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Abstract

Introduction: Transdiagnostic dimensional phenotypes are essential to investigate

the relationship between continuous symptom dimensions and pathological changes.

This is a fundamental challenge to post-mortem work, as assessments of phenotypic

concepts need to rely on existing records.

Methods:We adapted well-validated methodologies to compute National Institute of

Mental Health Research Domain Criteria (RDoC) scores using natural language pro-

cessing (NLP) from electronic health records (EHRs) obtained from post-mortem brain

donors and tested whether cognitive domain scores were associated with Alzheimer’s

disease neuropathological measures.

Results:Our results confirm an association of EHR-derived cognitive scores with neu-

ropathological findings. Notably, higher neuropathological load, particularly neuritic

plaques, was associated with higher cognitive burden scores in the frontal (ß = 0.38,

P = 0.0004), parietal (ß = 0.35, P = 0.0008), temporal (ß = 0.37, P = 0.0004) and

occipital (ß= 0.37, P= 0.0003) lobes.

Discussion: This proof-of-concept study supports the validity of NLP-based method-

ologies to obtain quantitative measures of RDoC clinical domains from post-mortem

EHR. The associations may accelerate post-mortem brain research beyond classical

case–control designs.
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1 INTRODUCTION

Human post-mortem brain research provides a critical link between

in vitro studies, animal models, and human clinical studies on brain
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disorders. Its unique contribution is access to the human brain

at the cellular and molecular levels. However, post-mortem brain

research also has some limitations, including the extent of available

information regarding donor demographics and, particularly, clinical

phenotypes.1–5 This latter is particularly challenging. In most cases,

categorical diagnoses are derived using information gleaned from
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medical records, the legal next of kin, and neuropathological assess-

ments. This approach is widely used6,7 and is the backbone of innu-

merable ground-breaking findings on the pathophysiology of a broad

range of brain disorders.8 In addition to its inherent categorical frame-

work, other limitations, shared by the majority of human studies in

this field, are related to clinical phenotypic heterogeneity and overlap-

ping comorbidities typical of many brain disorders and challenges to

account for the course of disease over time. These limitations point to

the need to bring human brain post-mortem investigations in line with

current transdiagnostic frameworks9–14 so that the underlying patho-

physiology of brain disorders can be interpreted in a more nuanced

manner in the contextof transdiagnostic dimensional phenotypes.15–18

Dimensional clinical phenotypes find support in compelling evidence

for substantial overlap of genetic risk as well as clinical, patho-

physiological, and pharmacological features across categorical brain

disorders.9–14,19,20

Recent progress in computational sciences allows for the analysis

of health-related data throughmachine learning, including the analysis

of electronic health records (EHR) for comprehensive clinical phe-

notyping beyond a given diagnosis. Previous literature has focused

on using machine learning methods, such as autoencoders and con-

volutional and recurrent neural networks, to read clinically relevant

texts and predict clinical outcomes including readmission rate, risk

classifications, discharge timeline, treatment outcome, as well as sub-

phenotyping.21–23 Among these deep learning approaches, natural

language processing (NLP)—software designed to extract information

from human-authored narrative-free text—has been widely applied

to the medical field to profile various brain disorders and symptoms

through algorithms ranging from speech recognition to syntax and sen-

timent analysis.24 In the clinical setting, this methodology has been

validated against expert annotation, formal cognitive testing, and clini-

cal prediction tasks.25–31 To our knowledge, it has not yet been applied

to the health records from post-mortem brain donors and used in

combination with neuropathological readouts.

