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Abstract

Objective: To reconstruct the local HIV-1 transmission network from 1996 to 2011 and use network data to evaluate and
guide efforts to interrupt transmission.

Design: HIV-1 pol sequence data were analyzed to infer the local transmission network.

Methods: We analyzed HIV-1 pol sequence data to infer a partial local transmission network among 478 recently HIV-1
infected persons and 170 of their sexual and social contacts in San Diego, California. A transmission network score (TNS) was
developed to estimate the risk of HIV transmission from a newly diagnosed individual to a new partner and target
prevention interventions.

Results: HIV-1 pol sequences from 339 individuals (52.3%) were highly similar to sequences from at least one other
participant (i.e., clustered). A high TNS (top 25%) was significantly correlated with baseline risk behaviors (number of unique
sexual partners and insertive unprotected anal intercourse (p = 0.014 and p = 0.0455, respectively) and predicted risk of
transmission (p,0.0001). Retrospective analysis of antiretroviral therapy (ART) use, and simulations of ART targeted to
individuals with the highest TNS, showed significantly reduced network level HIV transmission (p,0.05).

Conclusions: Sequence data from an HIV-1 screening program focused on recently infected persons and their social and
sexual contacts enabled the characterization of a highly connected transmission network. The network-based risk score
(TNS) was highly correlated with transmission risk behaviors and outcomes, and can be used identify and target effective
prevention interventions, like ART, to those at a greater risk for HIV-1 transmission.
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Introduction

Communicable diseases spread through contacts within social

or sexual networks [1,2]. The dynamic structure of these networks

govern the spread of the infection [3], and can inform public

health measures to contain infectious epidemics [4]. A common

way to define important network features is through interview and

partner tracing [5], but these techniques are of limited value when

the infectious disease has a long incubation period between

transmission and disease state and a low transmission rate per

contact, like human immunodeficiency virus (HIV-1) [6]. Recent

advances in molecular epidemiology have greatly enhanced our

ability to characterize transmission networks of infectious diseases

[7].

The high evolutionary rate of HIV-1 gives rise to an essentially

unique HIV-1 genetic sequence for each infected individual,

enabling detailed studies of local and global epidemics[8,9].

Because partial HIV-1 pol sequences are generated for routine

drug resistance testing [10], the data necessary to perform such

molecular analyses are often readily available and centralized in

commercial laboratories. These laboratories interpret HIV

sequence data to estimate antiretroviral drug resistance [11].

Without the immediate prospect of a broadly effective vaccine for

HIV-1, molecular epidemiology has the potential to identify

individuals most likely to transmit infection, who could be targeted

for efficient and effective delivery of scarce prevention resources.

In this study, we analyzed HIV-1 pol sequences generated over a

period of more than 15 years from recently HIV-1 infected

individuals and their sexual and social contacts identified in San

Diego, California. Based on these data, we inferred the local
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molecular transmission network and evaluated if network hubs

could be targeted for effective prevention efforts.

Methods

Study Population
HIV-1 screening was offered to adults and adolescents between

1996 and 2011 at multiple HIV-1 testing and counseling sites in

San Diego, California [12]. All HIV-1-positive individuals were

offered study participation with confidential partner services. All

persons identified with recent infection who were antiretroviral

treatment (ART)-naı̈ve formed the San Diego Primary Infection

Cohort (SDPIC). HIV-1 screening was also provided to recent

sexual and social network contacts of newly infected participants.

The UCSD Human Research Protections Program approved the

study protocol, consent and procedures for consent. All study

participants provided voluntary, written informed consent before

any study procedures were undertaken.

An estimated date of infection (EDI) was computed for all

recently infected participants as previously reported[13] (supple-

mental Table S1), that characterized acute HIV-1 infection in

persons presenting with negative HIV-1/2 serologies and a

positive HIV-1 RNA (Procleix HIV-1/HCV Assay: Chiron,

Emeryville, California, and Genprobe, San Diego, California).

