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Abstract

Background: Temperature is known to affect living organisms and alter the expression of responsive genes, which
affects a series of life processes, such as development, reproduction and metabolism. Several genes and gene families
have been involved in high temperature responses, such as heat shock protein (hsp) family, Jumoniji family and genes
related to cortisol synthesis. Gonad is a vital organ related to the existence of a species. However, the comprehensive

understanding of gonadal responses to environmental temperature is limited.

Results: To explore the effects of environmental temperature on genes and gene networks in gonads, we performed
acute heat treatment (48 h) on Chinese tongue sole (Cynoglossus semilaevis). Gonadal transcriptome analysis was
conducted on females, pseudomales and males exposed to high (28 °C) and normal (22 °C) temperatures. A total of
122624 million clean reads were obtained from 18 libraries. Principal component analysis (PCA) and differentially expressed
gene (DEG) analysis revealed different performance of sex responses to heat stress. There were 4565, 790 and 1117

specific genes altered their expression level in females, pseudomales and males, respectively. Of these, genes related to hsp
gene family, cortisol synthesis and metabolism and epigenetic regulation were involved in early heat response.
Furthermore, a total of 1048 DEGs were shared among females, pesudomales and males, which may represent the
inherent difference between high and normal temperatures. Genes, such as eeflakmt3, eeflakmt4, pnmt and hsp family
members, were found.

Conclusions: Our results depicted for the first time the gonadal gene expression under acute high temperature treatment
in Chinese tongue sole. The findings may provide a clue for understanding the responses of genes and networks to
environmental temperature.
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Background

Water temperature is a major environmental factor that
affects the development, metabolism and reproduction of
aquatic ectotherms [1, 2]. Due to global warming, the water
temperature of the ocean could rise between 1.1-6.4°C by
the end of the twenty-first century [3]. The increase of
temperature may change the responsory genes expression,
which can affect the regulatory networks. The response to
high temperature has the difference between females and
males [4]. The gonad is a vital organ related to the exist-
ence of a species. Therefore, the particular response mech-
anism in gonad under high temperature is needed to be
clarified.

Many genes can respond rapidly to high temperature. For
example, heat shock proteins (/sps) are molecular chaper-
ones that function in protein folding, localization, secretion,
and degradation [5]. Heat stress induces the expression of
several sisp gene families. Of these, isp70 and hsp90 are the
most prominent ones. Up-regulated /sps have been ob-
served in many fish species, such as red garra (Garra rufa),
snakehead murrel (Channa striatus), and killifish (Fundulus
heteroclitus) [6-8]. Cortisol is another factor in which pro-
duction is increased by stress. Many studies on different
fish species have found significantly higher cortisol concen-
tration under high temperature and indicated that cortisol
was involved in high temperature caused masculinization,
such as pejerrey (Odontesthes bonariensis), olive flounder
(Paralichthys olivaceus), and medaka (Oryzias latipes) [9—
11]. Epigenetic regulators can link the external factors to in-
ternal gene regulation. Among them, the Jumonji family is
one of the important factors. The members of this family,
such as jarid2 and jmjd3 (kdmé6b), can respond to
temperature rapidly and affect sex-related gene expression
[12, 13]. Although these genes and gene families have been
involved in high temperature perception, a comprehensive
understanding of gonad responses to environmental
temperature is still lacking.

Recently, transcriptome analysis has become an excel-
lent approach for investigating the responses of organ-
isms to environmental changes, including heat [14-16].
Most of the reports are mainly focused on short-term
high temperature stimulation in tissues, such as muscle
and liver. In addition, there are several reports of the
effects of long-term high temperature exposure on fish
[17-19]. However, to the best of our knowledge, re-
search is still lacking regarding the transcriptome data
of fish gonads under short-term high temperature
stimulation.

Chinese tongue sole (Cynoglossus semilaevis) is an
economically important marine flatfish widely distrib-
uted in Chinese coastal waters, which possesses a
ZW/|ZZ sex-determination system. In our previous
study, the genetic female: male ratio was close to 1:1
in this species. Approximately 14% of genetic females
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can spontaneously sex revered into phenotypic males
(also known as pseudomales) [20, 21]. The genome of
C. semilaevis has been well-sequenced, and the sex-
specific simple sequence repeat (SSR) markers have
been developed [21, 22]. C. semilaevis is an excellent
model to evaluate the response to high temperature
among different sexes. In this study, we conducted
acute heat treatment on C. semilaevis and performed
transcriptome sequencing on gonads of females, males
and pseudomales. Our results may provide a clue for
understanding gene and network responses to envir-
onment temperature.

