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Objective: Abnormal changes in metabolite levels in serum or plasma have been highlighted in several
studies in age-related macular degeneration (AMD), the leading cause of irreversible vision loss. Specific changes
in lipid profiles are associated with an increased risk of AMD. Metabolites could thus be used to investigate AMD
disease mechanisms or incorporated into AMD risk prediction models. However, whether particular metabolites
causally affect the disease has yet to be established.

Design: A 3-tiered analysis of blood metabolites in the United Kingdom (UK) Biobank cohort to identify
metabolites that differ in AMD patients with evidence for a putatively causal role in AMD.

Participants: A total of 72 376 donors from the UK Biobank cohort including participants with AMD
(N ¼ 1353) and non-AMD controls (N ¼ 71 023).

Methods: We analyzed 325 directly measured or derived blood metabolites from the UK Biobank for 72 376
donors to identify AMD-associated metabolites. Genome-wide association studies for 325 metabolites in 98 316
European participants from the UK Biobank were performed. The causal effects of these metabolites in AMD were
tested using a 2-sample Mendelian randomization approach. The predictive value of these measurements
together with sex and age was assessed by developing a machine learning classifier.

Main Outcome Measures: Evaluating metabolic biomarkers associated with AMD susceptibility and
investigating their potential causal contribution to the development of the disease.

Results: This study noted age to be the prominent risk factor associated with AMD development. While
accounting for age and sex, we identified 84 metabolic markers as significantly (false discovery rate-adjusted P
value < 0.05) associated with AMD. Lipoprotein subclasses comprised the majority of the AMD-associated
metabolites (39%) followed by several lipoprotein to lipid ratios. Nineteen metabolites showed a likely causa-
tive role in AMD etiology. Of these, 6 lipoproteins contain very small, very low-density lipoprotein (VLDL), and
phospholipids to total lipid ratio in medium VLDL. Based on this we postulate that depletion of circulating very
small VLDLs is likely causal for AMD. The risk prediction model constructed from the metabolites, age and sex,
identified age as the primary predictive factor with a much smaller contribution by metabolites to AMD risk
prediction.

Conclusions: This study underscores the pronounced role of lipids in AMD susceptibility and the likely
causal contribution of particular subclasses of lipoproteins to AMD. Our study provides valuable insights into the
metabopathological mechanisms of AMD disease development and progression. Ophthalmology
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Age-related macular degeneration (AMD) affects central
vision and is the leading cause of irreversible vision loss in
individuals >50 years of age in developed countries, ac-
counting for one-half of all legal blindness.1

Drusen, the hallmark histopathological feature of AMD,
are lipid-rich deposits present in early-stage disease, and
accumulate in size and number as the disease progresses.
Advanced AMD is characterized by geographic atrophy and
macular neovascularization.1 Drusen deposits predominantly
Crown Copyright ª 2024 Published by Elsevier Inc. on behalf of the American
Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
comprise lipids and lipoproteins, prompting researchers to
study alterations in these molecules in AMD patients’
blood. In aged eyes, lipid deposits also accumulate within
Bruch’s membrane, which serves as a diffusion barrier
between the outer retina and the blood circulation.2e4

Changes in serum or plasma lipid levels have been identi-
fied in several studies, suggesting that dysregulated metab-
olites may represent important risk factors for AMD.5,6 In
addition, polymorphisms in genes involved in lipid
1https://doi.org/10.1016/j.xops.2024.100535
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homeostasis, including hepatic lipase (LIPC), hepatic
cholesterol ester transfer protein (CETP), and
apolipoprotein E (ApoE), have been identified by genome-
wide association studies (GWAS).7e9 Interestingly, LIPC,
ApoE, and CETP are expressed in the retinal tissue and are
involved in lipid transport.8,10

Notably, RNA-seq findings indicate distinct expression
patterns of ApoE in Müller glia, LIPC in the retinal pigment
epithelium layer, and localization of CETP to photoreceptor
outer segments and the choriocapillaris.11e13 This is
insightful; however, given the fact that these genes (partic-
ularly ApoE) are known to be expressed in multiple tissues,
it is unknown whether these lipid-related genes impose a
systemic role and/or an intraocular concentrated mechanism
of action when considering the pathogenesis of AMD.

