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Abstract: A method to filter out the contribution of interference sources in array diagnosis is proposed.
The interference-affected near field measured on a surface is treated as a (complex-data) image.
This allows to use some modern image processing algorithms. In particular, two strategies widely
used in image processing are applied. The first one is the reduction of the amount of information
by acquiring only the innovation part of an image, as currently happens in video processing.
More specifically, a differential measurement technique is used to formulate the estimation of the
array excitations as a sparse recovery problem. The second technique has been recently proposed in
video denoising, where the image is split into a low-rank and high-rank part. In particular, in this
paper the interference field is filtered out using sparsity as discriminant adopting a mixed minimum
`1 norm and trace norm minimization algorithm. The methodology can be applied to both near and
far field measurement ranges. It could be an alternative to the systematic use of anechoic chambers
for antenna array testing.

Keywords: antenna array; near-field measurements; 5G communication; array diagnosis;
rank minimization; compressed sensing; antenna testing

1. Introduction

Sophisticated radiating systems as active array antennas, and massive MIMO arrays will play a
relevant role in the forthcoming 5G communication systems [1]. Due to the high levels of electronic
devices integration required in 5G antennas, no physical connectors are generally available. This yields
a radically new connectorless measurement paradigm in which over-the-air (OTA) measurements
will have a relevant role. Furthermore, mass production of these new antennas requires new, fast and
reliable antenna testing methods. In this framework, near-field measurements represent the most
interesting solution due to the accuracy and small dimension of the test set compared to far-field and
compact range antenna measurement systems.

In near-field measurements [2] the field radiated by the Antenna Under Test (AUT) is measured
on a scanning surface placed at short distance (5λ − 7λ, λ being the free space wavelength) from
the AUT in an anechoic chamber in order to avoid reflections and stray signals [3]. The propagation
process from near-field to far-field conditions is simulated by a proper software. Even if the scanning
area could be any sufficiently smooth surface, planar surfaces are most commonly adopted for array
antennas.
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The main advantages of near-field set-ups are well known: they allow to perform accurate
measurements in a controlled environment. However, a further advantage, that is often underestimated,
is the possibility of using sophisticated data processing algorithms to reduce the cost of the measurement
process without affecting the accuracy. This possibility will be exploited in this paper with reference to
array diagnosis.

On the other hand, near-field measurements suffer from two main drawbacks. The first one is
the time required to collect the data on the observation surface using standard near-field set-ups [4].
With reference to this point, sparse recovery techniques have been recently proposed in the framework
of antenna diagnosis from planar near-field measurements [5–8] in order to reduce the number of
measured data and consequently the measurement time. The method has been successfully tested
from data acquired in anechoic chamber [9,10].

A further problem is the cost of large anechoic chambers. Regarding this point, a large effort
has been devoted to the reduction of the so-called truncation error, caused by a limited scanning
area, in order to use smaller and less expensive anechoic chambers [11–14]. However, a further and
more drastic solution is to perform measurements in a non anechoic environment, avoiding the use of
expensive anechoic chambers.

The aim of this contribution is to investigate a technique that avoids the use of expensive anechoic
chambers by filtering out the interference of undesired electromagnetic sources.

It is worth noting that other techniques for filtering interference signals in antenna measurements
have been proposed. A partial list is reported in the references section [15–20]. The strategies followed
in literature are based on a complete characterization of the environment in order to subtract the
environment response [15], on the equivalent source reconstruction using inverse linear approaches
[16], on the use of suitable base representations [19,20]. Large effort has also been devoted to
interference filtering from amplitude-only measurements [17,18]. Generally speaking, these methods
are ‘general purpose’, in the sense that they can be used in general near-field measurement systems,
and do not take explicitly into account the small number of failures in array testing. In the proposed
method this characteristic is explicitly exploited to reduce the set of possible array excitations, allowing
to identify the failures and to filter the interference contributions in the same step.

The basic idea is to use differential measurements in order to obtain a sparse representation of the
AUT excitations [21]. Such sparseness property of the radiating source is used as a-priori information
in order to distinguish the AUT contribution from the contribution of scattering objects in measured
data, that are characterized by a low rank field distribution.

