

tensor from the NMR spin echo. J Magn Reson B 103: 247–254.

5. Jones DK, Simmons A, Williams SC, Horsfield MA (1999) Non-invasive
assessment of axonal fiber connectivity in the human brain via diffusion tensor

MRI. Magn Reson Med 42: 37–41.

6. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, et al. (1999) Tracking
neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A

96: 10422–10427.

7. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies-a technical

review. NMR Biomed 15: 468–480.

8. Hulshoff Pol HE, Schnack HG, Mandl RC, Cahn W, Collins DL, et al. (2004)
Focal white matter density changes in schizophrenia: reduced inter-hemispheric

connectivity. Neuroimage 21: 27–35.

9. Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, et al.
(2000) Meta-analysis of regional brain volumes in schizophrenia. American

Journal of Psychiatry 157: 16–25.

10. Sommer IEC, Ramsey NF, Mandl RCW, Van Oel CJ, Kahn RS (2004)

Language activation in monozygotic twins discordant for schizophrenia. British

Journal of Psychiatry 184: 128–135.

11. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues
elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111: 209–219.

12. Ransom BR, Yamate CL, Connors BW (1985) Activity-dependent shrinkage of

extracellular space in rat optic nerve: a developmental study. J Neurosci 5:
532–535.

13. Sykova E (2004) Extrasynaptic volume transmission and diffusion parameters of

the extracellular space. Neuroscience 129: 861–876.

14. Beshay JE, Hahn P, Beshay VE, Hargittai PT, Lieberman EM (2005) Activity-

dependent change in morphology of the glial tubular lattice of the crayfish

medial giant nerve fiber. Glia 51: 121–131.

15. Anderson AW, Zhong J, Petroff OA, Szafer A, Ransom BR, et al. (1996) Effects

of osmotically driven cell volume changes on diffusion-weighted imaging of the

rat optic nerve. Magn Reson Med 35: 162–167.

16. Prichard JW, Zhong J, Petroff OA, Gore JC (1995) Diffusion-weighted NMR

imaging changes caused by electrical activation of the brain. NMR Biomed 8:

359–364.

17. MacVicar BA, Feighan D, Brown A, Ransom B (2002) Intrinsic optical signals in

the rat optic nerve: Role for K+ uptake via NKCC1 and swelling of astrocytes.

Glia 37: 114–123.

18. Sykova E, Vargova L, Kubinova S, Jendelova P, Chvatal A (2003) The

relationship between changes in intrinsic optical signals and cell swelling in rat

spinal cord slices. Neuroimage 18: 214–230.

19. Stroman PW, Lee AS, Pitchers KK, Andrew RD (2008) Magnetic Resonance

Imaging of Neuronal and Glial Swelling as an Indicatior of Function in Cerebral

Tissue Slices. Magnetic Resonance in Medicine 59: 700–706.

Figure 6. Positively correlated fDTI results for subject #5
computed in three different ways. (a) The original active tracts
found based on changes in FA using the sign-test (See Figure 1). (b)
Analysis of the same data set using conventional t-statistics as in ROI/
VOI based fMRI. For each voxel in the fDTI scan a multiple regression
was carried out. Two regressors were used, one encoding for the
stimulus (0/1) and the other representing possible linear scanner drift.
Each tract that was tested for activation was considered active if the
mean of the stimulus regressor values of the voxels in the tract was
found significantly higher than zero using a one-sided Student’s t-test
(p,0.05; Bonferroni corrected for the number of tested tracts). (c)
Active tracts based on changes in the radial diffusion component using
the sign-test. The three different methods yielded very similar activation
patterns. The similar results for (a) and (b) indicate that the results do
not depend on the chosen statistical method. The similar results for (a)
and (c) indicate that the measured signal change stems predominantly
from a change in diffusion in the radial direction.
doi:10.1371/journal.pone.0003631.g006

Functional DTI

PLoS ONE | www.plosone.org 9 November 2008 | Volume 3 | Issue 11 | e3631



20. Le Bihan D, Urayama SI, Aso T, Hanakawa T, Fukuyama H (2006) Direct and

fast detection of neuronal activation in the human brain with diffusion MRI.

Proc Natl Acad Sci U S A.

21. Miller KL, Bulte DP, Devlin H, Robson MD, Wise RG, et al. (2007) Evidence

for a vascular contribution to diffusion FMRI at high b value. Proc Natl Acad

Sci U S A 104: 20967–20972.

22. Lu H, Golay X, Pekar JJ, Van Zijl PC (2003) Functional magnetic resonance

imaging based on changes in vascular space occupancy. Magn Reson Med 50:

263–274.