Different metabolite profiles of early and intermediate
AMD versus late stages of AMD reflect dysregulation of
metabolic pathways, particularly those related to lipid
metabolism, which provide additional evidence of differ-
ences in genetic associations of lipid-related genes and
metabolites along the severity spectrum.7,14,15 This suggests
a systemic contribution from metabolites, particularly lipids,
to the onset and progression of AMD, and highlights the
need to better understand the many potential roles of these
metabolites in AMD pathogenesis.16

Previous studies showed increased levels of large and
extra-large high-density lipoprotein (HDL) subclasses in
blood plasma or serum in AMD.6 Decreased levels of very
low-density lipoprotein (VLDL), amino acids, and citrate
were also significantly associated with AMD.6 Lower AMD
incidence among subjects on lipid-lowering drugs has been
reported as well as some beneficial effects in clinical tri-
als.17,18 Work in animal models further suggests the
importance of metabolic processes in the etiology of
AMD.19 Despite these valuable discoveries, the benefits of
elucidating the complex biological role of metabolites in
AMD and the translation of these findings in the AMD
biological mechanisms area have yet to be realized.
Understanding the complex interplay between genetic and
environmental factors to discover the mechanisms of
action of metabolites in AMD development is crucial to
treatment development.20e22 Circulating metabolites are
easily measured biomarkers of disease risk and progression
and expand our knowledge to fully investigate the complex
metabolic differences in AMD patients.23,24

While observational studies cannot avoid unmeasured
and residual confounding factors from interventions,
Mendelian randomization (MR) is a well-established
method that uses genetic variants as instrumental vari-
ables to establish causality. This approach has already
pinpointed apolipoprotein A1, apolipoprotein B, total
cholesterol, and HDL cholesterol to play a role in the
etiology of AMD.25 More recently, studies have tested a
larger number of metabolites adding valuable insights
into our knowledge of metabolites’ role in AMD risk.
Particularly lipid- and lipoprotein-related metabolites were
shown to be associated with AMD.14,26 Of note, MR
analyses reinforced the findings of previous observational
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studies in AMD25e29 thus emphasizing the pivotal role
of this statistical approach.

The fast-growing availability of metabolite and genetic
information in large databases such as the United Kingdom
(UK) Biobank enables tests of metabolite association and
disease causation with unprecedented statistical power.
Therefore, creating a more comprehensive panel of genetic
instruments for metabolites via high-powered GWAS will
enhance our statistical power to identify new causal re-
lationships between metabolites and AMD. Additionally,
due to the large variety of metabolites and complex re-
lationships between their subcomponents, specific research
using integrative approaches is required to elucidate not
only risk associations, but also their value as the putative
causal role of lipid biomarkers in AMD etiology. In addi-
tion, current prediction models for AMD are based on
restricted statistical models tested with a limited lipid pro-
file.30 This restricts us from expanding our knowledge to
fully investigate the complex metabolic differences in
AMD patients. Using a machine-learning approach on
hundreds of metabolites allows us to assess the value of
additional metabolites in patients’ prognosis.

The UK Biobank cohort recently released nuclear mag-
netic resonance (NMR)-based metabolite data for 249
circulating metabolites, lipids, and lipoprotein subfractions
for approximately 119 000 participants (first release version,
March 2021). In addition, Ritchie et al derived 76 ratios of
metabolites, making a total of 325 metabolites, or their ra-
tios, available for analysis.31 This is a valuable dataset for
metabolomic clinical studies making it possible to provide
in detail insights in biomarker detection in large-scale in-
vestigations for a large number of metabolites. Of note, the
study of metabolite derivatives and ratios provided invalu-
able insights into relationships that exist between individual
metabolites, enzymatic processes, and clinically useful
biomarkers.32,33 Investigating the clinical lipids measured
by NMR platform in this study in addition to investigating
derivatives and metabolite ratios may shed light on
dynamic changes in metabolite levels in AMD and help
target clinically relevant metabolites.

In this study, we addressed 3 specific research questions
using metabolites and genetic data from the UK Biobank as
follows (depicted in Fig 1):
(1) Which metabolites differ in abundance in AMD
patient plasma compared with controls?

(2) Which metabolites may have a causal role in AMD?

(3) Which metabolites have the greatest predictive value
for classifying AMD versus control subjects?
In this work, firstly we identify the metabolites that are
differentially abundant in AMD patients compared with
controls. Secondly, we use the MR approach to identify the
causal effects of specific lipid fractions which present ave-
nues for future in vitro validation work. Lastly, we explored
the value of these metabolites in AMD risk prediction.



Figure 1. Study design schematic. Colored boxes in yellow, blue, and green present our approach to answering questions (1), (2), and (3) (see text),
respectively. AMD ¼ age-related macular degeneration; GWAS ¼ genome-wide association studies; UK ¼ United Kingdom.
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Methods

Ethics

This study used data from the UK Biobank cohort under project
number 36610. The study was approved by the Walter and Eliza
Hall Institute of Medical Research, Human Research Ethics
Committee (HREC project number 17/09LR). Ethics approval was
obtained by the Northwest Multi-centre Research Ethics Commit-
tee and our research adhered to the tenets of the Declaration of
Helsinki (UK Biobank research ethics approval). Informed consent
was obtained from all study participants and all participants were
free to withdraw from the study at any time.

