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Fibromyalgia is considered a stress-related disorder, and hypo- as well as hyperactive stress systems (sympathetic nervous system
and hypothalamic-pituitary-adrenal axis) have been found. Some observations raise doubts on the view that alterations in these
stress systems are solely responsible for fibromyalgia symptoms. Cumulative evidence points at dysfunctional transmitter systems
that may underlie the major symptoms of the condition. In addition, all transmitter systems found to be altered in fibromyalgia
influence the body’s stress systems. Since both transmitter and stress systems change during chronic stress, it is conceivable that
both systems change in parallel, interact, and contribute to the phenotype of fibromyalgia. As we outline in this paper, subgroups
of patients might exhibit varying degrees and types of transmitter dysfunction, explaining differences in symptomatoloy and
contributing to the heterogeneity of fibromyalgia. The finding that not all fibromyalgia patients respond to the same medications,
targeting dysfunctional transmitter systems, further supports this hypothesis.

1. Fibromyalgia as a Stress-Related Disorder

Fibromyalgia is characterized by heightened pain percep-
tion, including widespread hyperalgesia, in particular to
deep-pressure stimuli, enhanced temporal summation, and
reduced pain-inhibiting effects of heterotopic noxious stim-
ulation (often termed diffuse noxious inhibitory control,
DNIC) [1]. Fibromyalgia has often been described as a
stress-related disorder, and altered stress systems have been
viewed as causal for pain and other symptoms experienced
in this condition [2]. The body’s two stress systems, the
hypothalamic-pituitary-adrenal (HPA) axis and the sympa-
thetic nervous system, are indeed altered in fibromyalgia [1];
however, results on the specific changes are heterogeneous.
For both systems, hyper- as well as hypoactivity in basal func-
tioning and acute stress responses has been reported (e.g.,
[3–8]). Concerning the HPA axis, it has been suggested that
prolonged periods of stress associated with heightened basal
tone and exaggerated acute stress responses (hyperreactivity)
are followed by the development of a hyporeactive HPA axis,

thus potentially explaining inconsistent findings regarding
the HPA axis [9].

Stress increases the risk of developing fibromyalgia, de-
pendent on different predispositions (e.g., genetic makeup
and gender) [2]. However, it is still unclear which physiolog-
ical processes mediate the relationship between experienced
stress and the development of fibromyalgia. Changes in the
autonomic and HPA stress systems are often considered as
such mediators, with chronic stress exposure altering the
functioning of these stress systems, causing fibromyalgia
symptoms [2, 10]. In line with this view, the cardinal
symptom of the condition seems to be related to alterations
of the HPA axis: reported levels of clinical pain have been
shown to be associated with concentrations of corticotropin-
releasing hormone (CRH) in the cerebrospinal fluid (CSF)
[11] and to salivary cortisol levels [12].

Nevertheless, prospective studies are scarce and available
results do not allow conclusions on causal relationships [13].
In addition, in contrast to pain, other prominent symptoms
associated with fibromyalgia, such as fatigue, depressivity,
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and perceived stress, appear not to be related to measures
of HPA axis function [11, 12]. It is, therefore, conceivable
that fibromyalgia symptoms are associated with altered
autonomic and HPA axis stress systems but that these altered
stress systems do not necessarily cause the symptoms. Stress-
related changes in other physiological systems, for example,
neurotransmitter systems, might be additionally involved in
symptom development. Further, stress-related changes in
such other systems may develop in parallel to changes in
the autonomic and HPA axis systems or even precede them,
thereby contributing to or causing fibromyalgia symptoms.

In support of these considerations, some evidence sug-
gests that dysfunction of the body’s autonomic and HPA
axis stress systems are related to some of the risk factors for
developing fibromyalgia, such as early-life stress [14] rather
than playing a causal role in the pathogenesis of fibromyalgia.
For example, salivary cortisol levels in a cross-sectional
study were shown to differ depending on the presence
or absence of early-life trauma (physical or sexual abuse)
but did not differentiate between fibromyalgia patients and
healthy controls [12]. Similarly, CRH concentrations in the
CSF have been shown to be strongly related to the presence
or absence of early-life trauma (physical or sexual abuse)
[11]. Regarding the sympathetic system, evidence in healthy
volunteers suggests that reduced heart rate variability may be
a predisposing factor for the development of fatigue, pain,
and depressive symptoms rather than the underlying cause
of these symptoms [15].

