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Menthol can be safely applied 
to improve thermal perception 
during physical exercise: 
a meta‑analysis of randomized 
controlled trials
Patrik Keringer1, Nelli Farkas2,3, Noemi Gede2, Peter Hegyi2,4, Zoltan Rumbus1, 
Zsolt Lohinai5, Margit Solymar1, Kasidid Ruksakiet5,6, Gabor Varga6 & Andras Garami1*

Menthol is often used as a cold-mimicking substance to allegedly enhance performance during 
physical activity, however menthol-induced activation of cold-defence responses during exercise 
can intensify heat accumulation in the body. This meta-analysis aimed at studying the effects of 
menthol on thermal perception and thermophysiological homeostasis during exercise. PubMed, 
EMBASE, Cochrane Library, and Google Scholar databases were searched until May 2020. Menthol 
caused cooler thermal sensation by weighted mean difference (WMD) of − 1.65 (95% CI, − 2.96 to − 
0.33) and tended to improve thermal comfort (WMD = 1.42; 95% CI, − 0.13 to 2.96) during physical 
exercise. However, there was no meaningful difference in sweat production (WMD = − 24.10 ml; 95% 
CI, − 139.59 to 91.39 ml), deep body temperature (WMD = 0.02 °C; 95% CI, − 0.11 to 0.15 °C), and heart 
rate (WMD = 2.67 bpm; 95% CI − 0.74 to 6.09 bpm) between the treatment groups. Menthol improved 
the performance time in certain subgroups, which are discussed. Our findings suggest that different 
factors, viz., external application, warmer environment, and higher body mass index can improve 
menthol’s effects on endurance performance, however menthol does not compromise warmth-
defence responses during exercise, thus it can be safely applied by athletes from the thermoregulation 
point of view.

Menthol (2-isopropyl-5-methylcyclohexanol) is a lipophilic, organic compound which can be extracted from 
essential oils of aromatic plants or produced synthetically1,2. The most common naturally occurring form of 
menthol is the l-isomer, which is used in various products, e.g., candies, beverages, cigarettes, and toothpastes, 
mainly because of its cooling, analgesic, and anti-inflammatory effects2,3. It has long been assumed that menthol 
might improve different aspects of physical performance such as endurance, speed, strength, and joint range of 
motion, consequently it is often used by athletes in the form of sprays, creams, tapes, beverages, etc.4,5.

Warming-up before an exercise is often used to optimize muscle temperature and, thereby, maximal muscle 
power production, however, at high ambient temperatures (Ta), it increases the thermal and circulatory strain6. 
Endurance exercise capacity at a high Ta is impaired by heat stress prior to exercise7, and hyperthermia induces 
fatigue during short intense activities and prolonged exercise in the heat8. On the contrary, physical cooling of 
the body before and during exercise in the warmth improves exercise endurance and reduces cardiovascular 
strain9. A recent meta-analysis of 45 studies also concluded that physical cooling improves aerobic and anaero-
bic exercise performance in hot conditions10. From animal experiments it is known that the transient receptor 
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potential (TRP) melastatin-8 (M8) channel, formerly called as menthol receptor, is a universal cold sensor 
in the thermoregulation system. The pharmacological modulation of TRPM8 with systemic (intravenous or 
intraperitoneal) administration of an antagonist changes the activity of the cold-activated neural pathway11, 
which raises the possibility that activation of TRPM8 with ligand agonists like menthol can have similar effects 
to physical cooling before or during physical exercise. Indeed, in exercising humans menthol administration 
resulted in increased thermogenesis12, decreased sweating13,14, and more pronounced skin vasoconstriction15,16, 
consequently in elevated deep body temperature (Tb)17,18; that is the same pattern of thermoregulatory effector 
recruitment which can be observed as part of the cold-defence responses19. Importantly, the menthol-induced 
decrease in heat loss and elevation in deep Tb can increase the risk for heat exhaustion and adverse cardiovascular 
events in the warmth13,17, therefore, the safety of menthol application in physical exercise, especially at high Ta, 
remains questionable. In contrast with the aforementioned studies showing an increased risk for the onset of 
heat-related illnesses in association with menthol application, several human studies showed beneficial effects 
of menthol on physiological, psychological, and performance parameters during physical exercise18,20–27, while 
a decent number of studies found no effect28–31.