Study Population

The genetic, metabolomic, and demographic data of the UK Bio-
bank cohort were accessed through application number 36610.
Details of the UK Biobank (https://www.ukbiobank.ac.uk/) study
design and population have been described previously.34 The UK
Biobank study used a high-throughput NMR metabolomics plat-
form35 to undertake metabolomic profiling in baseline plasma
samples from a randomly selected subset of approximately
121 000 participants.31 The single nucleotide polymorphism
(SNP) genotypes of the subset of participants from the UK
Biobank cohort with metabolic data were also downloaded. All
individuals who had withdrawn from the study as of January
2022 were excluded from the cohort.

Assessment of AMD Status and Non-AMD
Controls: Phenotype Definition

For the w121 000 individuals with metabolomic and genetic data
available, AMD status was ascertained through International
Classification of Diseases 10th Revision codes for AMD diagnoses
(H353) recorded in primary care and hospital admission data.36 To
ensure high-quality clinical diagnostic information for AMD in-
dividuals in this study, we excluded individuals with self-reported
AMD only (code 1528 in data field 20002, or code 5 in data field
6148), and no clinically recorded disease. For non-AMD controls,
we included those participants with neither report of AMD di-
agnoses (H353) in primary care and hospital admissions data, nor
self-report of AMD diagnosis. To limit the potential confounding
effect of ancestry differences on metabolite levels, we only
included participants with European ancestry. For individuals with
>1 visit to a recruitment center, only the first visit (code visit “0”)
measurements were included in this study (119 020 participants).
The samples that were flagged, either due to technical issues or
specific sample preparation methods, in the UK Biobank data were
excluded. These were samples flagged with high lactate (data field
23652), high pyruvate (data field 23653), low glucose (data field
23654), or low protein (data field 23655). In total, 72 376 in-
dividuals including participants with AMD (N ¼ 1353) and non-
AMD controls (N ¼ 71 023) remained for further analysis.

Metabolic Biomarker Quantification

Metabolite data acquisition took place between June 2019 and
April 2020 (from nonfasting venous blood). This simultaneously
quantified 249 metabolic biomarkers (168 directly measured and
81 ratios of these), including lipids, fatty acids, amino acids, ketone
bodies, and other low-molecular-weight metabolic biomarkers (e.g.
gluconeogenesis-related metabolites), as well as lipoprotein sub-
class distribution, particle size, and composition.

The UK Biobank metabolic data underwent quality control
procedures using the ukbnmr R package (version 1.5) developed
by Ritchie et al31 to remove the effects of technical variation on
biomarker concentrations. Metabolite levels were square root
transformed to achieve symmetry of the distribution. This
transformation was preferred over the log transformation as this
was observed to highly skew the distribution of some
metabolites. Assuming missingness at random, metabolic values
were imputed using the Multiple Imputation Chain Equation by
the R-package MICE (version 3.15.0).37 We imputed 5 different
versions of the dataset and took the average of the 5 imputed
values for each missing metabolite. Composite metabolites and
ratios were then recomputed using ukbnmr (version 1.5). A total
of 325 metabolites were included in this study (listed in
Table S1). All metabolites were then mean centered and divided
by their standard deviation.

Quality Control of Genotype Data

The SNP-genotyping data of the UK Biobank cohort was obtained
and underwent quality control and imputation as described previ-
ously.38 Individuals with high heterozygosity or high levels of
missingness were excluded prior to imputation. We further
excluded individuals who had withdrawn consent (as of January
2022), samples where the self-reported sex did not match the
3
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genetically inferred sex, samples with putative sex chromosome
aneuploidy, and samples with an apparent excess of relatives in the
cohort (>10 relatives). To decrease the effect of ancestry differ-
ences in metabolite levels we only included participants with Eu-
ropean ancestry (based upon genetic principal components). The
principal components were calculated using the King software
version 2.3.0 (released on October 10, 2022).39 Samples were then
restricted to the subset inferred by King to have European ancestry.
Variants were filtered to include those with high imputation quality
(INFO scores �0.7).

Metabolite Associations Analysis

We analyzed metabolite data derived from blood samples of
72 376 participants including AMD (N ¼ 1353) and non-AMD
controls (N ¼ 71 023) that had complete metabolite measure-
ments, age at the time of blood sample collection, and sex data (no
missing information). To identify differentially abundant metabo-
lites in patients compared with non-AMD controls we conducted
linear regression analyses, with age and sex as covariates (model
employed: metabolite w AMD status þ age þ sex). The R soft-
ware (version 4.1.3) was used for the regression analysis. The
coefficients resulting from this model represent the estimated
change in the metabolite levels for AMD patients versus non-AMD
controls while accounting for age and sex.

UK Biobank Metabolomics GWAS

Genotype and metabolite data were available for 119 020 unique
samples in the UK Biobank. After imputation and quality control
of the genotype data, 98 316 European participants (first visit) were
available for association analyses. The GWAS of 325 metabolites
were undertaken using the Regenie tool (v.1.0.6.9)40 and included
common variants with minor allele frequency >0.01. Age, sex, 7
principal components, and genotyping batch were included as
covariates in the association analyses.