2. Dysfunctional Transmitter
Systems in Fibromyalgia

Cumulative evidence points at alterations in neurotrans-
mitter systems in fibromyalgia (see Figure 1), which is
interesting because the main symptoms of fibromyalgia, that
is, heightened pain perception, fatigue, sleep disturbances,
and depressive as well as anxiety-related symptoms, are
closely linked to these neurotransmitters.

The key symptom and main diagnostic criterion for
fibromyalgia is chronic widespread pain. Several neurotrans-
mitters and modulators are substantially involved in pain
processing. For example, central serotonin and noradrenalin
are important in endogenous pain inhibitory pathways [19,
20] and serotonin plays also an essential role in descending
pain facilitation via the 5HT3 receptor [21, 22]. Substance P
is a neuropeptide that is important for spinal nociception.
It coexists with the excitatory neurotransmitter glutamate in
primary nociceptive afferents [23] and causes sensitization
of dorsal horn neurons [24, 25]. Not surprisingly, glutamate
itself plays an important role in nociception, as it has
excitatory and sensitizing effects [26]. In addition, glutamate
has some inhibitory effects in descending pain pathways [21].
Although it has to be acknowledged that the exact effects and
modulatory actions of these transmitters depend on receptor
subtypes and CNS site [21, 22], serotonin, noradrenalin,
substance P, and glutamate have been shown to be altered in
fibromyalgia in ways that could explain patients’ increased
pain sensitivity. CNS levels of serotonin and noradrenalin
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Figure 1: Alterations in transmitter systems found in fibromyalgia
patients in terms of increased or decreased activity and action of
drugs used in fibromyalgia on these transmitters systems in terms
of activity increase or decrease. ∗The positive effect of naltrexone,
an opioid antagonist, on fibromyalgia symptoms is suggested to be
mediated through disinhibiting effects on HPA axis activity, rather
than by its effect on the opioid system (cf. [16–18]).

appear to be lowered, indicated by decreased levels of
metabolites in the CSF and of serotonin and noradrenalin
in blood [27–30], possibly contributing to dysfunctional
descending pathways and resulting in attenuated descending
inhibition (cf. [31]). CSF concentrations of substance P and
glutamate have been repeatedly found to be increased in
fibromyalgia patients [32–34]. With respect to glutamate,
proton magnetic resonance spectroscopy studies could show
that this neurotransmitter is elevated in pain processing
regions such as the insula, amygdala, and cingulate cortex
[35–39]. Supporting the hypothesis that a hyperactive glu-
tamate system contributes to increased pain sensitivity, and
maybe other symptoms of fibromyalgia, elevated glutamate
levels in the insular cortex have been observed to be cor-
related with low pressure pain thresholds [39] as well as with
high scores on the fibromyalgia impact questionnaire (FIQ,
[40]) [37].

Similar to serotonin and noradrenalin, dopamine activity
has been demonstrated to be attenuated in fibromyalgia (see
[41] for review): CSF levels of dopamine [28] and presynap-
tic dopamine function are reduced (examined with positron
emission tomography (PET)) [42], and dopamine responses
to acute pain are diminished in fibromyalgia patients [43].
Since inactivation of D2 receptors has been shown to
lead to hyperalgesia [44], these findings may suggest that
dysfunctional dopaminergic neurotransmission contribute
to patients’ pain symptomatology.

Particularly important for the endogenous control of
nociception are endogenous opioids, as they decrease trans-
mission of nociceptive signals in several pathways and
nuclei [21, 45]. Counterintuitively, opioid activity appears
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to be increased in fibromyalgia as indicated by increased
CSF and blood serum opioid levels [46], upregulation of
opioid receptors [47], and reduced cerebral mu-receptor
binding at rest (indicative of increased release) [48]. It is not
readily conceivable how an overactive opioid system would
contribute to fibromyalgia symptoms. Indeed, elevated levels
of opioids might be a consequence of pain, rather than a
cause, since similar findings have been obtained in other
chronic pain conditions [49, 50]. Nevertheless, mu-opioid
receptor binding potentials have been found to be negatively
correlated with measures of affective pain in fibromyalgia
[48], perhaps explaining the emotional connotation of pain
in fibromyalgia. Another important neurotransmitter of
antinociception is GABA [51], the main inhibitory neuro-
transmitter in the CNS. Although direct investigations are
not yet available, pharmacological studies have shown a
certain effectiveness of GABAergic agents for pain, sleep,
and fatigue, suggesting that this inhibitory neurotransmitter
system might also be impaired in fibromyalgia.