HIV-1 risk behaviors (using computer assisted self-interviews),

blood viral load (Amplicor, Roche) and CD4 count (flow

cytometry) were obtained at baseline and every 12 weeks

throughout follow-up. All participants were assessed for baseline

HIV-1 transmitted drug resistance via bulk sequencing of the

partial HIV-1 pol coding region (GeneSeq HIV-1; Monogram

Biosciences, Inc., South San Francisco, CA or Viroseq v.2.0;

Celera Diagnostics, Alameda, CA). The sequenced region

included the protease gene and between 305 and 335 59 amino-

acids of the reverse transcriptase gene. Repeated HIV-1 pol

sequences were generated in a subset of participants. The

GenBank accession numbers for the 648 baseline pol sequences

included in this analysis are KJ722809–KJ723456. In an effort to

avoid unintended disclosure of study participants, data accompa-

nying HIV sequences are limited to year of sampling, country of

origin and a random unique participant ID. Although ART was

not provided, treatment was generally encouraged.

Transmission Network
Sequence curation, alignment, and network inference were

performed using either the HyPhy package [14] or freely available

software (https://github.com/veg/HIV-1Clustering, https://

github.com/veg/TN93, details and justification provided in

Supplemental Methods). After quality control procedures to

remove potential contaminant sequences [15], the partial trans-

mission network was inferred based on the nucleotide genetic

distances between bulk HIV-1 pol sequences from each participant

(Figure 1) [16,17]. In accordance with previous analyses

[11,18,19], we linked two individuals (nodes) in the networks

whenever their pol sequences were less than 1.5% distant (TN93

distance measure, see Figure S1 in File). The degree (connectivity)

[20] of each individual was defined as the number of links (edges in

the transmission network) to other individuals. Clusters were

defined as connected components of the network comprising two

or more nodes (Figure 1). Epidemiologic contact information was

not a requirement for clustering in the molecular network, since

the presence of a link does not imply direct transmission (but

rather two recently related viruses). Whenever possible, we

assigned a direction to the network edge (i.e., an arrow to indicate

the likely transmission direction), if the EDI of the secondary

partner (i.e., putative ‘‘recipient’’) node was at least 30 days past

the date at which the initial partner (i.e., putative ‘‘source’’)

sequence was isolated (Figure S2 in File S1). We conservatively

assumed that chronically infected subjects had an EDI of at least

180 days from enrollment (based on the reliability of available

detuned HIV assays to estimate the duration of recent infection

[21–23]). Since multiple bulk HIV-1 pol sequences generated from

participants with longitudinal follow-up were available and could

boost our power to detect transmissions originating from

chronically infected individuals, we used all available sequences

to define links.

Network Properties and Transmission Network Score
In order to determine whether baseline network characteristics

could predict an individual’s future transmission risk, we

formulated a numeric transmission network score (TNS). Using

only baseline data, we characterized the risk of HIV-1 transmis-

sion within the first year after study entry, for participants entering

the study between 2005–2010. At least one year of network follow-

up was available for all participants (i.e., network sampling ended

in 2011), beginning in 2005 when network sampling was

sufficiently dense for these analyses (Figure S3 in File S1). We

defined TNS as the function of the total degree (d) of the node at

baseline (d = 0 if no connections are inferred), conditioned on the

network inferred at the time of each subject’s baseline sequence

(N). Specifically, TNS(d|N) = Prob (degree of a node in N,d), with

the probability computed using the best-fitting parametric density

for the network N. In other words, TNS of a node with degree d is

the proportion of all network nodes with degrees less than d,

estimated from the histogram smoothed by the fitted parametric

distribution (Figure S3 in File S1). TNS could range between 0

and 1, with higher values representing nodes with unusually high

connectivity [see Supplemental Methods]).