AMD GWAS

We used the GWAS summary statistics data of a recent AMD
GWAS via personal communication with associate professor Stuart
Macgregor, QIMR, Brisbane, Australia. The GWAS-AMD
included 12 711 advanced AMD cases and 5336 intermediate
AMD cases with 14 590 controls of European descent from the
International AMD Genomics Consortium. Details of this study are
described by Han et al.25

Genetic Instruments

To identify those metabolites that most likely cause AMD,
2-sample MR analyses were performed to systematically evaluate
the causal relationships between 325 metabolites in 98 316 Euro-
pean participants, consisting of the metabolite groups described in
Table S1. To determine the genetic instruments to include in MR
analysis, we selected genome-wide significant variants
(P < 5 � 10�8) associated with 325 metabolites. The independent
SNPs taken from the GWAS results for each metabolite
(P < 5 � 10�8), and AMD GWAS summary statistics data (no P
value filtering) were used as genetic instruments to perform MR
analyses (Table S2). To obtain independent SNPs, we set the SNP
clumping window to 10 000 kb where SNPs in linkage
disequilibrium within a cut-off of r2 < 0.001 were pruned and
the SNP with the lowest P value was retained. The SNP clumping
step was performed using the “clump_data” function of the
“TwoSampleMR” R package, version 0.5.6.41 We excluded the
metabolites that had �3 SNPs in common with AMD risk loci
(only acetate was excluded). After harmonizing the risk alleles
4

between the exposure and the outcome (using the
“harmonise_data” function of the “TwoSampleMR” R package)
we included only biallelic SNPs with minor allele frequency
�0.01 and produced 24-75 genetic instruments (i.e. SNPs) that
were selected for MR analysis of 325 plasma biomarkers in
European participants of the UK Biobank cohort (Table S2).

MR

Two-sample MR41 was used to test potential causal relationships
between each metabolite (the exposure) and AMD (the
outcome). To adequately explore causality, we conducted 3 MR
methods with different statistical approaches: (1) MR Egger,
which allows �1 genetic variants to have pleiotropic effects, as
long as the size of these pleiotropic effects is independent of the
size of the genetic variants’ effects on the outcome;42 (2) inverse
variance weighted, which assumes no pleiotropy;43 and (3)
weighted median which allows for genetic pleiotropy.42

We carried out a number of sensitivity analyses to evaluate the
validity of our genetic instruments, and to test for violations of the
underlying assumptions of MR as described by Hemani et al41 as
follows: (1) the instruments must be associated with the exposure;
(2) the instruments must influence the outcome only through the
exposure; (3) the instruments must not associate with measured
or unmeasured confounders.

To evaluate whether any of the MR estimates were highly
influenced by the effect of a particular SNP, leave-one-out ana-
lyses were conducted by leaving each genetic variant out of the
MR analysis in turn. Further, Cochran’s Q statistic was performed
to test the heterogeneity by using the function “mr_heterogeneity”
of the TwoSampleMR package. In addition, we assessed whether
the MR Egger regression analysis resulted in a nonzero intercept
estimate; this would suggest either directional pleiotropy or a
failure of the instrument strength independent of the direct effect
assumption.

Unless otherwise specified throughout the manuscript, the
Benjamini-Hochberg method was used to control the false dis-
covery rate (FDR). Statistical significance was defined as FDR-
controlled P value < 0.05, throughout this study.

Machine Learning Classification Model

To assess whether circulating NMR biomarkers could help the
prediction of AMD risk, we used the extreme gradient
boosting (XGBoost, R package version 1.6.0.1) decision tree
classification algorithm.44 The transformed and scaled
metabolite dataset was partitioned into 75% for the training
stage and 25% for the testing stage for each model,
stratified for similar cases and control numbers. We
observed that the performance of the XGBoost model was
maximized when the case-control ratio was maintained at
1:1, indicating that an equal representation of AMD cases and
non-AMD controls led to the most accurate and reliable pre-
dictions. Given that the case-control ratio was extremely
imbalanced and to ensure the utilization of all available
samples and enhance the accuracy and robustness of our
predictive models, we adopted an approach to iterate the
model on sets of independent non-AMD samples. By breaking
down the dataset into 52 subsets, we created a series of
models that encompassed a 1:1 ratio of AMD and independent
non-AMD samples (each subset includes 1353 AMD and 1353
non-AMD samples). To improve the performance of the
developed models by minimizing over-fitting, an iterative 10-
fold cross-validation method was used. A grid search across
multiple parameter spaces was used to optimize the
hyperparameters.