Potential frameworks that can be applied to EHR for multidi-

mensional clinical phenotyping include the Research Domain Cri-

teria (RDoC) and the Hierarchical Taxonomy of Psychopathology

(HiTOP).9,10 The National Institute of Mental Health (NIMH) devel-

oped the RDoC framework, a clinical domain-based approach with

each domain designed to capture a spectrum of symptoms rooted

in brain circuits and biology.11–14 The domain-specific symptom bur-

den can be estimated from patient medical records using NLP.28,32,33

RDoC symptom burdens estimated frommedical records by NLP have

been associated with genetic variants and clinical outcomes including

suicide, hospital use, new dementia diagnosis, and progression from

dementia diagnosis to death.34–36

We put forward that application of NLP-based methodologies to

human brain post-mortem studies may represent a significant step

toward a more current and translatable interpretation of molecular

and cellular read-outs in the context of transdiagnostic clinical domains

and symptomconstructs. As a first step toward assessing the feasibility

and validity of this approach, we focused on Alzheimer’s disease (AD),

a disease with distinct symptoms and well-established neuropatho-

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed themost recent

literature on PubMed to review the current state of

natural language processing–based clinical phenotyp-

ing of electronic health records. Although several algo-

rithms have been published in the past, none has been

applied to medical records from post-mortem brain bank

collections.

2. Interpretation: This study proposes the use of natural

language-based methods to better characterize post-

mortem brain donors. Our findings are consistent with

published clinicopathological correlation studies com-

bining psychometric in vivo testing with post-mortem

neuropathological evaluation.

3. Future directions: The used algorithm should be further

tested; particularly, the other domains should be val-

idated using clinical cohorts with in-depth phenotypic

characterization.

logical hallmarks. These arise from two dominant protein pathologies:

amyloid beta (Aβ), forming extracellular Aβ aggregates known as amy-

loid or senile plaques and tau, forming intracellular tau accumulations

known as neurofibrillary tangles (NFT) and dystrophic neurites (DNs).

Neuritic plaques (NP), formed by Aβ plaques containing DNs, are con-
sidered a pathologic hallmark of AD.37 Clinically, AD is characterized

by impaired cognition including deficits of amnestic and non-amnestic

memory, judgment, and reasoning, as well as impaired visuospatial and

language functions.38–40

The aim of this study is to provide conceptual evidence for the use

of NLP on post-mortem brain donor health records and the associa-

tion of NLP-derived dimensional RDoC phenotypes with AD hallmark

neuropathology. In line with prior evidence for an association of cog-

nitive decline and NP burden and as a proof-of-concept study, we

hypothesize that NLP-derived scores for the RDoC cognitive domain

are associated with NP load.

2 MATERIAL AND METHODS

2.1 Study cohort

We selected 92 donors (46 males, 46 females, mean age 81.9 years,

standard deviation 9.47, range: 57–98 years) from the Harvard Brain

and Tissue Resource Center, National Institutes of Health (NIH)

NeuroBioBank (HBTRC/NBB) with Braak stages between 0 and 6.

Post-mortem clinical and neuropathological evaluation was performed

by an experienced team of a neuropathologist and two psychiatrists.

Briefly, health records were independently reviewed by two clini-

cians while a neuropathologist created a neuropathological report.
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Biweekly consensus meetings are held with all clinical reviewers, neu-

ropathologists, and other team members from various backgrounds,

including clinical psychology, medicine, molecular biology, and post-

mortem brain research. During these meetings, the clinical cases are

presented with the neuropathologist reviewing the macroscopic, his-

tological, andmolecular findings. Disagreements or open questions are

discussed by the entire team to assign a consensus diagnosis. For all

cases included in this study, clinical and neuropathological diagnoses

were in line, and all neuropathological reports were created by the

same neuropathologist. The neuropathological report included gross

examination, macroscopic and microscopic assessment of a standard

set of brain regions, as well as a semiquantitative neuritic plaque rat-

ing. Several features, including neuronal loss and presence of NFTs

and NPs were assessed in the frontal (Brodmann area [BA] 3/2/1, 4,

9, 46), parietal (BA 39, 40), temporal (hippocampal formation with

lateral geniculate body and tail of caudate nucleus, entorhinal cor-

tex, and anterior hippocampus), and occipital (BA 17, 18/19) cortex.

Besides AD-typical neuropathological observations, donors showed

age-related vascular changes and incidental/secondary concomitant

neuropathological findings, including five cases with Lewy bodies, six

cases with hippocampal sclerosis, and six cases with argyrophilic grain

disease. Medical records were carefully reviewed. No disease-specific

symptoms (e.g., hallucinations related to Lewy bodies) were identified.

Thus, these findingswere considered insignificant for theanalysis. Clin-

ically, donorswere either neurotypical or diagnosedwith AD/dementia

without additional psychiatric or neurological diseases present.