It is worth noting that the method proposed in this paper strictly resembles the methods used in
image processing. In practice, the interference-affected near field measured on a surface is treated as a
(complex-data) image. This allows to use some modern image processing algorithms. In particular, two
strategies widely used in image processing are applied in this paper. The first one is the reduction of
the amount of information by acquiring only the innovation part of an image, as currently happens in
video processing, using a differential measurements. The second technique has been recently proposed
in video denoising, where the image is split into a low-rank and high-rank part [22]. In particular,
in this paper the interference field is filtered out using sparsity as discriminant adopting a mixed
minimum `1 norm and trace norm minimization algorithm.

2. Rank and Sparsity of the Feld Radiated by an Electric Dipole

Before introducing the filtering technique, it is useful to briefly discuss the general idea at the
base of the filtering procedure.

Let us consider a harmonic electromagnetic source consisting in an elementary electric dipole
directed along the y direction (Figure 1). The dipole can model an element of an array, or also a
scattering point caused by objects in the environment where the measurement system is placed.
The field of this dipole is observed on a square surface having dimension L× L (L = 20λ) placed on
the z = d plane with a uniform planar grid at 0.2 λ sampling step. The field on the observation points
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is sampled and the data are collected on an equispaced grid and the measured values are collected in
the matrix X̄.
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Figure 1. Geometry of the problem.

In Figure 2, the rank of the matrix X̄ is evaluated versus the distance d between the source and
the observation plane (blue curve, left scale). We can note that the rank rapidly decreases. As a
consequence, at sufficiently large distance X̄ tends to be a low rank matrix.

0 10 20 30 40 50 60 70 80 90 100

d/lambda

4

6

8

10

12

14

16

18

20

22

ra
n

k

0

2000

4000

6000

8000

10000

12000

n
o

rm
a

li
z
e

d
 l

1
n

o
rm

Figure 2. Blue curve (left scale): rank of the field on the observation plane; red curve (right scale): `1

norm normalized to the maximum of the field amplitude on the observation plane; the observation
plane is 20λ× 20λ; d is the distance between the source point and the observation plane.

This ‘smoothing’ process in the propagation process is a general property of the field radiated
by an electromagnetic source [23]. Loosely speaking, the propagation acts as a spatial low pass filter,
smoothing the fast spatial variations of the field. Consequently, the field on the observation surface,
being smoother, tends to require less basis functions for its representation.
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The spreading of the field on the observation surface caused by the filtering property of the
propagation phenomenon can also be quantified in terms of ‘sparseness’ of the field. For this purpose
we should evaluate the so called `0 norm, i.e., the number of elements of the matrix different from zero.
The `0 norm suffers from a number of drawbacks that prevent its use in practical problems. Instead of
the `0 norm, we will estimate the degree of sparsity using the 1-norm, or `1 norm, of the matrix X̄, i.e.,
the sum of all the amplitudes of the entries of the matrix. The more the field is concentrated on the
observation surface, the smaller the 1-norm is. This point will be discussed in more detail in the next
section. In this section the goal is to give an intuitive explanation of the usefulness of the `1 norm.

The `1 norm of the matrix, normalized to the maximum amplitude of the entries of the matrix,
is plotted in Figure 2 versus the distance d between the source and the measurement plane (red curve,
right scale). We can see that the normalized `1 norm of the matrix increases rapidly with distance,
as we should expect.

This simple example shows that rank and degree of sparsity can be used to distinguish contributions
from sources in different positions provided that the plane is positioned in the right position. In particular,
if the plane is placed very close to the ‘desired’ source, and sufficiently far from the interference source,
it is possible to filter the undesired sources by subtracting the low rank contribution.

This observation is at the basis of the method proposed in this contribution to filter undesired
field reflections.