23. Kennan RP, Zhong J, Gore JC (1995) Effects of Magnetic Susceptibility

Variations on the Apparent Diffusion Measured by NMR. In: Bihan DL, ed.

Diffusion and perfusion magnetic resonance imaging: applications to functional

MRI. New York: Raven Press Ltd. pp 110–121.

24. Gulani V, Iwamoto GA, Lauterbur PC (1999) Apparent water diffusion

measurements in electrically stimulated neural tissue. Magn Reson Med 41:

241–246.

25. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of

axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:

265–269.

26. Armitage P, Berry G, Matthews JNS (2002) Statistical Methods in Medical

Research. Malden: Blackwell Science. 817 p.

27. Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-

based neuroanatomical segmentation. Human Brain Mapping 3: 190–208.

28. Harshbarger TB, Song AW (2006) Endogenous functional CBV contrast

revealed by diffusion weighting. NMR Biomed 19: 1020–1027.

29. Nonaka H, Akima M, Hatori T, Nagayama T, Zhang Z, et al. (2003)

Microvasculature of the human cerebral white matter: arteries of the deep white

matter. Neuropathology 23: 111–118.

30. Norris DG (2001) The effects of microscopic tissue parameters on the diffusion

weighted magnetic resonance imaging experiment. NMR Biomed 14: 77–93.

31. Donahue MJ, Lu H, Jones CK, Edden RA, Pekar JJ, et al. (2006) Theoretical

and experimental investigation of the VASO contrast mechanism. Magn Reson

Med 56: 1261–1273.

32. Bammer R, Augustin M, Strasser-Fuchs S, Seifert T, Kapeller P, et al. (2000)

Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal

white matter abnormalities in multiple sclerosis. Magn Reson Med 44: 583–591.

33. Blankenburg F, Taskin B, Ruben J, Moosmann M, Ritter P, et al. (2003)

Imperceptible stimuli and sensory processing impediment. Science 299: 1864.
34. Iguchi Y, Hoshi Y, Tanosaki M, Taira M, Hashimoto I (2005) Attention induces

reciprocal activity in the human somatosensory cortex enhancing relevant- and

suppressing irrelevant inputs from fingers. Clin Neurophysiol 116: 1077–1087.
35. Brandt T, Stephan T, Bense S, Yousry TA, Dieterich M (2000) Hemifield visual

motion stimulation: an example of interhemispheric crosstalk. Neuroreport 11:
2803–2809.

36. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science:

McGraw-Hill Inc.
37. Coles JAD, JW (2005) Extracellular potassium and pH: homeostasis and

signaling. In: Kettenmann HaRBR, ed. Neuroglia. second ed. Oxford: Oxford
University Press.

38. Sykova E, Chvatal A (2000) Glial cells and volume transmission in the CNS.
Neurochem Int 36: 397–409.

39. Clark CA, Le Bihan D (2000) Water diffusion compartmentation and anisotropy

at high b values in the human brain. Magn Reson Med 44: 852–859.
40. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracel-

lular K+ accumulation in rat optic nerve: the role of glial and axonal Na+
pumps. J Physiol 522 (Pt 3): 427–442.

41. Chvatal A, Anderova M, Hock M, Prajerova I, Neprasova H, et al. (2007)

Three-dimensional confocal morphometry reveals structural changes in
astrocyte morphology in situ. J Neurosci Res 85: 260–271.

42. Pangrsic T, Potokar M, Haydon PG, Zorec R, Kreft M (2006) Astrocyte swelling
leads to membrane unfolding, not membrane insertion. J Neurochem 99:

514–523.
43. Neprasova H, Anderova M, Petrik D, Vargova L, Kubinova S, et al. (2007) High

extracellular K(+) evokes changes in voltage-dependent K(+) and Na (+) currents

and volume regulation in astrocytes. Pflugers Arch 453: 839–849.
44. Hardy TL, Bertrand G, Thompson CJ (1980) Organization and topography of

sensory responses in the internal capsule and nucleus ventralis caudalis found
during stereotactic surgery. Appl Neurophysiol 42: 335–351.

45. Zarei M, Johansen-Berg H, Jenkinson M, Ciccarelli O, Thompson AJ, et al.

(2007) Two-dimensional population map of cortical connections in the human
internal capsule. J Magn Reson Imaging 25: 48–54.

46. Skare S, Li T, Nordell B, Ingvar M (2000) Noise considerations in the
determination of diffusion tensor anisotropy. Magn Reson Imaging 18: 659–669.

Functional DTI

PLoS ONE | www.plosone.org 10 November 2008 | Volume 3 | Issue 11 | e3631