Next, we examined associations between the calculated TNS

and baseline characteristics, including viral load (VL), CD4 count,

risk behaviors (number or sex partners and unprotected anal

intercourse [UAI]), stage of infection and demographics. We also

investigated the relationship between putative transmissions, as

measured by the accumulation of edges with assigned directions

away from the participant between baseline and year 1. We also

tested whether nodes with higher TNS were associated with a

greater risk of participating in putative transmissions (i.e., out-

edges) between baseline and year 1 (as calculation of TNS is

independent of associated edge direction). The TNS values were

neither shared with study participants, nor generated in real time

to influence clinical decision-making.

Evaluation if TNS Could Inform Prevention Strategies
To assess how network information and the calculated TNS

could possibly inform prevention strategies, we estimated the

impact of the timing of ART within our cohort on the transmission

dynamics. Specifically, we tested the level of network connectivity

of participants between those who started ART early (i.e., within

12 weeks of EDI[13]) versus those who delayed ART .12 weeks

from EDI. This analysis was based on the total degree network

statistic developed by Wertheim et al [24]. The statistic is the

difference between the total degree (defined as the sum of all the

node degrees) of the groups. To decide whether this statistic is

unusually low or unusually high, a null distribution is generated by

permuting node labels, conditioned on the structure of the

network. We also modeled the impact of targeted treatment with

ART of a subset of individuals on preventing other infections using

computer simulations (Figure 2 and Figure S4 in File S1). In this

model we liberally assumed that ART would be 100% effective at

HIV Networks and Transmission Risk
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stopping onward HIV transmission (see Supplementary Methods

for details).

Statistical Analyses
For TNS, a value of 0.75 or higher was defined as a ‘‘high’’

score. This represented the top quartile of TNS scores in our

sample; all others were classified as ‘‘low’’. The association

between high TNS and patient characteristics, transmission risks,

and clinical and epidemiological factors was tested using

Wilcoxon-Mann-Whitney test for continuous characteristics, and

Fisher’s exact test for binary and categorical characteristics.

Behavioral characteristics were examined independently. To

ensure a linear relationship between each independent variable

and the logit of the outcome, we log-transformed the viral load and

the number of sex partners in the past year. Wilcoxon rank sum

tests and Fisher’s exact tests were used to compare participants

with a new out-edge network connection (i.e. a putative

transmission) to those without a new connection for continuous

and categorical variables. A multiple logistic regression model was

developed by considering variables that were statistically impor-

tant (p,0.10) at the univariate level and then removing them using

backward elimination (though the same results were obtained

using forward and stepwise elimination). Benefits from adding

covariates to the model were assessed with the likelihood ratio test.

Figure 1. The inferred transmission network (excluding unconnected individuals) in the SDPIC. Only clustered individuals (nodes) within
the network are shown (52.3%). Despite the likely presence of unsampled (i.e., missing) nodes, a partial HIV-1 transmission network is color coded; the
intensity of coloring of nodes determined by their TNS score, while that for directed edges corresponds to the viral load of the putative initial partner
at the timepoint closest to the transmission event. Absence of blue shading indicates that no VL was available for the sampled individual at any
timepoint or that the direction of the edge could not be ascertained using EDI (see text). Absence of red shading indicates a TNS = 0 (i.e. nodes that
were unconnected at the time of enrollment). Nodes are connected with an edge (i.e., a line to indicate potential transmission) if the minimum
distance between the respective pol sequences (i.e., possible transmission pairs) is less than 1.5%. A direction is assigned to an edge if the EDI for the
secondary partner (i.e., putative ‘‘recipient’’) is at least 30 days after the sampling date of the putative transmitting partner (i.e., putative ‘‘source’’).
The direction of transmission was resolved for in 332 of the 540 individuals (61.5%).
doi:10.1371/journal.pone.0098443.g001
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Goodness of fit of the final model was assessed by inspecting

residuals and using the Hosmer-Lemeshow test. Confidence

intervals on inferred network properties were obtained by drawing

1000 bootstrap replicates of the pol sequences, repeating network

inference, and tabulating relevant statistics.