The observed discrepancies among the studies may originate from differences in study designs, application 
methods (route of administration, dosage, location of the administration, and the surface area), and experimental 
conditions (e.g., Ta). Menthol-containing products can be administered externally (e.g., in spray or gel form) or 
internally (e.g., mouth rinse, beverage consumption). External application has been shown to be more beneficial 
than the internal in sports physiology and on endurance performance13,14,23,25, whereas other authors found that 
internally applied menthol is more effective20–22,24,27, and yet others showed no effect of menthol independently 
from the application method26,28–31.

In our meta-analysis, we analysed how menthol administration affects the changes in perceptual and physi-
ological parameters of thermoregulation, and in indicators (viz., power output and performance time) of the 
overall endurance performance during physical exercise in healthy humans.

Methods
Our meta-analysis was conducted in accordance with the guidelines of the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA) protocols32 (Supplementary Table S1). The analysis was based on 
the Participants, Intervention, Comparison, and Outcome model: in physically active, healthy participants, we 
investigated the effects of menthol application compared to controls (i.e., no menthol or placebo treatment) on 
physiological and perceptual parameters and on indicators of endurance performance during physical exercise. 
The protocol for this meta-analysis was registered on PROSPERO (registration number: CRD42019125034).

Search strategy.  A search of the PubMed, EMBASE, and Cochrane Controlled Trials Registry databases 
was performed until May 2020 using the following search key: “(menthol OR mint OR peppermint OR mentha 
OR spearmint) AND (temperature OR “heart rate” OR “oxygen uptake” OR lactate OR “sweat rate” OR “physical 
performance” OR exhaustion)”. We restricted our search to randomized controlled human trials published in 
English without time period limitations. A manual search of the reference lists of identified full-text articles was 
also performed in Google Scholar for eligible studies. The search was conducted separately by two authors (PK, 
AG), who also assessed study eligibility and extracted data from the selected studies independently. Disagree-
ments were resolved, if needed, by a third party (ZR).

Study selection and data extraction.  After screening on the titles and abstracts of the identified pub-
lications, the full texts of eligible articles were obtained. We included studies which reported at least one of the 
following values: thermal sensation (TS), thermal comfort (TC), Tb, sweat production, heart rate, performance 
time, and power output in menthol-treated and control healthy subjects before and during physical exercise. For 
all parameters, the maximal change from baseline after menthol treatment (and the corresponding value at the 
same time point in the control group) was extracted to assess the acute effect of menthol. In each study we calcu-
lated the difference between the menthol-treated and control groups, which was then included in the analyses. 
This approach allowed for taking into considerations differences in experimental protocols between studies. 
From all included articles, we extracted the group size, the reported mean values and standard deviations (SD) 
of the parameters of interest, and the level of statistical significance (p value). To analyse the effects of menthol 
under different conditions, we also divided the studies into subgroups, which were determined on the basis of 
known influencing factors33,34, and data availability. The main influencing factors were grouped in three catego-
ries: characteristics of the subject (body mass index [BMI] and heat acclimation), study protocol (trial type and 
menthol administration method), and environmental circumstances (airflow and Ta).

Statistical analysis.  In each study, we calculated the maximum change in the outcome parameter from 
baseline after menthol application and the change from baseline until the same time point in the control group. 
Then, we calculated the weighted mean difference (WMD) with 95% confidence interval (CI) in the change 
of the parameter between the menthol-treated and the control groups. The statistical analysis was performed 
according to the standard methods of meta-analysis by using a random effects model. The effects were consid-
ered significant when p < 0.05. Using both p value and CI allowed us to detect physiologically relevant differences 
between the groups even in the case of overlapping CIs35.