In addition to increasing pain sensitivity, alterations in
serotonin, noradrenalin, and substance P may contribute
to disturbances in sleep or mood in fibromyalgia patients.
Serotonin and noradrenalin are strongly associated with
circadian rhythms (see [52] for review), and serotonin is
recognized as a mediator of deep sleep [53]. Moreover, a
deficient serotonin system is strongly associated with major
depression [54]. Increased levels of intracerebral substance P
have been associated with increased anxiety-like behavior in
animals [55], and accordingly, NK1-receptor blockade (NK-
receptors are the receptors for substance P) is associated with
reduced anxiety [56].

3. The Role of Altered Transmitters in
Stress Systems

Dysregulated neurotransmitter systems have been suggested
to play a role in the etiology and pathogenesis of stress-
related pathologies including fibromyalgia (cf. [57, 58]).
For example, deficient noradrenergic modulatory function
is hypothesized to increase the vulnerability to stress-related
pathology [58]. In line with this hypothesis, all of the neu-
rotransmitters systems found to be altered in fibromyalgia
exert influences on the sympathetic nervous system or the
HPA axis stress system (see [52, 59] for review; see Table 1).

Serotonin and noradrenalin have been shown to have
a mainly excitatory influence on acute stress responses and
both are key in circadian rhythm of the HPA axis [52, 59–
61]. Dopamine has excitatory influences on the basal tone
of the HPA axis and enhances acute stress responses, as
demonstrated in various animal and human studies (e.g.,
[62–64]). Another excitatory neurotransmitter in CNS stress
circuits is glutamate even though glutamate is present also
in inhibitory stress circuits [52, 65–67]. It is hypothesized
that an optimal “glutamate tone” is required, whereby too
little or too much results in HPA activation [52]. GABA and
substance P both inhibit HPA axis functioning: they have a
tonic inhibitory influence on the HPA axis and terminate
acute HPA stress responses (GABA [68–70]; substance P

[59, 71, 72]). Evidence suggests that opioids diminish stress-
induced autonomic stress responses [57, 73], but for the HPA
axis, both inhibitory and excitatory effects have been found
[74, 75], presumably depending on receptor subtypes and
type of stressor [74–76].

The transmitter disturbances observed in fibromyalgia
could readily explain hyporeactivity of both stress systems,
as found in fibromyalgia (see above; [1]). Transmitters that
regulate circadian rhythm and enhance acute stress responses
such as serotonin, noradrenalin, and dopamine are reduced
in fibromyalgia, while substance P, which inhibits basal tone
and acute responses of the HPA axis, is increased. Similarly,
opioids, which are increased in fibromyalgia, inhibit acute
sympathetic and HPA axis stress responses.

In contrast, these transmitter aberrations cannot easily
explain a hyperactivity of the stress systems, which has
equally been shown in fibromyalgia [1]. This might be
because the view presented in the preceding paragraph is very
simplistic. The specific effect of a neurotransmitter may be
only weakly related to its global level (which is the measure
often obtained in human studies) but depends on factors
such as receptors subtype, brain region, concentration
relative to other neurochemicals, and the type of stressor.
For example, evidence suggests functional differences of
serotonin receptor subtypes in HPA axis regulation [61, 77],
and the modulatory function of serotonin appears to be
dependent on specific brain regions and stressors [60]. The
same has been suggested for dopamine [63, 78–80] and
glutamate [66, 81–84]. Similarly, the differential inhibitory
and excitatory effects of opioids have been suggested to
be due to different opioids acting through different opioid
receptors in addition to a dependence on stimulus conditions
[74–76].

