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Biological time series data plays an important role in exploring the dynamic changes of
biological systems, while the determinate patterns of association between various
biological factors can further deepen the understanding of biological system functions
and the interactions between them. At present, local trend analysis (LTA) has been
commonly conducted in many biological fields, where the biological time series data
can be the sequence at either the level of gene expression or OTU abundance, etc., A local
trend score can be obtained by taking the similarity degree of the upward, constant or
downward trend of time series data as an indicator of the correlation between different
biological factors. However, a major limitation facing local trend analysis is that the
permutation test conducted to calculate its statistical significance requires a time-
consuming process. Therefore, the problem attracting much attention from
bioinformatics scientists is to develop a method of evaluating the statistical significance
of local trend scores quickly and effectively. In this paper, a new approach is proposed to
evaluate the efficient approximation of statistical significance in the local trend analysis of
dependent time series, and the effectiveness of the new method is demonstrated through
simulation and real data set analysis.

Keywords: local trend analysis, dependent time series, statistical significance, Markov chain model, spectral
decomposition theory

1 INTRODUCTION

Due to the rapid development of molecular biology technology and the significant reduction to
sequencing cost, a large amount of biological time series data has been generated in molecular
biological research over the past decade. Among the statistical methods used for time series, local
similarity analysis (LSA) has been extensively carried out to identify the correlation between various
factors, which can be the genes used in gene expression analysis or operational taxonomic units (OTUs) in
metagenomics (Qian et al., 2001; Ruan et al., 2006). Extending the LSA method to the study on the local
correlation of repeated time series data, Xia et al. (2011) proposed the extended Local Similarity Analysis
method(eLSA), where the confidence interval of LSAwas constructed by bootstrap. Due to the ease to use
allowed by LSA, it has been widely applied in various fields, for example gene expression profiling (Ji and
Tan, 2004; Balasubramaniyan et al., 2005), gene regulatory network construction (Madeira et al. (2010)),
symbiotic relationship pattern recognition (Beman et al., 2011; Steele et al.. 2011; Goncalves andMadeira,
2014; Cram et al., 2015) etc. Initially, the permutation test is commonly performed to evaluate the
statistical significance of LSA, however, both the approximations of statistical significance and
permutation test require the assumption that the time series are independent identically distributed
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(i.i.d.), which can be violated in most time series data. In order to
analyze the statistical significance of LSA for stationary time series,
an approach based on moving block bootstrap was proposed by
Zhang et al. (2018), and it is referred to as Moving Block Bootstrap
LSA (MBBLSA). To assess statistical significance of LSA for
stationary time series data, Zhang et al. (2019) developed a
theoretical method, which is known as Data Driven LSA
(DDLSA). According to DDLSA, long run variance estimated by
a nonparametric kernel method is applied to adjust the asymptotic
theory of LSA, on the basis of which the limit distribution of LS score
for stationary time series can be obtained.

As suggested by Ji andTan (2004), the degree of similarity shownby
rising, unchanged, or falling trends in time series data can be taken as
another indicator of the correlation among various biological factors,
which is known as local trend analysis (LTA). In LTA, local similarity
analysis is performed on the transformed trend sequence, and the
corresponding similarity measure is referred to as the local trend score.
Local trend analysis is an extension of local similarity analysis, which
can better preserve the changing trend of time series. In addition, the
discretization of the original sequence can transform some non-
stationary time series into stationary Markov series, which is a big
advantage of local trend analysis. He and Zeng (2006) applied dynamic
programming algorithm to calculate this value, and then conducted
permutation test to evaluate statistical significance. Currently, LTA has
been widely adopted in many biological fields, including gene
association network (He et al.. 2012; Goncalves et al., 2012; Seno
et al., 2006; Skreti et al.. 2014) and transcription factor network (Wu
et al., 2010). Nevertheless, it takes long to evaluate the statistical
significance of local trend analysis through permutation test. In this
case, bioinformatics scientists have shifted attention to exploring how
the statistical significance of local trend scores can be evaluated quickly
and effectively. By extending the statistical significance evaluation
method of local similarity analysis theory to local trend analysis,
Xia et al. (2015) developed the statistical significance evaluation
method of local trend analysis. However, this method is effective
only when the original sequence is independent and identically
distributed. On the basis of this and prior studies, this paper
improves the approximation method proposed by Xia et al. to
develop a general method of statistical significance evaluation for
local trend analysis.

This paper is organized as follows. In Section 2, an
introduction is made of the concept of local trend analysis,
and a general method of theoretical evaluation regarding the
statistical significance of local trend scores is proposed. In Section
3, the effectiveness of the new method is demonstrated by
simulation and real data analysis. Finally, the conclusions and
future work are indicated in Section 4.

2 MATERIAL AND METHODS

2.1 Introduction to Local Trend Analysis
The first step in local trend analysis is to convert time series data
into a change trend sequence. In general, if the change trend is
indicated by two states, decline and rise, the change trend state set
can be set as Σ = (D, U) or Σ = (−1, 1). If the change trend is
indicated by three states decline, unchanged and rise, the change

trend state set can be set as Σ = (D, N, U) or Σ = (−1, 0, 1).
Undoubtedly, a collection with more changing trend states can be
chosen, but it is rare in practice. For a given time series X1, X2, . . .,
Xn, they can be converted into dXi (i � 1, 2, . . . , n − 1) as follows:

when Xi ≠ 0,

dX
i �

1 if
Xi+1 −Xi

|Xi| ≥ t

0 if − t<Xi+1 −Xi

|Xi| < t

−1 if
Xi+1 −Xi

|Xi| ≤ − t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (1)

where t ≥ 0 is a threshold to determine whether there is a trend of
change; when Xi = 0,

dX
i �

1 if Xi � 0, Xi+1 > 0
0 if Xi � 0, Xi+1 � 0
−1 if Xi � 0, Xi+1 < 0

⎧⎪⎨⎪⎩ . (2)