3. The Array Failure Detection Algorithm with Reflection Filtering

Let us consider an Antenna Under Test (AUT) consisting of a planar N × N array affected by a
number of fault elements (Figure 3). Let Σ be the plane where the AUT aperture lies, and XAUT ∈ CN×N

the matrix collecting the currents of the radiating elements of the AUT.
In differential measurements [5], we consider also an array without failures, called ‘golden array’,

whose currents matrix is XGOLD. XGOLD (as well as the field radiated by XGOLD) can be obtained
by full-wave numerical simulations, or by measurements in a controlled environment (i.e., in an
anechoic chamber).
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Figure 3. Measurement set-up; the data are collected on the surface Ω placed at a distance d from
the AUT and are affected by a scattered field and Gaussian noise; some elements of the AUT are
malfunctioning (red squares).

The field of the AUT and of the Golden array are measured on a plane Ω placed at distance d
from the AUT in a square lattice of M×M points. The data are collected in the matrices YAUT and
YGOLD, and the following quantities

X = XAUT − XGOLD (1)

Y = YAUT − YGOLD (2)
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are evaluated. Since the number of fault elements is much smaller than the number of elements of the
array, the X matrix is sparse [24].

Now, let us suppose that there is an interference source and let us call Xs the matrix collecting
the equivalent currents generated by the field of the interference source on the plane Σ, i.e., the plane
where the AUT is placed.

Consequently, the equivalent currents on Σ are given by the superposition of the equivalent
currents associated to the AUT and to the interference source, i.e., XAUT + Xs. Note that on this plane
Xs tends to be a low rank matrix as discussed in the previous section.

The field measured on the observation surface is the superposition of the field radiated by these
two contributions plus noise:

Ym = A(XAUT + Xs) + Yn (3)

wherein A is the radiation operator, i.e., the operator mapping the equivalent current matrix on Σ
into the matrix collecting the field on Ω [21] and Yn is the matrix collecting the measurement noise
contribution at the receiver.

The differential measured matrix is consequently:

Ŷ = Ym − YGOLD = A(X + Xs) + Yn (4)

Rigorously, in order to distinguish the sparse contribution of the AUT and the low rank
contribution of the interference source on Σ, the following problem must be solved:

min rank(Xs) + α‖X‖0

subject to ‖A(X + Xs)− Ŷ‖2 ≤ ε (5)

wherein rank(X) is the rank of the matrix X, ‖Xs‖0 is the `0 norm of the matrix Xs, α is a regularization
parameter and ε depends on the level of the noise affecting the data.

Since both rank minimization and `0 minimization are non convex functions the solution of (5)
requires a computational expensive exhaustive search. Furthermore, `0 norm is instable in presence
of noise.

In order to solve the problem it is advantageous to substitute the original problem with a suitably
relaxed version.

In particular, the `0 norm can be substituted by the `1 entrywise matrix norm [24],

‖X‖1 = ∑
k,h
|xk,h| (6)

wherein xk,h is the (k, h) entry of the matrix X, while the rank function can be well approximated by
the trace norm (also called Schatten 1-norm or nuclear norm) [25,26]:

‖Xs‖∗ =
r

∑
k=1

σk (7)

where σk is the k-th singular value of Xs and r is its rank [25,27].
It is interesting to note that nuclear norm and `1 norm have some similarities since in some way

the nuclear norm is to the rank functional what the convex `1-norm is to the `0-norm in the sparse
recovery area, Figure 4b. In fact, the nuclear norm can be seen as a relaxed version of the rank norm,
while the `1 norm can be considered a relaxed version of the `0 norm. While `0 norm counts the
number of elements different from zero, the `1 norm sums up their amplitude. In the same way,
while the rank function counts the number of non-zero singular values, the nuclear norm sums their
amplitude. In order to clarify this point, let us recall that in sparse recovery the goal is to identify
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the sparsest vector (i.e., the vector having the largest number of null components) compatible with
the available data [24]. This requires to minimize the so-called `0 norm, wherein `0 is the number of
non null elements of the unknown vector. Such a minimization is a challenging non convex problem.
For the sake of simplicity, let us consider a 3 entries vector, x = {x, y, z}. The vector is supposed to be
1-sparse, i.e., only one of the three entries of the vector is different from zero. Let us consider the convex
hull of the 1-sparse vectors. Such a convex hull turns out to be the unit ball of the `1 norm, wherein
the `1 norm is ‖x‖1 = |x|+ |y|+ |z|. A graphical picture of the unit `1 ball is drawn in Figure 4a.
The solution of the `1 minimization (red point in Figure 4a) is the tangent point between the affine
space associated to the available data (drawn as a red line in Figure 4a) and the scaled convex hull.
The minimization of the trace norm works in the same way, but operating on the singular values of
the matrix.