The situation gets even more complicated if one takes
into account changes in neurotransmitter functioning due
to chronic stress that in turn affect sympathetic and HPA
axis stress responses. Chronic stress leads to attenuated HPA
axis responses that are mediated by serotonergic neurotrans-
mission, in contrast to the serotonin-mediated increase of
acute HPA axis responses under normal conditions [52, 60,
61]. Noradrenalin release seems to be increased by chronic
stress through sensitized noradrenergic neurons, leading
to enhanced autonomic and HPA axis excitability [52, 58,
85–87]. In otherwise healthy organisms, the experience of
chronic stress has been demonstrated to result in increased as
well as decreased dopaminergic activity depending on recep-
tor subtype and brain region [88]. In general, dopaminergic
responses to stressors seem to be enhanced after exposure
to chronic stress [78], which could lead to hyperreactive
stress systems, since these systems are excited by dopamine.
In accordance with increased levels of endogenous opioids
and substance P found in fibromyalgia, opioids [57, 89]
and substance P [52, 90] have been found to be increased
in response to chronic stress, leading to an attenuation of
HPA axis reactivity. Results on changes of glutamate and
GABA systems due to chronic stress are not conclusive: some
glutamate [91–93] and GABA [94–96] receptors subunits are
upregulated, while others are downregulated with chronic
stress depending on brain regions.
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Table 1: Overview of the effects of the neurotransmitter systems found to be altered in fibromyalgia on HPA axis activity and the effects
of drugs used in fibromyalgia, targeting these transmitter systems, on HPA axis activity. Information on effects on the sympathetic nervous
system is not included, because results are scarce. The specific effect of the transmitters depends on different aspects of HPA axis activity,
that is, basal tone and circadian rhythm or acute stress responses. In addition, under conditions of chronic stress, the transmitter effects
on the HPA axis are often altered. The table represents a simplistic summary of the evidence found on transmitter actions on HPA axis
activity. Despite a vast number of studies, the precise mechanisms of neurotransmitters on HPA axis functioning remain only incompletely
understood [52]; transmitter actions depend on receptor subtypes, brain regions, and type of stressor.

Transmitter system
Effect on HPA axis activity in terms of

HPA axis activity under chronic stress∗
basal tone and circadian

rhythm
acute stress responses

Effect of drugs on
HPA axis activity∗

Serotonin
excitatory (↑) and

inhibitory (↓)
excitatory (↑) inhibitory (↓) excitatory (↑) and

inhibitory (↓)

Noradrenalin
excitatory (↑) and

inhibitory (↓)
excitatory (↑) excitatory (↑) excitatory (↑) and

inhibitory (↓)

Dopamine excitatory (↑) excitatory (↑) excitatory (↑) ?

Opioids excitatory (↑) inhibitory (↓) inhibitory (↓) excitatory (↑)

Glutamate ? excitatory (↑) ? excitatory (↑) and
inhibitory (↓)

GABA inhibitory (↓) inhibitory (↓) excitatory (↑) ?

Substance P inhibitory (↓) inhibitory (↓) inhibitory (↓) ?
∗

Chronic stress as well as drugs have differential effects on basal tone, circadian rhythm, and acute responses to stress but most studies do not differentiate
these aspects. Accordingly, this table does not differentiate in these instances.

These diverse results strongly suggest that chronic stress
does not affect transmitters and stress systems uniformly.
In fact, the diversity of the results on chronic stress-
induced changes in transmitter functioning favoring in some
instances hypoactive, and in other instances, hyperactive
stress systems are reminiscent of the range that is found
regarding the activity of the stress systems in fibromyalgia
patients. So perhaps whether the sympathetic nervous system
and/or the HPA axis is hyper- or hypoactive in a given
individual depends on the ratio of dysfunctions in different
transmitter systems, rather than absolute transmitter levels.
For example, hyperactivity of the HPA axis could be associ-
ated with alterations in glutamate and opioids that are more
pronounced than changes in serotonin, noradrenalin, and
dopamine. The different transmitter dysfunctions may also
change as a function of time, which could then contribute
to stress systems alterations that are not constant over
time (cf. [9]). Individual patients might exhibit varying
degrees and types of transmitter dysfunction, and indeed,
fibromyalgia patients are recognized to be a heterogeneous
group. Accordingly, categorization of fibromyalgia patients
into subgroups has been suggested. Generally, fibromyalgia
patients are subdivided into a group with a predominant
pain phenotype (strong hyperalgesia) without or only mild
related psychopathological findings and into patients with
(major) depression although different ways of categorizing
and different numbers of subgroups have been suggested
[97–99]. In any case, most studies on dysfunctional neuro-
transmitters as well as on stress systems in fibromyalgia have
not taken any subcategorization into account even though
it seems reasonable to assume that these subgroups differ
not only with respect to their symptoms but also regarding
the mechanisms underlying the condition. Considering
that transmitter alterations seem to be strongly related to

symptoms, it seems conceivable that subgroups of fibromyal-
gia patients are characterized by different transmitter alter-
ations and that the ratio of dysfunctions in different trans-
mitter systems varies between subgroups. The observation
that not all fibromyalgia patients respond to the same
medications (Figure 1). Further supports the notion that
subgrouping might be important in studies on fibromyalgia.