When t = 0, dXi involves only two states, and the change trend
state set is Σ = (−1, 1); when t ≠ 0, dXi involves three states, and the
change trend state set is Σ = (−1, 0, 1). It is assumed that two time
seriesXt and Yt are of the same length, t = 1, 2, . . ., n. First of all,Xt

and Yt are converted into tred series dXi and dYi , i = 1, 2, . . ., n−1.
Given the maximum time delayD > 0, the local similarity analysis
is conducted on the transformed trend sequence dXi and dYi to
obtain the local trend score LT(D), i.e.,

LT D( ) � max
0≤i,j,k≤n;|i−j|≤D

∑k−1
l�0

dX
i+ld

Y
j+l

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣. (3)

2.2 Statistical Significance Analysis of Local
Trend Score
After the local trend score is obtained, it is necessary to
evaluate its statistical significance which can be estimated
by means of permutation test. In the permutation test,
however, only the p value obtained by fully permutating the
original data is regarded as an accurate estimate. Since the full
permutation is a lengthy process, part permutation is usually
selected on a random basis. The p value obtained at this time is
limited to an approximate estimate. Besides, the p value
obtained may deviate from the actual p value if the number
of replacements is too small.

In case that the asymptotic distribution result of the local trend
score is obtainable, then the p value of the local trend score can be
obtained through the limit distribution. Probability statisticians have
obtained the asymptotic distribution theory of the local similarity
scores of Markov chains with a mean value of 0, finite second-order
moment, and finite subset in R (Feller, 1951; Daudin et al., 2003;
Etienne and Vallois, 2004), as shown in the following theorem.

Theorem 1. Assume that Zi, i = 1, 2, . . ., n, Markov chains with a
mean value of 0, finite second-order moment, and finite subset in
R. AssumeE](Z1) � 0, σ2 � E](Z2

1) + 2∑∞
k�1E](Z1Zk+1), where ν

is the stationary distribution of Zi. Sk is the randomwalk process of Zi:
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S0 � 0, Sk � ∑k
i�1

Zi, 1≤ k≤ n.

Let

Hn � max
0≤i≤j≤n

Sj − Si( ) � max
0≤i≤j≤n

Zi+1 +/ + Zj( ).
Then Hn/(σ �

n
√ ) is the convergence in probability of W*,

where W* = max0≤v≤1|Wv|, Wt is a standard Brownian motion.
Xia et al. (2015) used the Theorem 1 to obtain a theoretical

evaluation method of statistical significance for local trend analysis.
Different from the theoretical evaluation method of statistical
significance for local similarity analysis, in local trend analysis,
even if the original sequence Xt is independent, the transformed
trend sequence dXi (i � 1, 2, . . . , n − 1) is not independent, because
dXi and dXi+1 both depend on Xi. In order to facilitate the use of
Theorem 1 to calculate the p value of the local trend score, the
following assumptions are proposed.

Assumption 1. dXi and dYi are mutually independent first-order
Markov chains, and the product of dXi and dXi is also a first-order
Markov chain, namely

P dX
i d

Y
i |dX

i−1d
Y
i−1, . . . , d

X
1 d

Y
1( ) � P dX

i d
Y
i |dX

i−1d
Y
i−1( ). (4)

Under the Assumption 1, dXi and dYi are irreducible non-
periodic Markov chains, so the theoretical method in Feller
(1951), Daudin et al. (2003) and Etienne and Vallois (2004)
can be directly applied. Xia et al. (2015) suggested a method of
theoretically evaluating statistical significance for local trend
analysis, with the approximate p value of the local trend score
LT(D) obtained as:

P LT D( )≥ sD( ) � P
LT D( )
σ

�
n

√ ≥
sD

σ
�
n

√( ) ≈ LD
sD

σ
�
n

√( ), (5)

where sD represents the local trend score of Xt and Yt, and the
definition of the tail probability distribution function LD(x) is
expressed as follows:

LD x( ) �
1−82D+1 ∑∞

k�1

1
x2

+ 1

2k−1( )2π2
{ }exp − 2k−1( )2π2

2x2
{ }⎡⎣ ⎤⎦2D+1

. (6)

It can be found out that σ2 plays a vital role in the p value
approximation Eq. 5 of the local trend score, which is referred to as
the variance of Markov chain. From the formula
σ2 � E](Z2

1) + 2∑∞
k�1E](Z1Zk+1), it can be seen that when the

stationary distribution of Markov chain ] and k step transition
probability matrix are known, E](Z1Zk) (k≥ 1) can be obtained.
Thus, σ2 can be obtained easily through calculation. Xia et al.
presented the display expression of σ2 when the original sequence
is independent and identically distributed. In practice, however, the
original sequence contradicts the assumption of independent and
identical distribution. Zhang et al. (2019) proposed an asymptotic
statistical significance for local similarity analysis, with the
approximate p value of the local similarity score LS(D) similar
to LT(D):

P LS D( )≥ sD( ) � P
LS D( )
ω

�
n

√ ≥
sD

ω
�
n

√( ) ≈ LD
sD

ω
�
n

√( ), (7)

where ω � limn→∞

������������
var(∑n

i�1Zi)/n
√

is referred to as the long-run
variance, andLD(x) is expressed as Eq. 6. BecauseMarkov chains
can be regarded as time series, they also satisfy Eq. 7. It is obvious
that ω for Markov chains is σ. Therefore, we can get the statistical
significance for local trend analysis of non-independent
identically distributed time series if the σ2 is obtained.

Next, the formula of σ2 is proposed for the local trend score of the
time series in general using the spectral decomposition theory of the
matrix.

2.2.1 Spectral Decomposition Theorem of Matrix
First, the definition and properties of simple matrix are given.

Definition 1. Let matrix A ∈ Cn×n, λi be the differential eigenvalues
of A, i = 1, 2, . . ., s, and the characteristic polynomial of A is

det λI − A( ) � λ − λ1( )m1 λ − λ2( )m2 . . . , λ − λs( )ms ,

where ∑s
i�1mi � n. Call mi the algebraic multiplicity of the

eigenvalues λi of the matrix A.

Definition 2. The solution space Vλi of the homogeneous equation
set Ax = λix (i = 1, 2, . . ., s) is called the eigenspace of A
corresponding to the eigenvalue λi, and the dimension of Vλi is
called the geometric multiplicity of the eigenvalue λi of the matrix A.