Figure 4. (a) geometrical picture of the `1 minimization; (b) geometrical picture of the trace
norm minimization.

Consequently, in practice the solution of the problem requires the following minimization
procedure involving two different definitions of matrix 1-norm:

min α‖Xs‖∗ + ‖X‖1

subject to ‖A(X + Xs)− Ŷ‖2 ≤ ε (8)

i.e., a weighted minimization of the Schatten 1-norm (i.e., the trace norm) of Xs and of the entrywise
1-norm of X. The regularization parameter α can be estimated using the L-shape curve adopted also in
Tikhonov regularization [28].

The above minimization is a convex problem and can be solved by means of the powerful and
efficient algorithms available in many numerical libraries.

The algorithm can handle also multiple scattering interference sources. In this case, the field of
each interference source gives a low rank matrix on the observation plane. Consequently, the problem
is to identify a set of low-rank matrices and a sparse matrix. i.e.,

min
L

∑
l=1

αl‖Xs
l ‖∗ + ‖X‖1

subject to

∣∣∣∣∣
∣∣∣∣∣A
(

X +
L

∑
l=1

Xs
l

)
− Ŷ

∣∣∣∣∣
∣∣∣∣∣
2

≤ ε (9)

where in L is the number of interference sources and Xs
l is the low rank matrix associated to the l-th

interference source.
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4. Numerical Examples

In this section some numerical results are shown. The AUT is a 7× 7 planar array with λ/2
inter-element distance, centered on the x, y plane of a Cartesian coordinate system (see Figure 3).
The data are collected on a 21× 21 points λ/2 uniform grid placed on the plane Ω at distance d = 7λ

from the AUT aperture plane. An undesired source is placed at {x = 0, y = 2.2λ, z = −8λ}. The data
are affected by −45 dB level Gaussian noise. We suppose that the AUT is affected by three fault
elements. The excitation of the non fault elements is one, while the three fault elements have zero
excitation. The amplitude of the excitations of the 49 radiating elements of the AUT are plotted in
Figure 5a (left figure) in false colors (1 = red, 0 = yellow).

The proposed filtering technique is applied to the measured data. The amplitude of the array
excitations is shown in Figure 5c (right figure). The three defects are clearly visible.

As a comparison, the same data have been elaborated using the method [5] consisting of `1

minimization without filtering procedure. The result is plotted in Figure 5b (central figure), showing a
less effective identification of the failures.

In particular, the presence of the undesired source makes two broken elements barely identifiable,
while the proposed technique is able to clearly identify all three elements.

The estimation algorithm is also stable compared to the noise level. For example, in Figure 6 the
estimation of the failures of the AUT is shown in case of −35 dB noise level. The figure shows that the
proposed method still gives acceptable results (Figure 6c, right figure), while the standard method fails
to identify at least one failure (Figure 6b, central figure).

In order to show the performance of the algorithm in case of multiple interference sources, two
sources placed at (x = 0, y = 3.2λ, z = −8λ) and (x = 4, y = 0λ, z = −10λ) are considered. The data
are corrupted by −45 dB level Gaussian noise The solution using the filtering technique is shown in
Figure 7c, while the solution not implementing the filtering method is shown in Figure 7b, confirming
again an improvement in the estimation of the differential excitation.

Finally, an example of identification of the failures in a larger array (81 radiating elements) is
reported in Figure 8. The plot shows that standard technique completely fails to identify the fault
elements, while the proposed technique is able to identify the area where two fault elements are placed.
The position of the third fault element is not detected, but the figure shows a variation of the excitations
on the left upper corner of the array.