Farashi et al � The Role of Metabolites in AMD
These models were trained including age at blood sample
collection and sex (baseline model) and with supplying metabo-
lites as features. The bootstrapping method of the XGBoost tool
selects 1 feature among all correlated feature sets. To assess the
performance of models we calculated the mean value of the
receiver operating characteristic-area under the curve resulting
from each model.

Results

Cohort Demographics

Of the original 502 493 UK Biobank participants, NMR
metabolite measurements were available for 98 316 Euro-
pean participants (19.6%). Of these, 1353 had AMD based
on clinic/hospital records (International Classification of
Diseases 10th Revision code: H353). A total of 71 023 in-
dividuals who had not reported AMD in primary care re-
cords were included in this study as non-AMD controls. The
mean age at blood sample collection of participants in this
subset of the UK Biobank was 57.8 years (the mean age for
cases: 63.8 years and for controls: 57.7 years), and 46.3%
(n ¼ 33 494) were males.

Metabolite Associations with AMD

First, we examined the correlation between 325 metabolites
in AMD patients (N ¼ 1353) and non-AMD controls
(N ¼ 71 023), separately, to explore the strength and di-
rection of relationships among these metabolites (Fig S2).
Age showed a highly significant association with
metabolite levels, demonstrating that metabolic dynamics
and the aging process are intertwined (Fig S3A). As
expected, age showed a strong association with AMD
(Fig S3B). After adjustment for potential confounding
factors (age, sex), 84 of the 325 metabolic biomarkers
(including derivatives and metabolite ratios) showed
statistically significant associations with AMD at the
FDR-adjusted P value < 0.05 level (Table S2). These
metabolites are illustrated in Figure 4 and the direction of
the association with AMD is shown.

The significant metabolites were identified in 16 meta-
bolic groups (Fig 4). Among these groups, a glycolysis-
related metabolite (glucose b ¼ 0.12, adj.P ¼ 0.004)
showed the strongest association with AMD, demonstrating
a 0.12 increment of glucose in individuals with AMD in
comparison to the control group (Fig S5A).

Very small VLDL lipoprotein (cholesteryl esters in very
small VLDL, b ¼ �0.11, adj.P ¼ 0.004) showed the second
strongest association with AMD with a 0.11 decrease in the
level of cholesteryl esters in very small VLDLs in AMD
cases compared with controls (Fig S5B). Two other
members of lipoprotein subclasses (phospholipids in
intermediate-density lipoprotein b ¼ �0.1, adj.P ¼ 0.003;
cholesterol in very small VLDL b ¼ �0.1, adj.P ¼ 0.003)
showed highly significant associations with AMD.

The lipoprotein subclasses comprised the majority of
AMD-associated metabolites (33 of 84). Among these,
medium VLDL ratios were the most significant particles.
The large low-density lipoproteins and 3 types of VLDLs
including very small-, small-, and very small VLDL ratios
were the most significant particles with the highest
number of lipoprotein to lipid relative concentrations,
respectively. Various intermediate-density lipoproteins
compositions containing free cholesterol, total lipids,
cholesterol, and cholesteryl esters were the other highly
significantly associated lipoprotein to lipid relative moi-
eties with AMD. Cholines, phosphatidyl, and sphingo-
myelins were among other lipids negatively associated
with the risk of AMD (Fig 4, Table S2).

The majority of metabolites (N ¼ 76) showed a negative
association with AMD, suggesting a lower risk of AMD with
the abundance of these metabolites in blood plasma (Fig S6A).
Conversely, concentrations of only 8 metabolites were shown
to be positively associated with AMD which suggests higher
concentrations of these metabolites were associated with
higher AMD risk (Fig S6B). The ratios of triglyceride
concentrations to total lipids in different lipoprotein
subgroups showed a consistent positive associationwithAMD.

Lipoprotein components of positively associated metab-
olites include various subgroups of very small, small, me-
dium, and large VLDLs. No amino acids were significantly
associated with AMD in this study (Fig 4).

Genome-Wide Study of Circulating Metabolites
in the UK Biobank Cohort

To find suitable genetic instruments for MR analyses of 325
metabolites (consisting of metabolite groups described in
Table S1) in AMD, a series of GWAS were performed on
98 316 European participants. We report independent SNPs
with a genome-wide significant association threshold
(P < 5 � 10�8) for 325 metabolites in Table S3. To validate
these findings we compared the results of 6 randomly chosen
metabolites including members of amino acids, lipoproteins,
and lipids (apolipoprotein A1, XL_HDL_TG, XS_VLDL_L,
glycine, phenylalanine, and alanine) with the previously
published data by Lotta et al and Kettunen et al.45,46 The
comparison was conducted for effect sizes of variants
identified in our study (P < 5 � 10�8), and variants identi-
fied in Kettunen et al (P < 5 � 10�8), or in Lotta et al (at
suggestive significant level: P< 1� 10�6), and showed high
correlations (Fig S7).