Definition 3. If the algebraic multiplicity of each eigenvalue of the
matrix A is equal to its geometric multiplicity, then A is called a
simple matrix.

Theorem 2. (Spectral decomposition theorem) Let matrix A ∈
Cn×n, λi be the differential eigenvalues of A, mi is the algebraic
multiplicity of λi, i = 1, 2, . . ., s, then the sufficient and necessary
condition of A being a simple matrix is that there is a unique Ei ∈
Cn×n, i = 1, 2, . . ., s, so

1) ∑s
i�1Ei � I.

2) EiEj � Ei, i � j
0, i ≠ j

{ .

3) A � ∑s
i�1λiEi.

2.2.2 Two-State Markov Chain Model
Firstly, the two-state Markov chain model is studied. When t = 0,
dXi and dYi , i = 1, 2, . . ., n−1 can be obtained by discretizing
the original sequence Xt and Yt. Assume that the distribution of
the original sequence is symmetrical, and the mean is 0.
Also assume that dXi is a first-order stationary Markov chain.
Since the original sequence distribution is symmetrical, the
stationary distribution of dXi is P(dXi � 1)� P(dXi �−1)� 1/2,
E((dX1 )2)� 12 × 1

2 + (−1)2 × 1
2 � 1. It is assumed that the

transition probability matrices of dXi and dYi are TX and TY

respectively, as expressed below.
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It can be obtained by calculation, E(dX1 dXk+1) � (2aX − 1)k,
E((dX1 )2) � E((dY1 )2) � 1, E(dY1 dYk+1) � (2aY − 1)k
(Supplementary Material S1). Under the null hypothesis that Xi

and Yi are uncorrelated,

σ2 � E dX
1 d

Y
1( )2( ) + 2∑∞

k�1
E dX

1 d
X
k+1( ) dY

1 d
Y
k+1( )( )

� E dX
1( )2( )E dY

1( )2( ) + 2∑∞
k�1

E dX
1 d

X
k+1( )E dY

1 d
Y
k+1( )

� 1 + 2∑∞
k�1

2aX − 1( )k 2aY − 1( )k

� 1 + 2 × lim
k→∞

2aX − 1( ) 2aY − 1( ) − 2aX − 1( )k+1 2aY − 1( )k+1
1 − 2aX − 1( ) 2aY − 1( )

� 1 + 2 ×
2aX − 1( ) 2aY − 1( )

1 − 2aX − 1( ) 2aY − 1( )
� 1 + 2aX − 1( ) 2aY − 1( )
1 − 2aX − 1( ) 2aY − 1( ).

(9)
thus, when t = 0, the p value of the local trend score LT(D) is

written as

P LT D( )≥ sD( ) � LD
sD

σ
�
n

√( ), (10)

where sD indicates the local trend score of Xi and
Yi, σ is obtained using the Eq. 9, and LD(x) is defined
as Eq. 6.

2.2.3 Three-State Markov Chain Model
Secondly, the three-state Markov chain model is studied.
When t ≠ 0, dXi and dYi are three-state Markov chains.
Similarly, it is assumed that the transition probability
matrices of dXi and dYi are TX and TY respectively, as
expressed below.

It can be obtained by calculation,
E(dX1 dXk+1)�φX

1 T
X,k
1,1 +φX

−1T
X,k
−1,−1 −φX

1 T
X,k
1,−1 −φX

−1T
X,k
−1,1, E((dX1 )2)�

φX
−1 +φX

1
, E((dY1 )2)� φY

−1 +φY
1
, E(dY1 dYk+1)�φY

1T
Y,k
1,1 +φY

−1T
Y,k
−1,−1 −

φY
1T

Y,k
1,−1 −φY

−1T
Y,k
−1,1 (Supplementary Material S2). Under the null

hypothesis that Xi and Yi are uncorrelated,

σ2 � E dX
1 d

Y
1( )2( ) + 2∑∞

k�1
E dX

1 d
X
k+1( ) dY

1 d
Y
k+1( )( )

� E dX
1( )2( )E dY

1( )2( ) + 2∑∞
k�1

E dX
1 d

X
k+1( )E dY

1 d
Y
k+1( )

� φX
−1 + φX

1( ) φY
−1 + φY

1( )
+ 2∑∞

k�1
φX
1 T

X,k
1,1 + φX

−1T
X,k
−1,−1 − φX

1 T
X,k
1,−1 − φX

−1T
X,k
−1,1( )

φY
1T

Y,k
1,1 + φY

−1T
Y,k
−1,−1 − φY

1T
Y,k
1,−1 − φY

−1T
Y,k
−1,1( )

� 4φX
1 φ

Y
1 + 2φX

1 φ
Y
1

× ∑∞
k�1

TX,k
1,1 + TX,k

−1,−1 − TX,k
1,−1 − TX,k

−1,1( ) TY,k
1,1 + TY,k

−1,−1−TY,k
1,−1− TY,k

−1,1( )
� 4φX

1 φ
Y
1 + 2φX

1 φ
Y
1 ∑∞

k�1
2 bX − cX( )k × 2 bY − cY( )k

� 4φX
1 φ

Y
1 1 + 2 lim

k→∞

bX − cX( ) bY − cY( ) − bX − cX( )k+1 bY − cY( )k+1
1 − bX − cX( ) bY − cY( )( )

� 4
dX

1 − bX − cX + 2dX
( )
× dY

1 − bY − cY + 2dY
( ) 1 + bX − cX( ) bY − cY( )

1 − bX − cX( ) bY − cY( )( ).
(12)

Thus, when t ≠ 0, the p value of the local trend score LT(D) is
expressed as

P LT D( )≥ sD( ) � LD
sD

σ
�
n

√( ), (13)

where sD represents the local trend score ofXi and Yi, σ is obtained
using the Eq. 12, and LD(x) is defined as Eq. 6.

2.2.4 Mixed-State Markov Chain Model
Thirdly, the mixed-state Markov chain model is studied. When
t ≠ 0, dXi or dYi is potentially a two-state Markov chain as well.
At this time, if dXi and dYi are both two-state Markov chains, σ2

can be estimated using the two-state Markov chain model. The
circumstance where only dXi or dYi is a two-state Markov chain
is defined as a mixed-state Markov chain model. Without any
compromise on generality, it is supposed that dXi is a two-state
Markov chain while dYi is a three-state Markov chain.