To study perceptual responses, data on TS and TC were collected. By definition, TS identifies the relative 
intensity of the temperature being sensed, and, as such, provides the body with information about the thermal 
environment, while TC means subjective indifference with the thermal environment, so that thermal pleasure 
is perceived when a stimulus aims to restore TC (for a comprehensive review, see Flouris & Schlader36). In the 
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analysed studies, TS scales were used with ranges of 7-point25, 9-point22, and 20-point14,29,30, while in case of 
TC, the authors used 4-point25, 7-point18,22,23, and 20-point ranges14,29,30. Since TS and TC were determined 
by different visual analogue scales in the studies, in order to make the reported TS and TC values comparable 
for our meta-analysis, while also minimizing the need for conversion of the originally reported data in the 
studies, if required, the reported values were extrapolated into a unified scale, ranging from 0 to 20. The scales 
were bilateral, i.e., 0 corresponded to neutral, in several studies. For example, TS was assessed with a 9-point 
scale ranging from very cold (− 4) to neutral (0) to very hot (4). Thus, after extrapolation of the endpoints of 
the original scales to 0 and 20, in case of TS the middle of the unified scale (10) represented the neutral situa-
tion and an increase in TS between 0 (very cold) and 20 (very hot) indicated a weaker cold or stronger warmth 
sensation. To assess TC, three types of scales were used in the analysed studies: 20-cm visual analogue scale (0: 
very uncomfortable, 20: very comfortable)14,29,30, 7-point scale (− 3: much too cool, 0: comfortable, 3: much too 
warm)18,22,23, and 4-point scale (1: comfortable, 4: very uncomfortable)25. In the studies using 7-point scale, we 
did not find any value smaller than 0, thus we considered the scale from 0 (comfortable) to 3 (uncomfortable) 
and these endpoints were extrapolated to 20 and 0, respectively. In the 4-point scale, the 1 (comfortable) and 
4 (uncomfortable) endpoints were extrapolated to 20 and 0, respectively. As result, the unified 20-point scale, 
ranging from very uncomfortable to very comfortable, resembled the one used in the pioneer study by Gagge 
et al.37. In this scale, a higher TC value between 0 (very uncomfortable) and 20 (very comfortable) corresponded 
to more pleasant comfort feeling.

With regards to performance time, it must be noted that depending on the exercise protocol its decrease 
and increase can both indicate an improved endurance performance. In time-to-exhaustion (TTE) protocols, 
a longer performance time indicates improved endurance as the subjects are able to perform the exercise for a 
longer time period, whereas in time-trial (TT) protocols the subjects aim at finishing a predefined exercise task 
as fast as they can, thus longer performance time indicates reduced endurance in these tasks. Therefore, in our 
analyses, we always separated the TTE and TT protocols in different groups when the investigated outcome was 
performance time, similarly as in previous studies33,38.

Inter-study heterogeneity was tested with the Q homogeneity test and with the I2 statistical test, where I2 is 
the proportion of total variation attributable to between-study variability (an I2 value of more than 50% was 
considered as an indication of considerable heterogeneity). Publication bias was assessed by Egger’s test and 
visual inspection of funnel plots (Supplementary Figs. S7-S10). To evaluate the quality of the included trials, 
two independent reviewers (PK and ZR) assessed the risk of bias according to the Cochrane Handbook39. The 
methodology described for random sequence generation, allocation concealment, blinding of participants and 
personnel, blinding of outcome assessment, completeness of outcome data, and selective outcome reporting was 
assessed (Supplementary Table S2), similarly as in our recent study40.

All analyses were performed using the Comprehensive Meta-Analysis software (version 3.3; Biostat, Inc., 
Engelwood, NJ).

Results
Study selection and characteristics.  The flowchart of study selection is presented in Fig. 1. Until May 
2020, a total of 2,448 records were retrieved from the PubMed (n = 863), EMBASE (n = 1,437), and Cochrane 
(n = 137) databases and 11 records from other sources (e.g., Google Scholar). After removing duplicates and 
enabling filters for human studies, randomized controlled trials, and English language, 94 articles remained. 
By screening on title and abstract, further 72 records were excluded from the analysis because (1) the required 
outcome parameters were not reported, (2) menthol-treated or control group was absent, (3) not only healthy 
participants were recruited, and (4) no original data was reported. The full texts of 22 articles were reviewed 
in detail, from which 17 papers provided eligible data for qualitative and quantitative analyses13,14,17,18,20–31,41. 
All included studies had randomized, crossover design and included data from a total of 177 athletes. The par-
ticipant characteristics in the studies are presented in Supplementary Table S3. The majority of the studies was 
conducted in males, except for an article which included participants of both sexes31 and possibly another one 
which did not report the sex ratio in the sample26. In 12 trials, the participants were refrained from strenuous 
exercise, alcohol and caffeine intake before the experiments13,14,20–23,25,27–30,41, two studies included unspecified 
training limitations18,24, and three articles did not report any limitations17,26,31.