Results

Study Population
Between 1996 and 2011, the SDPIC screening program

enrolled 648 HIV-1 infected individuals in the described network

analysis, including 478 (73.8%) with recent HIV-1 infection and

170 of their HIV-1-infected sexual and social contacts. For the

recently (i.e., acute and early) infected participants, the median

time from the estimated date of infection (EDI) to presentation was

70 days (Table 1). Baseline participant characteristics were

consistent with the epidemiology of HIV-1 in San Diego

[12,13]: most participants were male (96.0%), with a median age

of 33 years, and men reporting sex with other men as the primary

HIV-1 risk factor (Table 1). A total of 921 HIV-1 population pol

sequences were isolated from 648 persons, nearly all being HIV-1

subtype B (98.5%) with sequences from 17.6% of participants

harboring some drug resistance mutations (Figure S5 in File S1). A

subset of 89 participants had multiple HIV-1 pol sequences

generated during study follow-up with a median of two sequences

per individual (range: 2–21) and a median duration of follow-up of

49 weeks (range: 1–413 weeks).

Transmission Network Characteristics
The HIV-1 pol sequences generated from each participant were

used to infer the transmission network. Overall, the mean genetic

distance between pairs of randomly selected baseline sequences

was 5.83% (s.d. 1.46%), and pairwise distances below the

threshold of 1.5% used to define a link between individuals, were

rare overall (0.25%, Figure S1 in File S1). Using this 1.5%

threshold, 339 individuals (52.3%, 95% CI: 333-392) were

connected to at least one other study participant. Individuals

were then divided into connected (i.e., clustered) and disconnected

(i.e., singletons) nodes. Connected nodes (Figure 1) were arranged

in 90 clusters (95% CI: 68–90), ranging in size from 2 to 62

individuals. It was possible to discern the direction of the putative

HIV-1 transmission in 332 of the 540 connections (61.5%) by

comparing the sampling date of the secondary partner and the

EDI for the putative initial (i.e., transmitting) partner (Figure S2 in

File S1). Overall, 18.5% (n = 29) of clustered participants had a

new outbound connection within one year of enrollment. A total

of 208 connections (38.5%) remained undirected because neither

individual had an EDI (n = 29) or neither direction could be ruled

out by examining EDI and sampling date information (n = 179).

Interestingly, participants enrolled during acute and early infection

were not significantly more likely to develop a new outbound edge

within the first year of follow up than persons with established (i.e.,

chronic) infection (75.5% vs. 67.2%, p = 0.52). However, similar to

previously described HIV-1 networks derived mostly from

populations of men who have sex with men [6,25], our network

was best described by a preferential attachment model, indicating

that new connections (i.e., putative transmissions) are more likely

Figure 2. Simulations of ART provided either to those with the highest TNS or to a random subset of clustered individuals. Black
nodes are those that are being treated (the assumption is that ART is 100% effective at stopping all secondary transmissions). Other nodes are
colored according to how likely they are to be prevented from becoming infected assuming that we have removed the treated nodes from the
infectious pool; they are also labeled by the rate at which they are expected to be effectively protected (dark red = very high probability of preventing
transmission). These values are derived from simulating treatment where the randomness comes from the fact that should a node have N possible
infectious connections, K of which are treated/removed due to treatment of other nodes, the node itself will NOT become infected with probability K/
N. Targeting high TNS in panel A shows (i) The removal of an entire large cluster, where many nodes have high TNS (ii) prevented chains of
transmission (i.e. even nodes that are not directly connected to the treatment subset have a high probability from being protected). Targeting the
same number of random nodes in panel B shows: largely a very local effect and almost no chains being disrupted (with the exception of a cluster that
is randomly chosen). Both panel A and panel B networks have the same topology, though the appearance is slightly different to allow labeling of
specific nodes.
doi:10.1371/journal.pone.0098443.g002
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to form (or ‘‘attach’’) to nodes that are already more highly

connected (Figure S6 in File S1) [6].