It can obtained by the previous derivation that

E dX
1( )2( ) � 1,

E dX
1 d

X
k+1( ) � 2aX − 1( )k,

E dY
1( )2( ) � φY

−1 + φY
1 � 2dY

1 − bY − cY + 2dY
,

E dY
1 d

Y
k+1( ) � φY

1T
Y,k
1,1 + φY

−1T
Y,k
−1,−1 − φY

1T
Y,k
1,−1 − φY

−1T
Y,k
−1,1,

� 2
dY

1 − bY − cY + 2dY
( ) bY − cY( )k.

So,
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σ2 � E dX
1 d

Y
1( )2( ) + 2∑∞

k�1
E dX

1 d
X
k+1( ) dY

1 d
Y
k+1( )( )

� E dX
1( )2( )E dY

1( )2( ) + 2∑∞
k�1

E dX
1 d

X
k+1( )E dY

1 d
Y
k+1( )

� 2dY

1 − bY − cY + 2dY
+ 4dY

1 − bY − cY + 2dY
∑∞
k�1

2aX − 1( )k bY − cY( )k

� 2dY

1 − bY − cY + 2dY
( ) ×

1 + 2 lim
k→∞

2aX − 1( ) bY − cY( ) − 2aX − 1( )k+1 bY − cY( )k+1
1 − 2aX − 1( ) bY − cY( )( )

� 2dY

1 − bY − cY + 2dY
( ) 1 + 2aX − 1( ) bY − cY( )

1 − 2aX − 1( ) bY − cY( )( ).
(14)

Thus, when t ≠ 0 and the circumstance arises that dXi and dYi
are not both three-state Markov chains, the p value of the local
trend score LT(D) is expressed as

P LT D( )≥ sD( ) � LD
sD

σ
�
n

√( ), (15)

where sD represents the local trend score ofXi and Yi, σ is obtained
using the Eq. 14, and LD(x) is defined as Eq. 6.

In summary, the p value approximation formula has been
obtained for the local trend score of a two-state, three-state or
mixed-state Markov chain. Despite a lack of rigorous
mathematical proof for the aforementioned p value
approximation method, it is still discovered that the p value
obtained using this algorithm is approximately equal to the given
significance level by simulation, especially when the sample size is
large. Therefore, the results obtained using this method are
deemed approximately valid.

2.2.5 Estimation of Markov Chain Transition
Probability Matrix
In order to calculate the p value of the local trend score, it is
essential to estimate the variance σ2, and the estimation of the
variance depends only on the transition probability matrix of the
Markov chain. With the original sequence considered as
independent and identically distributed, Xia et al. (2015)
deduced the value of parameter in transition probability
matrix of the two-state (t = 0) and three-state (t = 0.5)
Markov chain. When the original series are non-independent
and identically distributed, however, the estimate is inaccurate. It
is detailed below how to estimate the transition probability matrix
of a two-state or three-state Markov chain under normal
circumstances.

For a two-state Markov chain, since both T−1,−1 and T1,1 are
equal to a, the mean of n−1,−1/n−1,· and n1,1/n1,· is taken as the final
estimate of a, that is, â � 1

2 (n−1,−1n−1,· + n1,1
n1,· ), where n−1,· = n−1,−1 + n−1,1,

n1,· = n1,−1 + n1,1, nu,v represents the number of (di, di+1) = (u, v),
u, v ∈ (−1, 1), i = 1, 2, . . ., n − 2.

Likewise, for a three-state Markov chain, since both T−1,−1 and
T1,1 are equal to b, the mean of n−1,−1/n−1,· and n1,1/n1,· is treated
as the final estimate of b, that is, b̂ � 1

2 (n−1,−1n−1,· + n1,1
n1,· ), where n−1,· =

n−1,−1 + n−1,0 + n−1,1, n1,· = n1,−1 + n1,0 + n1,1, and nu,v represents

the number of (di, di+1) = (u, v), u, v ∈ (−1, 0, 1), i = 1, 2, . . ., n−2.
Similarly, the estimate of c is ĉ � 1

2 (n−1,1n−1,· +
n1,−1
n1,· ), and the estimate of

d is d̂ � 1
2 (n0,−1+n0,1n0,· ), where n0,· = n0,−1 + n0,0 + n0,1.

In this article, the method put forward by Xia et al. is denoted
as TLTA (Theoretical Local Trend Analysis), while the method
proposed in this paper is referred to as STLTA (Stationary
Theoretical Local Trend Analysis).

3 RESULTS AND DISCUSSION

3.1 Simulation
The effects on the correlation test of time series data are explored
by conducting Permutation test, TLTA and STLTA respectively.
The following three models are commonly used and familiar to
researchers, which can better reflect the correlation between two
time series, especially the correlation of two time series can be
adjusted by changing the coefficient values. In order to study the
difference in type I error rate and significance level among
different methods under the original hypothesis, simulation
data is generated using the following three models: The effects
on the correlation test of time series data are explored by
conducting Permutation test, TLTA and STLTA respectively.
In order to study the difference in type I error rate and
significance level among different methods under the original
hypothesis, simulation data is generated using the following three
models:

1) AR(1) model:

Xt � ρ1Xt−1 + εXt ,
Yt � ρ2Yt−1 + εYt .

(16)

2) ARMA(1,1) model:

Xt � ρ1Xt−1 + εXt + 0.5εXt−1,
Yt � ρ2Yt−1 + εYt + 0.5εYt−1.

(17)

3) ARMA(1,1)-TAR(1) model:

Xt � ρ1Xt−1 + εXt + 0.5εXt−1,

Yt � ρ2Yt−1 + εYt , Yt−1 ≤ − 1
0.5Yt−1 + εYt , Yt−1 > − 1.