Genetic Overlap Between Metabolite Levels and
AMD Risk

We investigated the potential overlap between genetic variants
associated with 325 metabolites and those implicated in AMD
risk, as reported by Fritsche et al.8 This revealed intersections
between the identified metabolite-associated SNPs and estab-
lished AMD risk variants, particularly those associated with
lipid-related AMD risk regions (genes)10 including rs429358
(APOE), rs17231506 (CETP), rs2043085, rs2070895
(LIPC), and rs2740488 (ABCA1). Notably, these identified
SNPs showed enrichment in GWAS results of 2 metabolite
groups: lipoprotein subclasses and relative lipoprotein: lipid
concentrations. Single nucleotide polymorphisms linked to
LIPC were among the most significant signals in metabolite
GWAS, while rs2740488 (ABCA1) was observed more
frequently among metabolites, albeit at a lower significance
level (Fig S8).
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Figure 4. Metabolites that are significantly associated with age-related macular degeneration (AMD) in patients versus non-AMD controls. A circular bar
plot depicting 84 metabolites, negatively or positively associated with AMD after accounting for sex and age. Only metabolites meeting a false discovery rate-
corrected significance level (adjusted P value < 0.05) are displayed. Gray circles denote the circularized y-axis. Bars pointing outward of the black circle
denote increased levels in AMD (effect >0), whereas bars pointing inward of the black circle indicate decreased levels in AMD (effect <0). Each estimate
represents the difference in the outcome variable (i.e. AMD risk) per standard deviation increase/decrease in the scaled-transformed metabolite values. The
positive and negative effect size translates to metabolic increases and decreases, respectively, in individuals with AMD in comparison to the control group.
Colors indicate groups and subgroups of metabolites separated by an empty space between bars. Groups and subgroups of metabolites are described in
Table S2. The prefixes indicate the size of particles: L, large; M, medium; S, small; XS, very small. The metabolite abbreviations are described in Table S1.
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MR Analyses

Three methods of 2-sample MR (MR Egger, inverse variance
weighted, and weighted median MR) were performed to
evaluate the causal relationships between 325 metabolite
biomarkers and AMD. This led us to identify 19 metabolites
most likely causal for AMD in patients of European ancestry
(Fig S9). These metabolites showed significant (FDR <0.05)
causal effects on AMD for all 3 MR methods (Fig 10,
6

Table S4 and Fig S11). We identified 5 putative causal
metabolite groups where increased metabolite
concentrations likely cause AMD, including subgroups of
metabolites that contain ratios of large VLDL and medium
HDL (Table S4). Conversely, decreased ratios of 14
metabolites showed evidence of increasing risk of AMD. A
list of these metabolites, the direction of effect, and the
number of genetic instruments used in MR analyses are
summarized in Table S3.



Figure 10. Mendelian randomization (MR) analyses on 325 metabolites using 3 MR methods. Significant metabolites resulting from corrected P values
(false discovery rate [FDR] <0.05) and an effect size >0.5 (b > 0.5 or b < �0.5) are labeled. Colors represent 21 groups of metabolites. Only metabolite
groups with �1 member with an absolute effect >0.5 are included in the legend. Positive b values indicate potential causal factors where higher metabolite
plasma concentrations increase age-related macular degeneration (AMD) disease risk. Negative b values indicate metabolites where lower concentrations
increase AMD risk.
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Validation of MR Results

To identify potentially misleading causal estimations in MR
analyses, sensitivity analyses (pleiotropy analysis and het-
erogeneity test) were performed to evaluate the robustness
of the 19 MR-identified metabolites that most likely cause
AMD in European ancestry.

The MR-Egger intercept test showed no evidence (P <
0.05) of a significant pleiotropic variant among the selected
genetic instrument variants for 19 metabolites (Table S5).

Cochran’s Q statistic was used to test the heterogeneity of
SNP effects for the identified 19metabolites (Table S6). There
was evidence of significant heterogeneity of effects across all
metabolites, whichmay also be seen from the forest plots (Fig
S12) and funnel plots (Fig S13). However, the estimates
obtained from individual SNP leave-one-out tests (Fig S14)
were highly consistent. Further, the consistency of MR
effect estimates using the different methods, does not
suggest the MR estimates are highly biased.

AMD Risk Prediction Models

The classifier was constructed first from only age and sex
(baseline model) and second from the combination of me-
tabolites, age, and sex iterating on 52 subsets of samples
with 1:1 case-control ratios (due to a high imbalance be-
tween cases and controls).