High TNS at Baseline Was Associated with Future
Connections

Among 339 clustered participants, 157 were identified after

2004 and had TNS determined using only the information

available at the time of study enrollment. The top quartile of the

TNS distribution was designated as ‘high’ (TNS .0.75, n = 33)

and all others as ‘low’ (n = 124). Participants with a high TNS were

significantly more likely to have a putative transmission event

within the first year, defined as one or more acquired outbound

network connections in the first year (44.8% vs. 15.6%, p,0.01).

The association between TNS and predicted risk of transmission

was robust with regard to the cutoff chosen to determine ‘‘high’’

TNS (p,0.02 for TNS range in 0.70-0.95 [i.e., those in the top

25th percentile]). Even as the network grew over time, the majority

of high TNS nodes retained their unusually high connectivity.

Clinical Correlates of Transmission
Participants with a higher baseline VL (median of 5.2 vs. 4.7

HIV RNA log10 copies/ml, p,0.01), and those with more sex

partners at baseline (median of 3 vs. 1.5 partners, p = 0.03), were

also significantly more likely to have a putative transmission event

within the year of enrollment (Table 2). White participants (29.3%)

were significantly more likely than Hispanics (11.1%) or partic-

ipants of other race(s) (5.9%) to experience a putative transmission

event (p = 0.02). There were no significant associations between

baseline CD4 count (p = 0.53), insertive (p = 0.50) or receptive

UAI (p = 0.34), age (p = 0.79), or stage of infection (p = 0.50) and

putative transmission events. Baseline VL and high TNS were not

significantly correlated in univariate analysis (p = 0.27), but in a

multivariable analysis, number of unique sex partners, VL and

high TNS (.0.75) at baseline were independently correlated with

predicted risk of HIV transmission within the first year after

presentation (p = 0.030, p = 0.003 and p = 0.005, respectively).

Adding TNS to a logistic regression model of new network

connections with VL as an explanatory variable contributed

significantly to the model (p,0.001). There were also significant

associations between TNS and baseline number of unique sexual

partners ($1) in the past month (p = 0.014) and insertive

(p = 0.0455), but not receptive (p = 0.733) UAI.

Evaluation of robustness to network inference error
TNS inferred from an incompletely sampled molecular network

was a good predictor of the TNS in the unobserved larger

transmission network, implying that despite the limitations of our

approach (see Discussion), molecular networks likely retain key

qualitative properties of actual transmission networks. Based on

100 simulations of transmission dynamics and sequence evolution

of 5,000 HIV-1 pol sequences, followed by a subsampling of 648

sequences, network inference and TNS calculation, we found that

in all 100 cases there was significant (p,0.05, Kendall rank

correlation test) correlation between the true and inferred TNS.

Furthermore, the median positive predictive value for high TNS

(top quartile) based on molecular network data was 0.66.

ART Analyses
To further understand how network information could be used

for prevention efforts, we investigated if the preventative efforts of

Table 1. Baseline characteristics of study participants.

Characteristics SDPIC Others Total

Male, n = 630, n (%) 462 (96.7) 143 (94.1) 605 (96.0)

Age, n = 611, median (range) 33 (16–67) 35 (18–58) 33 (16–67)

Race/Ethnicity, n = 463 Non-Hispanic white, n (%) 155 (48.1) 63 (44.7) 218 (47.1)

Non-Hispanic black, n (%) 14 (4.4) 22 (15.6) 36 (7.8)

Hispanic, n (%) 122 (37.9) 42 (29.8) 164 (35.4)

Other, n (%) 31 (9.6) 14 (9.9) 45 (9.7)

Risk Factors for HIV MSM, n = 590, n (%) 444 (97.2) 125 (94.0) 569 (96.4)