{ (18)

Where 0 < |ρ1|, |ρ2| < 1, εXt and εYt are independent standard
normal random variables. All the three models are stationary. For
each model, it starts by generating X1 and Y1 through the
standard normal distribution, before the generation of Xt and
Yt, i = 2, . . ., 100, + , n using the above-mentioned model. Finally,
the first 100 samples are discarded, and the remaining n samples
are treated as real Xt and Yt. This data generation process is
effective in ensuring the stationarity of the time series.

With consideration given to the impact of autoregressive
coefficients ρ1, ρ2 and sample size n on the type I error rate
for the different methods with the three models, we choose six
different combinations of autoregressive coefficients ρ1, ρ2, and
respectively take the values of −0.5, −0.5; 0, 0; 0.3, 0.3; 0.3, 0.5; 0.5,
0.5; 0.5, 0.8. For each combination of autoregressive coefficients,
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the sample size n is set to 20, 40, 60, 80, 100, 200. For simplicity,
we select the time delay D = 0. In all simulations, the significance
level is set to 0.05.

When t = 0, the original sequence is converted into a two-state
Markov chain, and the type I error rates in the AR(1) model of
different methods are presented in Table 1. The results show that
when ρ1 = −0.5, ρ2 = −0.5, neither Permutation test nor TLTA can
control the type I error rate even if the sample size n is small, and
their type I error rates are getting bigger as the sample size
increases. At this time, the type I error rate of STLTA gradually
approaches the significance level 0.05 with the increase of sample
size. When ρ1 = 0, ρ2 = 0, Xt and Yt are all independent and
identically distributed sequences, the type I error rates of the three
methods are very close to the given significance level, and are

getting closer as the sample size increases. When ρ1 > 0, ρ2 > 0, the
type I error rate of Permutation test decreases with the increase of
sample size n, and gradually deviates from the significance level
0.05, while the type I error rate of STLTA is closer to the
significance level than that of TLTA. For different
autocorrelation coefficients, the type I error rates of
Permutation test and TLTA show a declining trend with the
increase of ρ, and they are increasingly deviant from the
significance level. By contrast, STLTA shows an upward trend
with the rise of ρ, and it gradually approaches the significance
level, suggesting that STLTA is more suitable for stationary time
series data. The performances of these three methods in
ARMA(1,1) and ARMA(1,1)-TAR(1) models are shown in the
Tables 2, 3 respectively, which are similar to that in the AR(1)

TABLE 1 | Type I error rate for different methods (the third to fifth columns) in the
AR(1) model whent = 0. The first and second columns represent different
combinations of autoregressive coefficients and sample sizes. The number of
permutation tests is 1,000, the number of repeated simulations is 10,000, and the
significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.1413 0.0470 0.0040
40 0.1444 0.0764 0.0128
60 0.1378 0.0880 0.0169
80 0.1472 0.1040 0.0213
100 0.1380 0.1046 0.0238
200 0.1465 0.1059 0.0283

0, 0 20 0.0610 0.0170 0.0119
40 0.0613 0.0270 0.0209
60 0.0605 0.0311 0.0257
80 0.0545 0.0363 0.0282
100 0.0551 0.0360 0.0300
200 0.0581 0.0367 0.0357

0.3, 0.3 20 0.0518 0.0109 0.0136
40 0.0451 0.0177 0.0272
60 0.0475 0.0179 0.0285
80 0.0408 0.0238 0.0310
100 0.0435 0.0260 0.0349
200 0.0428 0.0254 0.0371

0.3, 0.5 20 0.0459 0.0092 0.0135
40 0.0397 0.0165 0.0288
60 0.0379 0.0181 0.0314
80 0.0407 0.0233 0.0334
100 0.0359 0.0237 0.0354
200 0.0345 0.0221 0.0424

0.5, 0.5 20 0.0398 0.0091 0.0159
40 0.0414 0.0159 0.0284
60 0.0365 0.0176 0.0314
80 0.0369 0.0199 0.0343
100 0.0355 0.0213 0.0374
200 0.0344 0.0215 0.0428

0.5, 0.8 20 0.0412 0.0088 0.0161
40 0.0388 0.0134 0.0277
60 0.0338 0.0145 0.0342
80 0.0319 0.0165 0.0357
100 0.0337 0.0214 0.0411
200 0.0314 0.0170 0.0402

TABLE 2 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1) model whent = 0. The first and second columns represent different
combinations of autoregressive coefficients and sample sizes. The number of
permutation tests is 1,000, the number of repeated simulations is 10,000, and the
significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0617 0.0166 0.0112
40 0.0609 0.0262 0.0219
60 0.0557 0.0323 0.0289
80 0.0562 0.0333 0.0267
100 0.0538 0.0354 0.0311
200 0.0572 0.0338 0.0329

0, 0 20 0.0444 0.0109 0.0210
40 0.0463 0.0170 0.0380
60 0.0455 0.0213 0.0404
80 0.0422 0.0270 0.0464
100 0.0397 0.0242 0.0444
200 0.0428 0.0260 0.0539

0.3, 0.3 20 0.0472 0.0109 0.0240
40 0.0497 0.0168 0.0426
60 0.0413 0.0187 0.0404
80 0.0395 0.0222 0.0421
100 0.0421 0.0261 0.0545
200 0.0418 0.0250 0.0559

0.3, 0.5 20 0.0483 0.0095 0.0218
40 0.0447 0.0172 0.0410
60 0.0438 0.0198 0.0427
80 0.0453 0.0230 0.0432
100 0.0399 0.0240 0.0515
200 0.0420 0.0231 0.0505

0.5, 0.5 20 0.0503 0.0097 0.0220
40 0.0409 0.0186 0.0403
60 0.0455 0.0191 0.0417
80 0.0445 0.0235 0.0460
100 0.0399 0.0271 0.0509
200 0.0342 0.0257 0.0591

0.5, 0.8 20 0.0492 0.0093 0.0202
40 0.0430 0.0158 0.0337
60 0.0399 0.0193 0.0372
80 0.0435 0.0206 0.0366
100 0.0359 0.0204 0.0418
200 0.0381 0.0199 0.0462
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model. Under these two models, when ρ1 = −0.5, ρ2 = −0.5, Xt is
an independent and identically distributed sequence, so the type I
error rates of Permutation test, TLTA and STLTA are close to the
significance level. In other cases, the type I error rate of STLTA is
closer to the significance level than that of TLTA, while the type I
error rate of Permutation test gradually gets away from the
significance level as the sample size increases.