The performance of XGBoost showed age as the most
significant predictor likely overpowering the contribution
of metabolites in AMD risk prediction (Fig S15A). Apart
from age as the primary predictive factor, amino acids
including phenylalanine, glycine, histidine, and
members of relative lipoprotein: lipid subclasses were
among those metabolites with the highest predictive
values (Table S7). The averaged receiver operating
characteristic-area under the curve value showed no
improvement in the baseline model compared to when
metabolites were added to the model (Fig S15B).
Integration of Results

In this study, we identified 84 metabolites that differ in
AMD patients compared with non-AMD controls in the UK
Biobank cohort. The MR analysis of 325 metabolites
identified 19 metabolites with likely causal effects for AMD.
Our efforts to incorporate the metabolites into a prediction
model showed no improvement compared with the baseline
model (including only age and sex; Table S8).

To identify those metabolites that are both disease bio-
markers and likely causal for AMD, we looked for me-
tabolites identified in both analyses in this study. Seven
metabolites including the percentage of phospholipids to
total lipids in medium VLDL, and 6 lipid components that
contain very small VLDLs, exhibited lower levels in AMD
patient plasma in addition to having causal effects (listed in
Fig 16). In our MR analysis, these metabolites showed
negative effects (beta values) that suggest decreased
levels of the metabolites contribute to an increased risk
of disease; therefore, lower levels of these metabolites
likely cause AMD (Fig 16A). Notably, we confirmed a
negative correlation between the harmonized effects of
SNPs governing AMD risk and the concentrations of
these 7 metabolites (Fig 16B), further supporting the
observation of the lower levels of these metabolites in
AMD patients.
7



Figure 16. Metabolites that are both disease biomarkers and likely causal for age-related macular degeneration (AMD). (A) A Venn diagram summarizing
the findings in the 2 facets (association and Mendelian randomization [MR] analyses) of this study. A total of 84 biomarkers demonstrated statistical
significance (false discovery rate [FDR] < 0.05) in the association analysis (facet 1). Nineteen metabolites reached the significance threshold (FDR < 0.05)
across all 3 MR methods of which 7 biomarkers exhibited lower levels in individuals with AMD. These 7 metabolites exhibited lower levels in AMD patient
plasma, in addition to having causal effects that suggest lower genetically predicted levels of these metabolites appear to increase AMD risk. (B) Effect size
comparisons between AMD-risk single nucleotide polymorphisms (SNPs) and SNPs associated with metabolite levels. Each dot represents a SNP. Each
panel represents a metabolite and contains the SNPs that were found to have a genome-wide significant effect on that metabolite. The x-axis captures the
effect sizes of the SNPs on a given metabolite while the y-axis captures the effect of the same SNPs on AMD risk. The blue line represents a regression line
between the two. Metabolites causally affecting the disease are expected to have correlated effect sizes. Metabolite descriptions as follows: XS_VLDL_PL:
phospholipids in very small very low-density lipoprotein (VLDL); XS_VLDL_P: concentration of very small VLDL particles; XS_VLDL_L: total lipids in
very small VLDL; XS_VLDL_FC: free cholesterol in very small VLDL; XS_VLDL_CE: cholesteryl esters in very small VLDL; XS_VLDL_C: cholesterol in
very small VLDL; M_VLDL_PL_pct: phospholipids to total lipids in medium VLDL percentage.
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Discussion

In this study, we leveraged the UK Biobank dataset to
investigate the role of circulating metabolites in AMD in 3
distinct facets: (1) the associations of plasma metabolites in
AMD patients compared with non-AMD controls, (2) the
likely causal impacts, and (3) predictive values of these
biomarkers.

While previous studies have examined metabolite asso-
ciations with AMD, this study places a strong emphasis on
clinically relevant metabolites, including metabolite ratios
and derivatives. Additionally, we leveraged a substantial
sample size to enhance the identification of genetic in-
struments for MR analysis in these metabolites.

The association analysis of metabolites revealed 84 me-
tabolites linked to the risk of AMD. These metabolites are
enriched in subclasses of lipoproteins and lipid components.
These results are in line with the effects shown in other
observational studies conducted on AMD patients.6,14,47 In a
recent study, Han et al highlighted 155 metabolites
(prominently lipid-related plasma metabolites) that were
associated with advanced AMD.14

Using the NMR platform, Acar et al conducted a study on
2267 AMD patients and 4266 controls and identified 60 me-
tabolites associated with AMD including HDL and VLDL li-
poprotein particles, fatty acids (total fatty acids,monounsaturated
fatty acid, and saturated fatty acid), amino acids, and citrate.6

Among these, we were able to test associations of 55
metabolites and replicated findings for 10 of those metabolites
including apolipoproteins (apolipoprotein B), 2 subgroups of
cholesterol, and 7 subgroups of lipoprotein subclasses (4
medium VLDLs and 3 small VLDL particles). The effect sizes
of these metabolites in our study and Acar et al’s are compared
in Fig S17. Specific differences in our findings and the study
by Acar et al are amino acids which showed significant
associations in their study but were not significant in our study.
In contrast, we observed strong associations with various
subgroups of very small VLDL ratios, small and large low-
density lipoproteins, and members of intermediate-density lipo-
protein which were not reported by Acar et al. These variations
could arise fromparticipant fasting status in both studies. TheUK
Biobank collected nonfasting venous blood samples, while Acar
et al incorporated a mix of fasting and nonfasting states during
blood sample collection for association meta-analysis.6