4. Pharmacological Interventions in
Fibromyalgia Targeting Dysfunctional
Transmitter Systems

Pharmacological compounds that raise serotonin and nora-
drenalin concentrations such as tricyclic antidepressants
(TCAs) and dual reuptake inhibitors of serotonin and nora-
drenalin are relatively effective treatments of fibromyalgia,
improving mainly pain, sleep, and fatigue although not
in all patients (see [100–102] for review). Interestingly,
the beneficial effects of these medications are independent
of effects on mood (e.g., [103, 104]). Selective serotonin
reuptake inhibitors (SSRIs) are less effective compared
to TCAs and dual reuptake inhibitors. Moreover, newer
SSRIs (e.g., citalopram), which are even more selective for
serotonin reuptake inhibition, appear to be even less effective
compared to older SSRIs (e.g., fluoxetine and paroxetine)
[101]. Taken together, reuptake inhibition of noradrenalin
seems to be more important compared to reuptake inhibition
of serotonin. Therefore, it would be interesting to investigate
the effects of selective noradrenalin reuptake inhibitors
(e.g., reboxetine) on fibromyalgia symptoms, which has not
yet been done to the best of our knowledge. Moreover,
antidepressants such as TCAs or SSRIs, dampen HPA axis
activity in patients with major depression [105]. If this was
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also true in patients with fibromyalgia, another factor for the
choice of medication would be the HPA axis activity status of
an individual patient.

A very interesting finding is that 5-HT3 receptor antago-
nists are effective in fibromyalgia patients with a primary
pain phenotype (without depression) but not in fibromyalgia
patients with depression [97]. 5-HT3 antagonists act antihy-
peralgesic probably through a reduction of descending pain
facilitation [22]. The finding that some fibromyalgia patients
respond to 5-HT3 antagonists does not necessarily fit with
the finding of decreased serotonin activity in fibromyalgia.
So, perhaps fibromyalgia patients with a primary pain
phenotype, who respond to 5-HT3 antagonists, do not have
decreased serotonin levels and only those in whom depres-
sive symptoms dominate the clinical picture would show
decreased serotonin levels when subgrouped. However, one
has to be cautious with this hypothesis, because serotonin
concentrations could potentially vary across different CNS
sites.

Glutamate and substance P disturbances in fibromyalgia
might be targeted by pregabalin. Pregabalin binds to the
α2δ subunit of voltage-dependent calcium channels and
decreases the release of a variety of neurotransmitters,
including glutamate and substance P [106, 107] by reduc-
ing the calcium influx into nerve terminals. Pregabalin is
effective particularly for pain and sleep. Interestingly, only
small or no effects on anxiety symptoms have been found
in fibromyalgia [108–112] although pregabalin is known to
have anxiolytic effects [113] and is approved by the European
Union for the treatment of anxiety disorders.

Other pharmacological treatments have been tested in
fibromyalgia patients but evidence is weaker [100]. Ketamine
is an interesting molecule: typically conceived as a NMDA
receptor antagonist, it has recently been demonstrated to
act mainly as a D2 dopamine receptor agonist in low doses
[114]. Such low doses lead to reductions in experimen-
tal and clinical pain in approximately half of the tested
fibromyalgia patients [115–117]. A study on the NMDA
receptor antagonist dextromethorphan failed to demonstrate
positive effects on experimental pain in fibromyalgia patients
[118], suggesting that the beneficial effects of ketamine
might indeed be related to its dopaminergic properties. The
effects of ketamine on the HPA axis vary: while high doses
consistently increase HPA axis activity, doses comparable to
those used in fibromyalgia have been found to enhance or
dampen effects HPA axis functioning (e.g., [119–121]).