Heterosexual, n = 614, n (%) 29 (6.1) 16 (11.4) 45 (7.3)

Injection drug use, n = 623, n (%) 17 (3.6) 12 (8.3) 29 (4.7)

Elapsed time Days from HIV-1 infection to study entry, n = 478, median
(range)

70 (7–170) N/A* N/A*

Days from study entry to first pol sequence, n = 640,
median (range)

0 (0–1462) 0 (0–1813) 0 (0–1813)

Days from study entry to start or ART, n = 341, median (range) 72 (0–3718) N/A* N/A*

Weeks from study entry to last visit, n = 634, median (range) 98.3 (0–667.7) 2.0 (0–293.2) 60.1 (0–667.7)

Laboratories (n = 616) CD4 (cells/mm3), median (range) 500 (67–1380) 378 (7–2273) 484 (7–2273)

Viral load (HIV–1 RNA log10 copies/mL), median (range) 5.0 (0–7.8) 4.1 (0–7.0) 4.9 (0–7.8)

50–1500 copies/mL, n (%) 27 (5.7) 38 (27.5) 65 (10.6)

1501–,000 copies/mL, n (%) 63 (13.2) 24 (17.4) 87 (14.1)

10,001–100,000 copies/mL, n (%) 143 (29.9) 46 (33.3) 189 (30.7)

.100,000 copies/mL, n (%) 245 (51.3) 30 (21.7) 275 (44.6)

SDPIC = San Diego Primary Infection Cohort, Others = non-SDPIC participants, MSM = men who have sex with men, ART = antiretroviral therapy.
*Date of infection and start of ART were not estimated for non-SDPIC participants.
doi:10.1371/journal.pone.0098443.t001
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early initiation of ART [26] could be observed in the sampled

network. A total of 177 out of 339 (52.2%) clustered participants

initiated ART at a median of 168 days from study entry (i.e.,

baseline). Retrospective analysis using a network statistic devel-

oped by Wertheim et al. [24] showed that ART initiation within

12 weeks of EDI (n = 64) resulted in significantly less putative

transmission (i.e. fewer out- and undirected- connections) than

when ART was started later (p,0.05). We also evaluated if the

network could possibly inform targeting of prevention interven-

tions, and found through simulation that ART given to the 11

individuals with the highest TNS ($0.90) and assumed to be 100%

effective at preventing transmission, showed a greater probability

of reducing HIV-1 transmissions compared to ART provided to

the same number of randomly selected individuals in the network

(Figure 2 and Table 3). This observation remained in 91% of

simulated treatment scenarios to those with TNS $0.90. We also

investigated whether selecting a subset for immediate treatment

based on baseline demographics and reported risk behaviors

would yield prevention improvements comparable to those

achieved by TNS. Such simulations suggested that targeting

ART for individuals based on the number of sex partners in the

last month, whether or not they reported always having UAI in the

last month or whether or not they had another sexually

transmitted infection (STI), did not provide a measurable

improvement over a randomly selected subset of nodes (probability

of improving on a random treatment .0.5 in all cases).

Discussion

Although HIV-1 network structure and transmission dynamics

have characterized temporal trends in identified HIV-1 cases

[6,27], these studies have rarely, except in Wertheim et al. [24],

been used to predict or simulate future HIV-1 infections. By

combining methods from classical and molecular epidemiology,

we were able to infer and characterize the local transmission

network. Specifically, we inferred the HIV-1 transmission network

in San Diego, California using HIV-1 sequence data generated

during routine drug resistance testing from a well-characterized

cohort of recently infected individuals and their sexual and social

contacts. We then evaluated if network characteristics could

predict future transmission patterns.