The mean exercise duration was 30 min in TT tests, ranging from 1 min26 to 71 min28, while in TTE protocols, 
it ranged between 1 min41 and 61 min20, with an average of 27 min. In two studies the subjects exercised for a 
fixed time duration of 45 min17 or 2 × 20 min18, while the exercise duration was calculated from distance and 
speed in one of the studies26. In all studies we considered the beginning of the exercise as the baseline, which 
was before the menthol treatment, except for two studies, in which menthol administration was before the start 
of the trial23,25. It should be noted that the TTE test was preceded by 45-min exercise without interruption in the 
study by Barwood et al.14, during which the subjects were repeatedly treated with menthol, thus we considered 
the beginning of the 45-min preliminary fatiguing task as the baseline for TS, TC, and deep Tb. The TTE test was 
also preceded by physical exertion and repeated menthol administration in the study by Saldaris et al.41, but in 
that study the 3 × 30 min trials were interrupted by breaks and resting between the trials, as well as, before the 
TTE test. Therefore, we considered the beginning of the TTE test as the baseline in that study.

The used doses of menthol varied due to differences in administration method (i.e., internal or external), 
concentration (0.01–8%), volume (25–500 ml), and surface of the treated body area (4–91%). The most com-
monly used concentrations and volumes were, respectively, 0.01% and 25 ml in internal, while 0.2% and 100 ml in 
external administration routes. The details of the used administration routes, doses, and experimental procedures 
are summarised in Supplementary Table S4.
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Perceptual responses.  First, we studied how menthol application influences perceptual responses, viz., 
TS and TC during exercise. As it could be expected based on to the cold-mimicking effect of menthol-con-
taining products1, the TS score decreased in the menthol-treated groups as compared to controls in seven 
studies14,21,22,25,29,30,41, while two studies reported a slight increase in TS23,25. Accordingly, the overall WMD 
between the menthol-treated and control groups was − 1.65 (95% CI, − 2.96 to − 0.33; p = 0.014) (Fig. 2). The TC 
score decreased during physical exercise compared to baseline in all groups, but the magnitude of the decrease 
tended to be smaller in the menthol-treated group than in controls by a WMD of 1.42 (95% CI, − 0.13 to 2.96; 
p = 0.073) (Fig. 3), which indicates that the perceived temperature was more comfortable (i.e., not so hot) after 
menthol administration compared to controls. In subgroup analysis, we found that the absence of airflow further 
decreased the TS in the menthol-treated group (WMD = − 2.86; 95% CI, − 4.51 to − 1.22), whereas the menthol-
induced drop was not significant when the fan was used (WMD = − 1.12; 95% CI, − 3.10 to 0.86) (Supplementary 
Fig. S1). The TS-decreasing effect of menthol differed significantly (p < 0.001) between the two subgroups. We 
also analysed whether the menthol-induced improvements in TS and TC are associated with an increased power 
output (an indicator of exercise intensity) during physical exercise and found that the power output remained 
higher in the menthol-treated groups compared to controls in all of the individual studies18,28,30, and accordingly, 
their overall average was also higher by a WMD of 31.52 W (95% CI, 22.52 to 40.53 W) (Fig. 4).

Thermophysiological responses.  We could extract sufficient data for the analysis of three thermoregula-
tory parameters: sweat production (an indicator of the activity of autonomic heat-dissipating mechanisms), heart 
rate (a nonspecific indicator of metabolic rate), and deep Tb (i.e., the tightly controlled parameter in thermoregu-
lation). We found that the volume of sweat production did not differ significantly between the menthol-treated 
and control groups during exercise (WMD = − 24.10 ml; 95% CI, − 139.59 to 91.39 ml) (Fig. 5). Similar to sweat 
production menthol also did not have a meaningful effect on the exercise-induced increase in deep Tb compared 
to the control group (WMD = 0.02 °C; 95% CI, − 0.11 to 0.15 °C) (Fig. 6). Furthermore, there was no significant 
difference in exercise-induced elevation of heart rate between the treatment groups (WMD = 2.67 bpm; 95% 
CI − 0.74 to 6.09 bpm) (Fig. 7).  