In Table 1 the results of the simulations are briefly compared in a quantitative way. As figure of
merit, the Mean Square Error between the reference differential amplitude excitations of the AUT and
the amplitude excitation of the retrieved differential excitations are reported using the interference
source filtering algorithm (4th column and using standard algorithm (5th column of the Table).
The CPU time required by the filtering algorithm is reported in the 6th column. Loosely speaking, also
the quantitative parameter chosen shows an improvement in the differential excitation reconstruction
using the proposed algorithm. The improvement becomes more relevant increasing the number of
interference sources. For example, in the case of two sources, the MSE decreases from 1.5 dB to −3.7
dB. Even if this improvement is numerically lower than the 1 source case, it is practically much more
relevant, and allows to pass from no failure detection to an effective failure detection, as shown in
the previous section. Regarding the computation time, the examples were obtained on an Mc Air 11’
with i7 processor using CVX using only one core. The computation time is less than two minutes, and
increases almost linearly with the number of interference sources. However, these values are only
indicative, and can give an erroneous idea of the computational time required in real applications.
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Table 1. First column: number of the example; second column: number of the elements of the AUT;
third column: number of interference sources; fourth column: Mean Square Error of the amplitude
of the differential excitations using the proposed technique; fifth column: Mean Square Error of the
amplitude of the differential excitations without using the proposed technique; sixth column: CPU
time (seconds) required by the filtering program.

Example Array Elements Number of Interf. MSE Filt MSE no Filt. CPU Time

1st 7 × 7 1 −7.5 dB −3.7 dB 95 s
2rd 7 × 7 1 −9.5 dB −3.7 dB 77 s
3rd 7 × 7 2 −3.7 dB 1.5 dB 167 s
4rth 9 × 9 1 −4.8 dB 3.9 dB 78 s

Figure 5. 1st example: normalized excitation amplitude of the radiating elements (linear scale in false
colors: yellow = null amplitude, red = unit amplitude); (a) exact array excitations; (b) excitations
obtained without filtering; (c) excitations obtained using the proposed filtering method; 7× 7 planar
array with λ/2 inter-element distance, 21× 21 measurement points, d = 7λ, measured data affected
by interference field radiated by a source placed at (x = 0, y = 2.2λ, z = −8λ) and by −45 dB level
Gaussian noise.

Figure 6. 2nd example;: normalized excitation amplitude of the radiating elements (linear scale in
false colors: yellow = null amplitude, red = unit amplitude); (a) exact array excitations; (b) excitations
obtained without filtering; (c) excitations obtained using the proposed filtering method; 7× 7 planar
array with λ/2 inter-element distance, 21× 21 measurement points, d = 7λ, measured data affected
by interference field radiated by a source placed at (x = 0, y = 2.2λ, z = −8λ) and by −35 dB level
Gaussian noise.
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Figure 7. 3rd example: normalized excitation amplitude of the radiating elements (linear scale in
false colors: yellow=null amplitude, red=unit amplitude); (a) exact array excitations; (b) excitations
obtained without filtering; (c) excitations obtained using the proposed filtering method; 7× 7 planar
array with λ/2 inter-element distance, 21× 21 measurement points, d = 7λ, measured data affected
by interference field radiated by a source placed at (x = 0, y = 3.2λ, z = −8λ) and a source placed at
(x = 4, y = 0λ, z = −10λ). The data are corrupted by −45 dB level Gaussian noise.

Figure 7. 3rd example: normalized excitation amplitude of the radiating elements (linear scale in
false colors: yellow = null amplitude, red = unit amplitude); (a) exact array excitations; (b) excitations
obtained without filtering; (c) excitations obtained using the proposed filtering method; 7× 7 planar
array with λ/2 inter-element distance, 21× 21 measurement points, d = 7λ, measured data affected
by interference field radiated by a source placed at (x = 0, y = 3.2λ, z = −8λ) and a source placed at
(x = 4, y = 0λ, z = −10λ). The data are corrupted by −45 dB level Gaussian noise.
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Figure 8. 4th example: normalized excitation amplitude of the radiating elements (linear scale in
false colors: yellow=null amplitude, red=unit amplitude); (a) exact array excitations; (b) excitations
obtained without filtering; (c) excitations obtained using the proposed filtering method; 9× 9 planar
array with λ/2 inter-element distance, 21× 21 measurement points, d = 7λ, measured data affected
by interference field radiated by a source placed at (x = 0, y = 3.2λ, z = −8λ) and by −45 dB level
Gaussian noise.