When t = 0.5, the original sequence is converted into a three-
state Markov chain, and the type I error rates in the AR(1) model
of different methods are presented in Table 4. In the AR(1)
model, when ρ1 = −0.5, ρ2 = −0.5, the type I error rate of
Permutation test still far exceeds the given significance level
0.05 even if the sample size is very small (n = 20), and TLTA
cannot control the type I error rate even when the sample size is

large. When ρ1 = 0, ρ2 = 0, the type I error rate of Permutation test
is closer to the significance level than that of TLTA and STLTA,
and the type I error rate of TLTA is far less than the significance
level. When ρ1 > 0, ρ2 > 0, similar to the case of t = 0, the type I
error rate of Permutation test also decreases with the increase of
sample size n, and gradually deviates from the significance level.
The type I error rate of TLTA is much smaller than the
significance level, while that of STLTA shows an upward trend
with the rise of the sample size n and gradually approaches the
significance level. For different combinations of autocorrelation
coefficients, the type I error rates of permutation test and TLTA
decline with the increase of ρ, with a gradual deviation from the
significance level, with TLTA in particular. Even though the
autocorrelation is extremely weak, the type I error rate is
far less than 0.05, even below 0.01. While STLTA performs

TABLE 3 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1)-TAR(1) model whent = 0. The first and second columns represent
different combinations of autoregressive coefficients and sample sizes. The
number of permutation tests is 1,000, the number of repeated simulations is
10,000, and the significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0563 0.0127 0.0119
40 0.0527 0.0194 0.0220
60 0.0463 0.0247 0.0282
80 0.0481 0.0279 0.0285
100 0.0481 0.0264 0.0291
200 0.0437 0.0277 0.0341

0, 0 20 0.0437 0.0083 0.0147
40 0.0436 0.0150 0.0270
60 0.0393 0.0177 0.0350
80 0.0412 0.0212 0.0377
100 0.0354 0.0210 0.0382
200 0.0362 0.0221 0.0435

0.3, 0.3 20 0.0395 0.0076 0.0172
40 0.0382 0.0126 0.0332
60 0.0393 0.0136 0.0349
80 0.0363 0.0183 0.0385
100 0.0353 0.0195 0.0411
200 0.0296 0.0186 0.0470

0.3, 0.5 20 0.0372 0.0068 0.0199
40 0.0345 0.0128 0.0328
60 0.0356 0.0137 0.0336
80 0.0328 0.0174 0.0382
100 0.0315 0.0208 0.0437
200 0.0354 0.0184 0.0448

0.5, 0.5 20 0.0343 0.0067 0.0170
40 0.0338 0.0130 0.0337
60 0.0305 0.0130 0.0367
80 0.0319 0.0196 0.0400
100 0.0309 0.0160 0.0399
200 0.0251 0.0163 0.0463

0.5, 0.8 20 0.0410 0.0061 0.0176
40 0.0316 0.0127 0.0322
60 0.0330 0.0142 0.0354
80 0.0323 0.0170 0.0377
100 0.0273 0.0181 0.0414
200 0.0294 0.0189 0.0466

TABLE 4 | Type I error rate for different methods (the third to fifth columns) in the
AR(1) model whent = 0.5. The first and second columns represent different
combinations of autoregressive coefficients and sample sizes. The number of
permutation tests is 1,000, the number of repeated simulations is 10,000, and the
significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.2236 0.0275 0.0400
40 0.2155 0.0520 0.0134
60 0.2210 0.0508 0.0119
80 0.2158 0.0665 0.0166
100 0.2159 0.0682 0.0178
200 0.2213 0.0702 0.0226

0, 0 20 0.0737 0.0039 0.0263
40 0.0628 0.0059 0.0188
60 0.0594 0.0075 0.0220
80 0.0572 0.0089 0.0247
100 0.0552 0.0084 0.0246
200 0.0580 0.0107 0.0325

0.3, 0.3 20 0.0379 0.0009 0.0276
40 0.0296 0.0012 0.0216
60 0.0296 0.0011 0.0277
80 0.0229 0.0025 0.0304
100 0.0270 0.0017 0.0324
200 0.0241 0.0021 0.0398

0.3, 0.5 20 0.0243 0.0006 0.0229
40 0.0174 0.0010 0.0246
60 0.0170 0.0013 0.0263
80 0.0184 0.0018 0.0337
100 0.0184 0.0012 0.0334
200 0.0152 0.0011 0.0355

0.5, 0.5 20 0.0196 0.0002 0.0175
40 0.0149 0.0005 0.0221
60 0.0102 0.0006 0.0282
80 0.0105 0.0003 0.0311
100 0.0124 0.0005 0.0350
200 0.0104 0.0003 0.0430

0.5, 0.8 20 0.0099 0.0001 0.0159
40 0.0052 0.0001 0.0194
60 0.0036 0.0002 0.0286
80 0.0032 0.0001 0.0303
100 0.0033 0.0000 0.0325
200 0.0017 0.0000 0.0377
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well in controlling the type I error rate across all
autocorrelation coefficient combinations. The performances
of these three methods in ARMA(1,1) and ARMA(1,1)-
TAR(1) models are shown in the Tables 5, 6. In these two
models, the type I error rate of TLTA is always far less than the
significance level. When ρ1 = −0.5, ρ2 = −0.5, the type I error
rate of Permutation test is closer to the significance level than
that of STLTA. But in other cases, the type I error rate of
Permutation test is much smaller than the significance level,
and it increasingly deviants from the significance level with the
increase of sample size and autocorrelation, while the type I
error rate of STLTA gradually approaches the significance level
as the sample size increases.

According to the analysis of the results, it can be figured out
that STLTA is capable to control the type I error rate under

different models, while the permutation test and TLTA are
ineffective in this respect, which evidences that STLTA is
more effective in utilizing the internal properties of time series
than the other two methods, and that it can achieve a more
accurate approximation of the local trend score p value.