Performance time.  Overall, the performance time did not differ statistically between menthol-treated and 
control groups in TT protocols (WMD = − 0.52 min; 95% CI, − 1.37 to 0.34 min) (Supplementary Fig. S2a) and 
TTE tests (WMD = 1.04 min; 95% CI, − 0.47 to 2.55 min) (Supplementary Fig. S2b). In the TT protocols, no 
meaningful difference was observed in the effect of menthol between subgroups of higher (above 23.5) BMI and 

Figure 1.   Flowchart of study selection and inclusion.
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lower (21.4–23.5) BMI (Fig. 8a). However, in the TTE tests, among athletes with higher BMI, performance time 
increased significantly in the menthol-treated group compared to controls (WMD = 2.57 min; 95% CI 1.76 to 
3.39 min), whereas menthol tended to decrease performance time in the lower BMI group (WMD = − 3.20 min; 
95% CI − 8.81 to 2.42 min) (Fig. 8b). The WMD between the treatment groups was markedly bigger in the higher 
than in the lower BMI subgroup (p < 0.001). We also analysed whether acclimation of the subjects to exercising 
in warmth influences the effects of menthol. In TT protocols, we did not find meaningful difference in menthol’s 
effect on performance time between non-acclimated and acclimated participants (WMD = 0.25 min; 95% CI 
− 2.24 to 2.73 min versus WMD = − 0.62 min; 95% CI, − 1.53 to 0.30 min) (Supplementary Fig. S3a). In TTE 
protocols, all of the studies were performed in non-acclimated participants and the effect of menthol was also 
not significant in the group (WMD = 1.13 min; 95% CI, − 0.52 to 2.77 min) (Supplementary Fig. S3b). When 
we compared the effect of external and internal menthol application on endurance performance, we found that 
external application of menthol markedly increased performance time compared to internal application in TTE 
exercise protocols (WMD = 0.83 min; 95% CI − 1.95 to 3.60 min versus 0.40 min, 95% CI, − 0.03 to 0.83 min; 
p < 0.001), while in the other subgroups no significant effect was detected (Supplementary Fig. S4). The external 
menthol application methods were different in the studies: spray on the top wear14,28–30, whole-body creaming13 
or immersion18, and gel on the face25 (Supplementary Table S4). The location of the administration and the 
surface area may also influence the effect since thermal signals from hairy skin provide more important feed-
back signals for the thermoregulation system than thermal signals from non-hairy skin; the latter functioning 
predominantly as an effector rather than a sensor42. To examine the possibility that treatment of a certain area 
of the body (e.g., face) with menthol has bigger impact on endurance performance than other areas in TTE 
protocols, we performed a sensitivity analysis (i.e., iteratively removing one study from the analyses and recal-
culating WMD to investigate the impact of each individual study on the summary estimate), which showed no 
difference in the final pooled results (Supplementary Table S5). Among the environmental factors, no mean-
ingful difference was observed between subgroups with and without airflow in TT protocols (Supplementary 
Fig. S5a). In TTE tests, we found that menthol increased performance time when a fan (i.e., airflow) was present 

Figure 2.   Forest plot of the weighted mean differences (WMDs) showing the effect of menthol on thermal 
sensation during exercise. Here, and in Figs. 3, 4, 5, 6, 7, and 8, black circles represent the WMD for each study, 
while the left and right horizontal arms of the circles indicate the corresponding 95% confidence intervals (CI) 
for the WMD. The size of the grey box is proportional to the sample size; bigger box represents larger sample 
size, thus bigger relative weight of the study. The diamond represents the average WMD calculated from the 
WMDs of the individual studies. The left and right vertices of the diamond represent the 95% CI of the average 
WMD. The vertical dashed line is determined by the low and top vertices of the bottom diamond and indicates 
the value of the average WMD of all studies in the forest plot. A WMD lesser than 0 indicates that the thermal 
sensation value (intensity of cold sensation) is higher in menthol-treated group, whereas a WMD higher than 0 
indicates that thermal sensation is higher in control group.
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Figure 3.   Forest plot of the weighted mean of differences (WMDs) for thermal comfort showing the effect of 
menthol during exercise.

Figure 4.   Forest plot of the weighted mean of differences (WMDs) for power output showing the effect of 
menthol during exercise.
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Figure 5.   Forest plot of the weighted mean of differences (WMDs) for sweat production showing the effect of 
menthol during exercise.

Figure 6.   Forest plot of the weighted mean of differences (WMDs) for deep body temperature showing the 
effect of menthol during exercise.
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(WMD = 2.24 min; 95% CI 0.63 to 3.84 min) compared to no use of a fan (WMD = 0.64 min; 95% CI − 1.17 to 
2.45 min) (Supplementary Fig. S5b). However, the averaged result of the subgroup with airflow should be taken 
with scrutiny due to the low number (n = 2) of studies in this subgroup. Furthermore, in TTE tests at higher Tas 
(above 31 °C) performance time was significantly increased in response to menthol compared with Tas ranging 
from ~ 20 to 30 °C (WMD = 1.02; 95% CI, − 0.01 to 2.04 min versus WMD = − 2.77 min; 95% CI, − 10.66 to 
5.12 min; p < 0.001), while there was no significant difference between the subgroups in TT protocols (Supple-
mentary Fig. S6).