4. Numerical Examples

In this Section some numerical results are shown. The AUT is a 7× 7 planar array with λ/2
inter-element distance, centered on the x, y plane of a Cartesian coordinate system (see Figure 3).
The data are collected on a 21× 21 points λ/2 uniform grid placed on the plane Ω at distance d = 7λ

from the AUT aperture plane. An undesired source is placed at {x = 0, y = 2.2λ, z = −8λ}. The data
are affected by -45 dB level Gaussian noise. We suppose that the AUT is affected by three fault elements.
The excitation of the non fault elements is one, while the three fault elements have zero excitation. The
amplitude of the excitations of the 49 radiating elements of the AUT are plotted in Figure 5 (a, left
figure) in false colors (1 = red, 0 = yellow).

The proposed filtering technique is applied to the measured data. The amplitude of the array
excitations is shown in Figure 5 (c, right figure). The three defects are clearly visible.

As a comparison, the same data have been elaborated using the method [5] consisting of `1

minimization without filtering procedure. The result is plotted in Figure 5 (b, central figure), showing
a less effective identification of the failures.

In particular, the presence of the undesired source makes two broken elements barely identifiable,
while the proposed technique is able to clearly identify all three elements.

Figure 8. 4th example: normalized excitation amplitude of the radiating elements (linear scale in
false colors: yellow = null amplitude, red = unit amplitude); (a) exact array excitations; (b) excitations
obtained without filtering; (c) excitations obtained using the proposed filtering method; 9× 9 planar
array with λ/2 inter-element distance, 21× 21 measurement points, d = 7λ, measured data affected
by interference field radiated by a source placed at (x = 0, y = 3.2λ, z = −8λ) and by −45 dB level
Gaussian noise.

5. Conclusions

In this paper a novel filtering algorithm of signals in planar near-field measurements is described.
The method allows the filtering strategy of interference sources in array diagnosis. The technique is
simple and numerically efficient, since it allows the use of convex minimization procedures.

The basic idea is to take advantage of the characteristics of the electromagnetic propagation in
terms of ‘spreading’ of the field distribution. Briefly, the equivalent current distribution on the array
is strongly concentrated on the radiating elements, while the contribution of interference sources
placed far from the plane of the array is smoother. Accordingly, it is possible to distinguish these two
contributions looking for a ‘sparse’ distribution and a ‘low rank’ distribution. Numerical examples
carried out in some simple cases confirm the effectiveness of this approach.

As discussed in the paper, the method proposed in this paper strictly resembles the methods used
in image processing. In practice, the interference-affected near field measured on a surface is treated as
a (complex-data) image. This allows to use some modern image processing algorithms. In particular,
two strategies widely used in image processing are applied in this paper. The first one is the reduction
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the amount of information by acquiring only the innovation part of an image, as currently happens in
video processing, using differential measurements. The second technique has been recently proposed
in video denoising and splits the image into a high-sparse and high-rank part.

The results have been obtained using a small laptop computer and CVX program. As stressed
in the Introduction, the aim of this paper is to introduce the technique, and for this purpose the
computer and program adopted are acceptable. However, CVX is a slow program developed mainly
for research-stage applications. More powerful and efficient algorithms are available under payment.
The use of these algorithms on powerful parallel computers drops the computational time drastically.
Even if computational time is not an issue in near-field measurements, since it is usually a fraction
compared to the time required for data acquisition, the possibility of fast reconstruction opens the
thrilling possibility of online failure identification, i.e., identification of failures on-site while antenna
works [29], filtering the environmental noise of the site where the antenna is placed. This interesting
possibility encourages to continue the investigation on the rank properties of the field in the framework
of antenna measurements.
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