In addition, the HBTRC collects extensive demographic data and

clinical data included in health records and a questionnaire completed

by the legal next of kin.41 All medical records available for each case

were digitized.

2.2 Ethics statement

Tissue andmedical recordshavebeen collectedunder theHBTRC insti-

tutional review board protocol 2015P002028 (McLean/Mass General

Brigham Institutional Review Board). Data about brain donors are

made available to investigators in de-identified form according to

Health Insurance Portability and Accountability Act regulations.

2.3 Consent statement

Formal informed consent to donate the brain and related samples

for research is obtained after death from the legal next of kin and

documented in writing.

2.4 Processing of digital records and scoring
clinical text for cognition symptom burden

All available medical notes and records for each donor, regardless of

time of creation or content, were scanned and transformed into a

text file. Health records included documents covering the psychiatric

or neurological status of the donor, documents pertaining to inter-

nal medicine, surgery, or other treatments, as well as administrative

information. The present study used a previously described and val-

idated NLP algorithm for quantifying estimated cognitive symptoms

from narrative clinical text.28 In brief, this method relies on recogniz-

ing a pre-specified set of symptom-related terms within the available

records. The term list was developed through an iterative process of

refinement seeded with lists of terms developed by a group of clin-

ical experts, including the NIMH Research Domain Criteria Working

Group. That seed was subsequently expanded through unsupervised

machine learning to enhance coverage of the clinical lexicon.28 The

final cognitive symptom score is the proportion of terms that appear

in any given note. The tool is implemented as freely available code

for online download, including the full list of tokens as described in

the initial validation publication (https://github.com/thmccoy/CQH-

Dimensional-Phenotyper).28 Briefly, the code searches for tokens

included in the medical records to calculate domain-specific symp-

tom burdens. Importantly, this tool was not trained to predict nor

fitted against any particular outcome; rather, it was developed with-

out regard to any particular categorical diagnosis or outcome, aiming

instead to directly capture dimensions of neuropsychiatric symptoma-

tology as dimensional rather than categorical.11 Similarly, and as in

prior work applying this NLP approach to dementia and general med-

ical records across diagnosis, the algorithm was not trained, fitted,

calibrated, modified, or otherwise biased toward the samples reported

in this paper.35,42

2.5 Analysis and data availability

The demographic characteristics of the cohort were summarized

using univariate summary statistics. The primary analysis assessed the

strength of association between cognitive symptoms and neuropatho-

logical findings of plaques by lobe. For each scanning method, we

regressed the NLP-derived cognitive symptom burden score on the

NP load of each lobe of the brain, controlling for age and sex, in a

random intercept model. All analysis used R v4.2.2. Raw measure-

ments are stored at the primary study site and can be provided upon

request.

3 RESULTS

Mixed effects models, adjusted for age and sex, combining NLP data

with neuropathology results showed that higher NP load is associ-

ated with higher cognitive burden scores in the frontal (ß = 0.38,

P = 0.0004), parietal (ß = 0.35, P = 0.0008), temporal (ß = 0.37, P = 0.

0004), and occipital (ß = 0.37, P = 0.0003) lobes (Table 1). A second

confirmatory regression model comparing cognitive burden and Braak

stage, controlling for age and sex, also showed a significant association

between RDoC cognition and B&B stage of ß = 0.35 (95% confidence

interval: 0.16–0.54, P-value= 0.0005).

https://github.com/thmccoy/CQH-Dimensional-Phenotyper
https://github.com/thmccoy/CQH-Dimensional-Phenotyper
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TABLE 1 Association between neuritic plaque load and cognitive
symptom burden inmixed effect model regressing cognitive burden
score on neuritic plaque load controlling for age and sex.

ß ß 95%CI P-value

Frontal NP 0.38 0.17–0.58 0.0004

Parietal NP 0.35 0.15–0.55 0.0008

Temporal NP 0.37 0.17–0.56 0.0004

Occipital NP 0.37 0.17–0.57 0.0003

Abbreviations: CI, confidence interval; NP, neuritic plaque.