3.2 Empirical Analysis
3.2.1 Data set of Moving Pictures of Human
Microbiome
The STLTA method is applied to the Moving Pictures of Human
Microbiome (MPHM) data set, for comparison with the results as
obtained from DDLSA, TLTA and Permutation test. The data set
of MPHM was collected from two healthy subjects, one male
(“M3”) and one female (“F4”). Both individuals were sampled

TABLE 5 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1) model whent = 0.5. The first and second columns represent
different combinations of autoregressive coefficients and sample sizes. The
number of permutation tests is 1,000, the number of repeated simulations is
10,000, and the significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0767 0.0033 0.0269
40 0.0609 0.0047 0.0166
60 0.0595 0.0070 0.0212
80 0.0566 0.0082 0.0229
100 0.0542 0.0094 0.0284
200 0.0552 0.0104 0.0343

0, 0 20 0.0300 0.0008 0.0251
40 0.0211 0.0008 0.0354
60 0.0187 0.0013 0.0429
80 0.0201 0.0012 0.0442
100 0.0185 0.0018 0.0456
200 0.0190 0.0016 0.0533

0.3, 0.3 20 0.0137 0.0001 0.0239
40 0.0112 0.0004 0.0395
60 0.0115 0.0008 0.0424
80 0.0083 0.0004 0.0453
100 0.0100 0.0003 0.0489
200 0.0073 0.0007 0.0579

0.3, 0.5 20 0.0109 0.0001 0.0208
40 0.0073 0.0002 0.0306
60 0.0044 0.0001 0.0431
80 0.0044 0.0003 0.0456
100 0.0048 0.0004 0.0473
200 0.0037 0.0003 0.0565

0.5, 0.5 20 0.0076 0.0000 0.0206
40 0.0050 0.0000 0.0360
60 0.0052 0.0002 0.0406
80 0.0041 0.0000 0.0442
100 0.0041 0.0002 0.0511
200 0.0028 0.0001 0.0509

0.5, 0.8 20 0.0020 0.0000 0.0148
40 0.0010 0.0000 0.0249
60 0.0011 0.0000 0.0288
80 0.0008 0.0000 0.0333
100 0.0007 0.0000 0.0333
200 0.0003 0.0000 0.0470

TABLE 6 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1)-TAR(1) model whent = 0.5. The first and second columns
represent different combinations of autoregressive coefficients and sample sizes.
The number of permutation tests is 1,000, the number of repeated simulations is
10,000, and the significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0521 0.0013 0.0241
40 0.0421 0.0034 0.0201
60 0.0375 0.0040 0.0257
80 0.0364 0.0049 0.0264
100 0.0370 0.0049 0.0282
200 0.0330 0.0049 0.0338

0, 0 20 0.0276 0.0005 0.0234
40 0.0189 0.0009 0.0245
60 0.0186 0.0009 0.0311
80 0.0188 0.0009 0.0360
100 0.0174 0.0011 0.0340
200 0.0150 0.0016 0.0440

0.3, 0.3 20 0.0169 0.0003 0.0207
40 0.0113 0.0005 0.0294
60 0.0097 0.0007 0.0301
80 0.0108 0.0006 0.0351
100 0.0091 0.0007 0.0386
200 0.0072 0.0004 0.0440

0.3, 0.5 20 0.0140 0.0000 0.0209
40 0.0089 0.0005 0.0283
60 0.0077 0.0000 0.0317
80 0.0072 0.0006 0.0340
100 0.0079 0.0003 0.0375
200 0.0067 0.0004 0.0439

0.5, 0.5 20 0.0090 0.0001 0.0198
40 0.0047 0.0001 0.0271
60 0.0054 0.0000 0.0296
80 0.0039 0.0002 0.0360
100 0.0038 0.0002 0.0370
200 0.0045 0.0000 0.0450

0.5, 0.8 20 0.0072 0.0000 0.0184
40 0.0045 0.0001 0.0251
60 0.0024 0.0001 0.0328
80 0.0024 0.0001 0.0323
100 0.0016 0.0000 0.0338
200 0.0013 0.0000 0.0440
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daily at three body sites: gut (feces), mouth(tongue), and skin (left
and right palms) (Caporaso et al. (2011)). The data set consists of
130, 135 and 133 daily samples from “F4”, and 332, 372 and 357
samples from “M3”. There are 335, 373 and 1,295 operational
taxonomic units (OTUs) from feces, tongue and palm (both left
and right) sites of “F4” and “M3”, where the taxonomic level is
Genus. We selected 59 “core”OTUs that were observed in at least
60% samples from the feces of “M3” and analyzed their
relationships. Then, metagenomic analysis is conducted to
obtain a time series of OTU abundance. As shown in
Figure 1, there are two OTUs chosen to display their time
series graphs and autocorrelation graphs. It can be found that
the abundance sequence of Parabacteroides shows more
significant autocorrelation compared to Bifidobacterium, and

that their Box-Ljung test p values are all very close to 0,
indicating that their autocorrelation relationship is of much
significance.

FIGURE 1 | Standardized abundance map of Parabacteroides (A) and Bifidobacterium (B) in MPHM “M3” sample fecal data set. The autocorrelation graph (C,D)
shows the autocorrelation coefficient of the time series at different delays.

TABLE 7 | The numbers of significant correlations between OTUs found by
permutation tests, TLTA, STLTA and DDLSA for different data sets and
significance levels.