As a proof of principle, local HIV-1 transmission network

characteristics were used to derive a score (TNS) that estimated the

risk of transmission, during the first year of HIV-1 infection, when

transmission risk may be greatest [27,28]. This objective score

identified a subset of participants (TNS .0.75) who had a

significantly greater predicted risk of HIV transmission within

their first year of infection than those with lower TNS. As evidence

that TNS reflected a biologic correlate of transmission risk, a

positive and correlation was observed between baseline VL (and

TNS) and likelihood of acquiring an outbound edge within the first

year [29–31]. When TNS was incorporated into a multivariate

model with VL, the prediction of transmission risk significantly

improved, suggesting that VL and TNS are informed by

independent transmission risk factors (e.g., per contact transmis-

sion risk and number of high risk contacts). Taken together, TNS

provides a new method to estimating transmission risk within a

network, and this method could likely be extended to infer regional

transmission networks from the extensive archives of HIV

sequence data stored in commercial databases. Since the TNS is

derived only from information available at the time of enrollment,

the score could be readily utilized in clinical practice (Figure 3), as

patient level TNS results could be integrated into routine baseline

genotype test reports providing a general transmission risk

interpretation to the patient’s healthcare provider and the patient.

We then evaluated if network data can be used to help target

prevention strategies. First, we retrospectively observed that self-

selected early initiation of ART was associated with a cumulative

decrease in putative transmission in our network, as compared to

delaying ART. We then used data from our local network to

inform simulations, that demonstrated that targeting individuals

with highest TNS ($0.90) with highly effective prevention

interventions (e.g., fully suppressive ART), we would expect to

Table 2. Clinical correlates of HIV transmission.

Baseline parameter Putative transmission* Analysis

Yes No Univariate Multivariate

Plasma VL (median log10 RNA copies/mL) 5.2 4.7 p,0.01 OR = 2.0, P,0.01

CD4 count (median cells/ml) 382 469 p = 0.53

Number of sex partners (median previous month) 3.0 1.5 p = 0.03 OR = 1.8{, P = 0.03

UAI, receptive Any 76.0% 64.8% p = 0.34

None 24.0% 35.2%

UAI, insertive Any 69.2% 60.4% p = 0.50

None 30.8% 39.6%

Race White 75.9% 50.4% p = 0.02

Hispanic 20.7% 28.1%

Other 3.5% 21.5%

Stage of infection Acute/Early 72.1% 64.1% p = 0.52

Established 27.6% 35.9%

TNS (.0.75) 44.8% 15.6% ,0.01 OR = 4.0, P,0.01

UAI = unprotected anal intercourse, VL = viral load.
*Defined as $1 acquired outbound network connection(s) in the first year after incident HIV infection.
{The log-transformed number of sex partners was used in the regression model, so OR = 1.8 corresponds to the odds of transmission for subjects with 1 sex partner
compared to subjects with 0 sex partners (OR = 1.4 when comparing 2 to 1 sex partners).
doi:10.1371/journal.pone.0098443.t002
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reduce local network transmissions more efficiently than with the

same prevention intervention targeting individuals with the

greatest number of recent sexual partners or STI (Table 3). While

encouraging, one still must prove that such interventions can

disrupt the entire network if they are to appreciably reduce the

incidence rate in the at risk community. Based on these robust

HIV-1 network transmission observations, we therefore propose a

method to use the connectivity of individuals to guide targeted

prevention interventions, like early ART.

There are limitations to the interpretation of these results. The

inferred transmission network is incomplete and inaccurate, and

the presence of a directed link between two individuals does not

guarantee an HIV transmission event occurred; it simply reflects

recent relatedness of the virus, possibly through a series of

unobserved intermediaries. While the inferred network only

proposes ‘‘putative’’ transmissions, a limitation of the conve-

nience-based sampling methods used for these analyses is that they

are inadequate to discern with certainty true transmission chains

from clusters of epidemiologically unlinked persons infected by a

common or intermediate source. In addition, individuals who were

infected by partners outside the well-sampled area (e.g. infected in

a different city) will likely be assigned a low TNS score even if they

pose a high risk of onward transmission. Similarly, nodes

characterized by high TNS values may also represent lower risk

individuals who are genetically linked to unobserved (i.e.,

unsampled) high risk intermediaries. Our recent work [32] on

large-scale network reconstruction, where hundreds of thousand

sequences can be included in the analysis of local transmission

networks suggests a possible solution to by conditioning the local

network in the context of a global network. In addition, by

conditioning on the network structure, using robust statistics, and

using community level measures these unobserved connections

can be mitigated[24]. Further, more sophisticated methods [19]