4 DISCUSSION

NLP methodologies, designed to obtain multidimensional phenotypic

fingerprints from EHRs based on the NIMH RDoC framework, have

been well validated through expert testing and annotation.25–31 Our

goal was to validate the use of this approach in the context of human

post-mortem studies. Our study replicates well-established associa-

tions of cognitive decline and AD pathology, showing a strong signif-

icant correlation between pathological hallmarks of AD, that is, NP

density and Braak stages, and cognitive deficits according to the RDoC

cognitive domain. Thus, these results offer a first proof of concept in

support of the application of RDoC-based NLP algorithms in human

post-mortem studies of AD and the potential of these methods for

more detailed analyses beyond categorical case–control designs in

post-mortem research in general.

A potential limitation of these studies is that the donor cohort was

not followed longitudinally during the course of the disease so that

we were not able to assess our results against clinical scales—health

records and information from the donors’ families were obtained post-

mortem. Thus, clinical information on donors may vary in quality and

quantity and might be biased toward donors with a higher burden of

neuropsychiatric symptoms. This is a common challenge in post-mortem

studies, limiting our options for regressing NLP data against an accu-

rate interpretation of clinical assessments. To address this limitation,

AD-related pathological load was used in these studies as a stand-in

for cognitive impairment. Although the precise relationship between

aspects of AD pathology and cognitive impairment may still be under

investigation, compelling evidence shows that the severity of NP and

NFT load is a strongpredictor of cognitive decline.43–45 Conversely, the

validity of cognitive measures derived by the NLP algorithms used for

these studies is supported by extensive studies in much larger cohorts

of live subjects.28,31,35 This methodology has proven to have robust

transdiagnostic predictive validity against genetic correlates as well as

a broad range of clinical constructs, including agitation, risk of demen-

tia, and risk of suicide,29,36 supporting its capacity to gain traction on

difficult neuropsychiatric problems.

Transdiagnostic dimensional phenotypes are essential to investiga-

tions of the relationships between continuous symptom dimensions

and cellular/molecular changes in brain disorders. In response to this

challenge, efforts over the last decade have focused on overcom-

ing the limitations inherent to categorical diagnostic approaches by

establishing dimensional models based on neurobiological or behav-

ioral phenotypes such as RDoC or HiTOP. Although these efforts are

not without controversy,46 dimensional phenotyping across diagnostic

entities is a critical tool needed to understand the cell-level patterns

of molecular changes underlying clinical domains and symptom con-

structs in brain disorders. Furthermore, these approaches are needed

to investigate urgent questions on the relationships between specific

symptoms and underlying pathophysiological mechanisms across dis-

orders. For instance, cognitive impairment, anxiety, and depression are

shared by many brain disorders, from dementias to major depression

and schizophrenia, and each is largely treated using the same phar-

macological approaches. The underlying, often implicit, assumption

that similar molecular, cellular, and neural circuit pathology under-

lies each of these symptoms across these disorders may be plausible,

but as yet poorly tested. Arguably, these considerations apply to

the neuropathology of dementias, as hallmark pathology, such as

the impact of proteinopathies affecting tau, Aβ, and α-synuclein, has
been tested against cognition while largely neglecting co-occurring

symptoms. Categorical diagnostic approaches, encompassing hetero-

geneous symptoms under one diagnosis, are not sufficiently nuanced

to address these questions.

As the NIMH RDoC framework was not specifically developed for

AD or other dementias but for neuropsychiatric disorders in general,

RDoC cognition might not reflect identical symptom constructs and

should be interpreted with caution. However, McCoy et al. showed

in large clinical cohorts that RDoC cognition, as measured with the

same code used for this study, is associated with a clinical conversion

to dementia.35 Thus, we believe that this approach contains relevant

information related to clinically significant cognitive decline in AD and

other dementias.

In conclusion, this proof-of-concept study supports the validity of

NLP approaches to extract dimensional clinical phenotypic data from

health records obtained post-mortem frombrain donors. Analyseswere

limited to the cognitive dimension so that hallmarkADpathology could

be used as awell-established predictor of cognitive impairment. Ongo-

ing efforts are focused on the application of these approaches to a

broader range of clinical domains and brain disorders.35
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