Interestingly, naltrexone, an opioid antagonist, has
shown some beneficial effect on fatigue and perceived stress
in fibromyalgia patients [122]. Since naltrexone disinhibits
HPA activity [16–18], it could be postulated that it might be
particular effective in patients with low HPA axis activity and
in whom fatigue is the predominant symptom rather than
pain.

Disturbances of GABAergic neurotransmission have not
yet been directly investigated in fibromyalgia. Nevertheless, a
certain effectiveness of sodium oxybate (γ-hydroxybutyrate)
(e.g., [123–125]), which acts as a GABAB receptor agonist,
benzodiazepines [126], which enhance the effect of GABA,
and (nonbenzodiazepine) hypnotics [127–129], which act

as GABAA receptor agonists, for pain, sleep, and fatigue
has been observed. Benzodiazepines and hypnotics that act
at GABAA receptors dampen HPA axis activity (e.g., [130–
133]). Interestingly, zolpidem, which acts selectively at the
GABAA α1 receptor subunit, has been shown to enhance
HPA axis activity [131, 132]. Presumably, this differential
effect depends on the drug’s effect on a specific GABA
receptor subunit and the net effect of the nonselective
drugs results from by action on different receptor subunits
[131, 132]. It would be interesting to investigate whether
the effects of selective and nonselective drugs targeting
GABAergic neurotransmission are different in fibromyalgia
patient subgroups with hypo- or hyperactive stress systems.

5. Stress-Induced Changes in
Transmitter Systems as a Pathogenic
Factor in Fibromyalgia?

Because transmitter changes seem to be closely related to
fibromyalgia symptoms and could, at least partly, explain
alterations observed in the HPA axis as well as the sym-
pathetic system, dysregulated neurotransmitter systems may
play a pathogenic role in fibromyalgia (cf. [57, 58]). Indeed,
chronic stress induces changes in relevant neurotransmitters,
as discussed above. In this theoretical framework, stress-
induced changes in transmitter systems would cause pain as
well as other symptoms in fibromyalgia and contribute to the
observed changes in the sympathetic as well as HPA stress
system. In addition, chronic stress also directly modifies
the HPA axis and the autonomic nervous system, and the
stress systems are likely to influence the transmitter systems.
Consider, for example, substance P: chronic stress leads
to an increase in substance P [52, 90] and can cause a
hyporeactivity of the HPA axis. But because substance P
itself inhibits the HPA axis, the causal relationship remains
unclear. Different scenarios are conceivable: the first one is,
the “serial stress system-based view” in which changes in the
functioning of the autonomic and HPA axis stress systems,
as a result of chronic stress, cause fibromyalgia symptoms
and alter transmitter systems. In this scenario, changes in the
stress systems precede and cause fibromyalgia symptoms and
dysfunctional transmitter systems, considering dysfunctional
transmitters systems not as causally relevant for the patho-
genesis of fibromyalgia. The second scenario is, the “serial
transmitter-based view” in which changes in transmitter
functioning, as a result of chronic stress, cause fibromyalgia
symptoms and alter autonomic and HPA axis stress systems.
In this second scenario, dysfunctional stress systems are
not considered as causally relevant for the pathogenesis
of fibromyalgia in that dysfunctional transmitter systems
precede and cause fibromyalgia symptoms and altered stress
systems. Lastly, we have the “parallel view” in which chronic
stress is considered to cause dysfunctional transmitter as well
as autonomic and HPA axis stress systems in parallel. Neither
changes in transmitter systems nor in stress systems precede
each other, but changes in the systems interact and both
dysfunctional transmitter and stress systems finally cause
fibromyalgia symptoms.
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The current evidence does not conclusively favor one
model. Longitudinal studies in fibromyalgia that track the
development of disturbances in transmitters as well as stress
systems over time would be important in order to test
these models. Further, any study on the topic is likely
to substantially benefit from subcategorizing fibromyalgia
patients. Similarly, treatment studies should investigate well-
defined subgroups of patients, ideally selected based on
specific biochemical alterations that are hypothesized to
be impacted by the specific therapy. Although—or maybe
because—this is a long “to-do” list, it has to be acknowledged
that research in recent years has already made great advances
in uncovering CNS alterations and potential mechanisms
that might contribute to the complex clinical phenomenon
of fibromyalgia.
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