— t = 0.5 t = 0

Dataset — MPHM PML MPHM PML
# of factors — 59 75 59 75
p ≤ 0.05 q ≤ 0.05 Permutation 589 87 727 29
— TLTA 165 75 532 13
— STLTA 739 50 667 13
— DDLSA 685 371 685 371

p ≤ 0.01 q ≤ 0.01 Permutation 489 84 549 29
— TLTA 86 74 436 11
— STLTA 621 16 514 4
— DDLSA 549 227 549 227

FIGURE 2 | The Venn diagram of the significant relationships found in
permutation test, TLTA and STLTA for the MPHM “M3” fecal data set. Green,
blue, and red indicate the number of significant relationships found by
permutation test, TLTA, and STLTA, respectively.
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The significance level is set to 0.05 and 0.01, based on
which a comparison is drawn in the significant relationship
between the OTUs found by permutation test, TLTA, STLTA
and DDLSA with the time delay of D = 3. The results are
presented in Table 7. When t = 0.5 and the significance level
p = 0.05, Q = 0.05, in all 1711 pairs of OTU relationships in
the “M3” feces sample, it was found that 589, 165, 739 and 685
pairs of significant relationships by Permutation test, TLTA,
STLTA and DDLSA respectively, which were 34.4, 9.6, 43.2
and 40% of the total. STLTA found the most significant
relationship, followed by DDLSA, and TLTA the least.
This is very similar to the simulation results obtained
earlier: when t = 0.5 and the sample time point is 300, if
the samples have autocorrelation relationship, the simulation
results show that the type I error rates of Permutation test and
TLTA are far less than the given significance level, while the
type I error rate of STLTA is close to the given significance
level. Therefore when there is correlation between
autocorrelation samples, it is possible that permutation test
and TLTA fail to identify many significant relationships that
actually exist, but STLTA can do this. Although the
permutation test can also find many significant
relationships, most of them are between samples without
autocorrelation. In addition, the numbers of significant
correlations between OTUs found by STLTA and DDLSA
are approximate, shown that STLSA can discover most
significant relationships found by DDLSA.

Venn diagram (Figure 2) shows the relationship among the
results obtained using different methods in the “M3” stool
sample. All of the significant relationships identified by TLTA
are discovered by permutation test, and all of the significant
relationships identified by permutation test are discovered by
STLTA. For more stringent standards p = 0.01 and Q = 0.01 as
well as different thresholds, the results are listed in Table 7. By
comparing the results of t = 0 and t = 0.5, it can be found out that

the permutation test and TLTA can identify more significant
relationships at t = 0 then at t = 0.5, especially for TLTA.
However, STLTA is just the opposite, with the significant
relationship found at t = 0 less then at t = 0.5.

3.2.2 Data set of Plymouth Marine Laboratory
The STLTA method is applied to the Plymouth Marine
Laboratory (PML) data set, for comparison with the results as
obtained from DDLSA, TLTA and Permutation test. The PML
data set is one of the longest microbial time series consisting of
monthly samples taken over 6 years at a temperate marine coastal
site off Plymouth, United Kingdom (Gilbert et al. (2012)). These
samples were sequenced using high-resolution 16S rRNA tag
NGS sequencing. A total of 155 bacterial OTUs were identified
with the taxonomic level of Order. Among them, we chose 62
abundant OTUs that were present in at least 50% of the time
points, and 13 environment factors to analyze their association
network. We filled the missing values in the environment data
using linear interpolation.

Given time delay D = 3 and significance level p = 0.05, Q =
0.05, when t = 0.5 among all the relationships between OTUs and
between OTU and environmental factors, permutation test,
TLTA, STLTA and DDLSA identified 87, 75, 50 and 371 pairs
of significant relationships, as shown in Table 7. Venn diagram
(Figure 3) reveals the relationships among the results as obtained
using different methods in the PML samples. All of the significant
relationships identified by TLTA are discovered by permutation
tests. Among all these significant relationships, however, only 11
pairs of relationships are found out by both permutation test and
STLTA. This is because there are only 33 (~44%) factors showing
autocorrelation, with more than half of the factors bearing no
autocorrelation. Therefore, permutation test can be conducted to
find out about the significant relationships between many time
series without autocorrelation. However, there are as few as 72
sample time points, since STLTA is conservative to some extent
when there are a small number of time points. Among the
significant relationships discovered by the permutation test,
there are 76 pairs not identified by STLTA. In addition, it is
suspected that 39 pairs of significant relationships which are
found out by STLTA but fail to be detected by permutation test
are between autocorrelation sequences, and these relationships
can be discovered by neither permutation test nor TLTA. For
more stringent standards p = 0.01 andQ = 0.01 as well as different
thresholds, the results are shown in Table 7. It can be found out
from the table that when t = 0, the number of significant
relationships identified by all methods is smaller than that of
relationships discovered when t = 0.5. As the PML data set has
only 72 time points, there is a massive information loss in STLTA.
Thus, the number of significant correlations between OTUs
found by STLTA is far from that by DDLSA.

4 CONCLUSION

In this paper, a theoretical evaluation method was proposed for
the statistical significance of local trend scores, STLTA. First of all,
the original sequence was discretized into a changing trend

FIGURE 3 | The Venn diagram of the significant relationships found in
permutation test, TLTA and STLTA for the PML data set. Green, blue, and red
indicate the number of significant relationships found by permutation test,
TLTA, and STLTA, respectively.
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sequence and the local trend score was calculated. Then,
according to the spectral decomposition theory of the matrix,
the variance of the trend sequence was estimated for different
state spaces. Finally, in combination with the limit theory of
Markov chain local similarity analysis, the limit distribution of
the local trend score was obtained, and the approximate p value of
the local trend score was calculated. By means of simulation, it
was discovered in a given stationary time series model that the
type I error rate of STLTA can be made significantly closer to the
given significance level, with the type I error rates of permutation
test and TLTA increasingly deviant from the given significance
level over time, especially when t = 0.5. It is suggested that STLTA
method is more effective than permutation test and TLTA
method. Then, these three methods were applied to the
MPHM and PML data sets. In the relatively long data set
MPHM “M3” fecal data set, STLTA detected the most
significant relationships, and all of the significant relationships
discovered by permutation tests and TLTA were identified by
STLTA. In the PML data set with relatively short time points,
STLTA discovered some relationships that cannot be found out
by permutation tests and TLTA, with these relationships resulting
from the autocorrelation of the sequence.

Compared with local similarity analysis, however, local trend
analysis converts a continuous original time series into a
discrete trend series, which may cause the loss of some
information from the original series, thus limiting the
practical application of local trend analysis. Nonetheless,
the discretization of the original sequence may lead to the
transformation of some non-stationary time series into a
stationary Markov sequence, which is a major advantage of
local trend analysis. In addition, the DDLSA based on non-
parametric kernel estimation and the MBBLSA based on
moving block bootstrap can be applied to the statistical

significance analysis as part of local trend analysis, which
provides another direction of further research.
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