Furthermore, the UK Biobank measured metabolic biomarkers
from plasma samples, whereas Acar et al utilized 5 cohorts
with access to plasma, serum, or both.6

Next, we investigated the causal effects of metabolites
and pinpointed 19 metabolites that most likely promote
AMD. Two groups of metabolites including lipoproteins
and relative lipoprotein: lipid concentrations consist of 68%
of these likely causal metabolites. Members of lipoprotein
subclasses that contain very small VLDL particles were
highlighted as likely causal metabolites in AMD.26

Mendelian randomization applications by Han et al uti-
lizing a different platform identified 96 metabolites with
causal associations that are enriched in lipids.14 We adopt a
stringent 2-step approach, involving a more rigorous linkage
disequilibrium r2 threshold for constructing genetic
instruments and the implementation of 3 MR methods, to
enhance the robustness of our MR findings. This method-
ological rigor contributes to a lower number of identified
associations compared with previous studies.

The low number of metabolites that overlap between the
significant causal metabolites and highly associated metab-
olites in this study may arise for several reasons, such as the
likely bystander effects of the single metabolite associations.
Moreover, genetically predicted effects of metabolites in
AMD perhaps have a lower dynamic range whereas
measured metabolite levels are likely to be impacted by a
variety of environmental and/or technical factors that are
inevitable in measuring the metabolites. Additionally, blood
metabolite levels may not reflect levels in the retina which is
the primary disease tissue in AMD.

Surprisingly we found that no metabolites showed clini-
cally relevant predictive power in identifying AMD using our
machine-learning approach. Age consistently overshadowed
the contribution of metabolites in the prediction of AMD,
possibly diminishing their impact on receiver operating
characteristic-area under the curve evaluations.

We recognize the caveats in this study, notably its retro-
spective nature, which results in a lack of current information
regarding the status of both AMD patients and non-AMD
controls as they have aged. In particular, under-
representation of AMD diagnoses in the UK Biobank
cohort (approximately 2%) compared to what is expected
(w8%),48 likely biased toward late-stage disease, with many
cases of early-stage AMD likely currently undiagnosed as per
the clinical reporting in UK Biobank. Furthermore, this study
is constrained to reports of International Classification of
Diseases 10th Revision codes within the UKBiobank dataset,
limiting investigation into widely used standardized grading
in retinal disease epidemiology and regional variations in
disease progression risk.49 The manually graded retinal
imaging dataset of UK Biobank by a recent study50 would
potentially ease the usage of this data for researchers, once
it becomes available.

We exclusively used European subjects in our study cohort;
therefore, our findings may vary across different ancestries.
Additionally, non-AMDcontrols have not been checked for any
other diseases that could potentially confound metabolite pro-
files in controls.We also acknowledge that the possible effect of
lipid-lowering medications on metabolic profile is not included
in this study, limited by incomplete data in the UK Biobank for
the entire cohort subset.Moreover, the skew towards later-stage
and more severe AMD has not been taken into account in this
study. Given previous demonstrations of AMD disease-stage
specific metabolic profiles,14 testing the predictive values of
metabolites in a heterogeneous group of AMD patients may
limit the sensitivity of the results (in particular prediction
models) in this study. Furthermore, the metabolite data from
the UK Biobank cohort is derived from nonfasting blood
samples, a factor that could have implications for the
development of an optimal prediction model.

A uniform sample size of fasting metabolites matched for
age and sex, along with carefully selected control samples
free from underlying health conditions, may enhance the
efficacy of implementing metabolite profiles in AMD
9
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patients in the clinic. Combining current AMD risk factors,
circulating metabolic biomarkers, imaging, and genetic risk
factors may enhance AMD incidence/progression risk pre-
diction, something that is yet to be investigated. This may
explain why, whilst we were able to identify individual
metabolites as having predictive power as well as in some
cases, likely causative roles, this failed to translate into
overall predictive power, suggesting the effect sizes in the
presence of age effect were too weak to enhance the overall
predictive model.

Despite the extensive evidence for the association of
lipids with AMD development and progression,5 their
roles are obscured due to their extremely complex
biological processes. Our findings highlight the detailed
subclasses of lipoproteins (both measured and
10
derivative) that should be explored further to identify
the specific members that functionally promote AMD.
Our 3-tiered analysis gives greater confidence in pursu-
ing these findings than do previous studies based solely
on individual metabolite association studies. While the
findings in this study are in line with the effects shown in
other studies conducted on AMD patients, validation of
our results in an independent dataset will further refine
the causal roles of these subgroups of metabolites in
AMD.
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