Discussion
In the present study, we show that the application of menthol improves TS, TC, and power output during physical 
exercise. Our results about thermal perception are in harmony with the findings of a previous meta-analysis43, 
which also showed beneficial effects of menthol on TS in exercise performance; however, in that study the ther-
mophysiological effects of menthol were not analysed and influencing factors (e.g., acclimation, Ta) of menthol’s 
effect were not investigated. In our study, we aimed at filling those gaps by studying the effects of menthol also 
on thermophysiological parameters, i.e., sweat production, heart rate, and deep Tb, and by identifying different 
phenotypes and environmental factors which can augment or attenuate menthol’s effects. We show that the use 
of menthol does not lead to compromised warmth-defence responses during physical exercise, since it does not 
affect sweat production, heart rate, and deep Tb. We also identify bodily (viz., higher BMI), methodological (i.e., 
external menthol administration), and environmental factors, such air movement (fan use) and higher Ta, which 
enhance the beneficial effects of menthol on performance time.

Thermoregulatory changes, particularly in TS and TC, during physical exercise are of high importance, as they 
are considered among the limiting factors of endurance performance, and, as such, play a role in the development 
of fatigue44,45. The active muscle generates heat during physical exercise, thereby constituting an internal heat 
stress for the body, which is further augmented when physical activity is performed in the heat46. The heat load 
leads to worsening of TS and TC44, while behavioural and autonomic warmth-defence mechanisms are recruited 
to prevent an excessive increase in deep Tb

46. When the defence mechanisms are compromised or exhausted, 
bodily homeostasis cannot be maintained, and heat-related illnesses, such as exertional heat stroke in the most 
severe forms, develop44. Efforts should be made to prevent the simultaneous presence of severe external and 
internal heat load to the individuals. There are, however, certain scenarios, when prevention of these conditions 
is not possible. The most obvious examples include the strenuous physical activity of firefighters, soldiers, and 
professional athletes in hot environments.

As part of the global climate change, the incidence of heat waves has increased in different countries, includ-
ing, for example, the UK47, France48, the US49, Australia50, and Japan50. These countries can be actual or poten-
tial hosts of upcoming worldwide, summertime sport events, e.g., Summer Olympic Games, thus pre-cautions 
should be implemented in order to prevent heat-related illnesses of the athletes during the games. In addition to 

Figure 7.   Forest plot of the weighted mean of differences (WMDs) for heart rate showing the effect of menthol 
during exercise.
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Figure 8.   Forest plot of the weighted mean of differences (WMDs) for performance time showing the effect of 
menthol in (a) time-trial (TT) and (b) time-to-exhaustion (TTE) tests of athletes with lower (< 23.5) and higher 
(> 23.5) body mass index (BMI). The diamonds in the panels represent the average WMD calculated from the 
WMDs of the individual studies in each subgroup (top and middle) or in all studies (bottom).
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physical methods of cooling, menthol may be also used as a pharmacological cooling intervention prior to and 
during exercise in hot conditions50. The improved TC in response to menthol can increase the thermal toler-
ance in athletes51, which can lead to better performance. It should be noted, however, that menthol may not be 
safely used to improve TC in athletes competing at cold environments (e.g., at Ta below 20 °C). Our analysis, 
to our knowledge for the first time, also shows that the application of menthol did not result in compromised 
warmth defences.

Menthol has been identified earlier as a cold-mimicking substance, and its beneficial effects on sport perfor-
mance have been also reported in a recent review43. It is also known that menthol evokes its thermoregulatory 
effects through the TRPM8 channel, which, at least in rodents, serves as a universal cold receptor for the body19. 
The activation of TRPM8 (e.g., by cold or menthol) leads to the recruitment of cold-defence responses, which 
aim at elevating (but at least preventing the drop in) deep Tb