are being developed to help better associate molecular and

epidemiological links. Also, these results may not be generalizable

to other networks. The efficiency of HIV-1 transmission per

contact (influenced by sexual behavior, VL, STI, etc. [33]) may

vary by geographic region, thus optimal prevention interventions

strategies may depend upon a thorough understanding of local

transmission dynamics. Finally, there remains concerns about the

potential loss of privacy related to disclosure of putative

transmission between two or more individuals [34], even though

there are significant limitations in proving direct HIV transmission

links [35,36]. Nevertheless, with appropriate privacy protection

protocols, it is reasonable to consider using HIV transmission

network data to develop prevention intervention strategies

(Figure 3).

When adequately sampled, HIV-1 sequence analysis can help

characterize local HIV epidemics. This network based study in

San Diego, California corroborated previous findings that higher

VL was associated with transmission risk [31] and that early ART

decreased this risk [26]. This study went further to identify that

network connections at baseline also predicted future transmission

risk, and prevention efforts targeted to these individuals may be a

better use of prevention resources than random implementation or

targeting individuals with higher number of sexual partners or

recently diagnosed with an STI. While traditional HIV partner

services are critical to effective HIV prevention services, when

combined with HIV molecular epidemiologic analyses, targeted

use of available prevention and treatment resources to maximally

limit HIV transmission may significantly reduce network, and

Table 3. Simulations of targeted vs. random ART intervention.

TNS threshold Individuals treated TNS benefits

TNS-targeted Randomly targeted*
Prevention yield
improvement{

Probability that TNS is more
efficient than random1

0.95 8 16 (11–18) 7 (5–10) 2.3 96%

0.9 11 17 (13–21) 10 (8–13) 1.7 91%

0.85 21 22 (18–26) 18 (15–22) 1.22 71%

0.8 30 23 (19–27) 24 (20–28) 0.89 40%

*Aggregated over 1000 random subsets of treated nodes.
{The ratio of the median number of prevented infections between TNS and randomly delivered ART.
1The proportion of randomly targeted ART interventions that prevented fewer infections than TNS-targeted ART.
doi:10.1371/journal.pone.0098443.t003

Figure 3. Schematic of TNS Clinical Application and Outcomes.
The schematic illustrates in a step-by-step fashion (numbers 1-6), the
application of TNS to clinical care and potential outcomes. The standard
of clinical care for newly HIV diagnosed persons (1) includes baseline
HIV pol sequence evaluation (2) to screen for ART drug resistance. With
development of appropriate privacy preserving methods, these same
data could be evaluated to determine a TNS (3). Feedback of TNS with
drug resistance results (4), including an interpretation and description
of potential limitations, could inform clinical care decisions (5). The
opportunity to focus prevention intervention resources to those at
greatest risk of subsequent HIV transmission could result in more
efficient and effective use of these limited resources. Generalized use of
these data within a transmission network is expected to reduce HIV
transmission (6) to a greater degree than delivery of these same
interventions provided at random (i.e., guided by traditional metrics of
risk for disease progression and behavioral risk).
doi:10.1371/journal.pone.0098443.g003
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ultimately population, HIV incidence. Awareness of HIV-1

transmission network characteristics could also help local public

health officials and clinicians to focus HIV-1 screening and

prevention education messages for particular groups over time.

Supporting Information

File S1 This contains Figures S1–S6, Tables S1–S2, and
Supplemental Methods.
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