11. These thermophysiological effects of menthol, 
which were mostly discovered in animal experiments, imply a risk of menthol application in humans during 
physical exercise, since an adverse thermoregulatory effect, viz., an overt increase in deep Tb, can not be ruled out. 
However, in humans thermal signals from the skin are less important for autonomic thermoregulation because 
the greater thermal inertia makes transient thermal exposures less threatening, thus decreases the importance of 
signals from the skin42. Hence, activating peripheral cold receptors, such as TRPM8, with menthol in humans can 
have smaller effects on Tb than in rodents. It should be also noted that signals used for behavioural thermoregula-
tion, which can be triggered through altered TS or TC, can differ from signals for autonomic thermoregulation 
52. For example, antagonists of the TRP vanilloid-1 channel readily affect autonomic thermoeffectors in rats53, 
but fail to affect the behavioural thermoeffectors in the same species, at least as concluded from one study54. 
Moreover, the mode of action for the thermal effect of TRP vanilloid-1 channel antagonists differs between 
rodents and humans55. Therefore, activation of peripheral thermosensation with menthol in humans can have 
smaller effects on deep Tb than in rodents.

In the present study, we collected the available information about the thermoregulation homeostasis in 
menthol-treated athletes performing exercise, and conducted meta-analysis of the obtained data. We showed that 
at the used doses, menthol exerted beneficial effects on endurance performance, but it had no significant effect 
on any of the thermoregulation-related parameters, which included sweating production, heart rate, and deep 
Tb. It should be noted that sweat rate could be also an important indicator of thermoregulatory warmth defence. 
We found only three studies14,20,25, which reported sweat rate, but in all of them only the averaged sweat rate was 
reported for the treatment groups. In two studies20,25, there was no significant difference in sweat rate between 
menthol-treated and control groups, whereas in the third study the average sweat rate was significantly reduced 
after menthol treatment14. However, sweat rate is not steady, but rather a dynamic parameter during exercise. 
It was shown that during exercise sweating rate increased abruptly for 8 min after the onset of sweating and 
then continued increasing at a much lower rate56, therefore the average sweat rate for the entire duration of the 
exercise should be interpreted with caution. As an alternative, we compared the exercise durations between the 
menthol-treated and control groups of the studies that reported sweat production and found that the difference 
between the treatment groups was less than 3 min in all studies14,17,28–30. We believe that such minimal difference 
in exercise duration between treatment groups of the same study did not have a significant influence on sweat 
production. Our results suggest that with regards to thermoregulation homeostasis, menthol can be safely applied 
during physical exercise in humans. Nevertheless, it is also possible that the administered doses of menthol and 
the treated surface area were not sufficient in the most of the analysed studies to trigger cold-defence responses, 
thereby leading to a change in thermophysiological parameters, including deep Tb. Furthermore, we pointed out 
different influencing factors, which can help to augment the performance-improving effects of menthol. Among 
environmental factors, we found that the use of a fan (i.e., wind effect) and higher Ta increased the efficacy of 
menthol on endurance performance. The beneficial effects of menthol were more pronounced in subjects with 
higher BMI, while acclimation to heat did not influence the effects.

Some limitations of our study should be also mentioned. There were inter-study differences in the design of 
the analysed studies regarding, for example, the sample population, the menthol administration route and dose, 
the exercise protocol, and the measurement of the outcome parameters. For example, the assessment of power 
output differed in the three analysed studies18,28,30. The study with the biggest effect size showed a significant 
improvement in power output18, whereas power output did not differ statistically between the menthol-treated 
and control groups in either of the studies with smaller effect size57,58. Based on the risk of bias assessment, we 
found that blinding was not feasible in many studies, because of the characteristic odour of menthol. Further-
more, the allocation concealment was not indicated in some articles13,17,18,20,24,25,31, which could have also influ-
enced the effectiveness of menthol application. These methodological and medical differences in study design can 
explain the considerably high between-study heterogeneity (indicated by an I2 of more than 50%), as observed 
in our analysis (Figs. 2 and 8b; Supplementary Figs. S1-S6). To account for the presence of heterogeneity, we 
used the random effects model in all forest plots of our meta-analyses. However, it is still possible that, despite 
all of our approaches to reduce methodological errors, the high heterogeneity of the analysed studies might have 
negatively impacted our results.

Our findings suggest that menthol can be safely used during physical exercise to improve thermal percep-
tion. Due to its beneficial effects on TS and TC, it can be used as an alternative to mitigate the impact of heat 
exposure on the individuals. External application of menthol in a warmer environment with air movement is 
more efficient, especially in subjects with higher BMI than 23. The validation of our results in targeted human 
trials is subject for future research.

Data availability
All data generated or analysed during this study are included in this published article.
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