Results

Gonadal transcriptome of C. semilaevis

To identify genes involved in response to heat stress
in C. semilaevis, transcriptome sequencing was per-
formed in the gonads of 3 females, 3 pseudomales,
and 3 males of the control (CT_F1-3, CT_P1-3 and
CT_M1-3; 22°C treatment, CT group) and heat
stress (HS_F1-3, HS_P1-3 and HS M1-3; 28°C
treatment, HS group) groups. A total of 1354.19
million raw reads were generated from 18 libraries,
which yielded 1226.24 million clean reads after quality
control. An average of 88.87% of the clean reads was
mapped to the high-quality C. semilaevis reference
genome [National Center for Biotechnology Informa-
tion (NCBI), Cse_v1.0, BioProject no. PRJNA73987]
(Additional file 1). A total of 24,230 genes were de-
tected in the transcriptome.

Performance of sexes under heat stress

As shown in Fig. 1a, CT and HS groups were separated
into two distinct clusters. Under normal temperature, fe-
males, pseudomales and males were apart from each
other. After heat stress, females and males exhibited a sep-
aration, while pseudomales were close to males. The
grouping was supported by differentially expressed gene
(DEG) number analysis of three sexes between heat stress
and normal temperature. The comparison of HS_F and
CT_F showed 7267 DEGs (405 up-regulated and 6862
down-regulated genes). Comparison of HS_P and CT_P
observed 2687 DEGs (1111 up-regulated and 1576 were
down-regulated genes). In the comparison between HS_M
and CT_M, a total of 3702 DEGs were identified (424 up-
regulated and 3278 down-regulated genes) (Fig. 1b).

Specific DEGs in each sex under heat stress

To detect different responses of sexes encountering heat
stress, female, pseudomale and male-specific DEGs were
analyzed. Females, pseudomales and males exhibited
4565, 790, and 1117 specific DEGs under heat stress
(Fig. 1c).
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Fig. 1 Analysis of differentially expressed genes (DEGs) under heat stress. a Principal component analysis (PCA) showed a clear cluster separation
of the control (CT) and heat-stress (HS) groups. In CT group, females, pseudomales and males were apart from each other. In HS group,
pseudomales and males formed one cluster while females exhibited another cluster. Each plot represents an average expression level of three
biological replicants. b Number of DEGs identified from females, pseudomales and males between control (CT) and heat-stress (HS) groups. Red
and blue colors indicate up-regulated and down-regulated genes in HS vs. CT, respectively. ¢ Venn diagram depicting the distribution of the

In this study, some members of DEGs related to the
hsp gene family, epigenetic regulators, cortisol biosyn-
thesis and sex steroid receptors showed sex-biased char-
acteristics under high temperature. Heat shock protein
family A (Hsp70) member 4 like (hspa4l), heat shock
factor binding protein 1 (hsbpl) and heat shock 70 kDa
protein 14-like (rspal4l) were differentially expressed in
heat stress treated females. Heat shock protein family A
(Hsp70) member 5 (hspa5), heat shock protein family A
(Hsp70) member 12A (hspal2a) and heat shock cognate
70kDa protein (hsc70) genes were found in
pseudomales. DnaJ heat shock protein family (Hsp40)
member A2 (dnaja2) and heat shock protein beta-7-like
(hspB7l) genes were found in males. Epigenetic
regulation-related lysine demethylase 6B (kdmé6b) was
specifically down-regulated in females under heat stress.
S-adenosylmethionine synthase-like (saml) was specific-
ally up-regulated in pseudomales. DNA (cytosine-5)-
methyltransferase 1-like (dnmtil) was down-regulated in
males. In addition, cortisol biosynthesis-related genes,
including hydroxysteroid 11-beta dehydrogenase 2
(hsd11b2) and hydroxysteroid 17-beta dehydrogenase 1
(hsd17b1) were down-regulated in females under heat
stress. On the other hand, estrogen related receptor
alpha (esrra) and androgen receptor (ar) were down-
regulated in females, and estrogen-related receptor
gamma (erryl) was down-regulated in males in HT vs.
CT comparison (Fig. 2, Additional file 2).

Gene ontology (GO) and Kyoto encyclopedia of genes

and genomes (KEGG) analysis of sex-specific DEGs

There were 100, 55 and 85 GO terms significantly
enriched in females, pseudomales and males, respectively
(p<0.05). In HS_F vs. CT_F comparison, the most
enriched GO terms were immune system process, inte-
gral component of membrane, transferase activity-
transferring glycosyl groups and positive regulation of
actin filament polymerization. Besides, the GO term of
regulation of histone H3-K4 methylation was signifi-
cantly enriched (p <0.05). In HS_P vs. CT_P compari-
son, the GO terms, including cell morphogenesis, RNA
polymerase II transcription factor activity, actin binding
and signal transducer activity, were mostly enriched. In
HS_M vs. CT_M comparison, the most enriched GO
terms were chromatin, nucleosome, tissue homeostasis
and retina homeostasis (Additional file 3).

There were 103, 6 and 12 KEGG pathways signifi-
cantly enriched in females, pseudomales and males, re-
spectively (p<0.05). In females, enriched KEGG
pathways mainly referred to the immune system, such as
NF-kappa B signaling pathway, cytokine-cytokine recep-
tor interaction, natural killer cell mediated cytotoxicity
and chemokine signaling pathway. In pseudomales, the
most enriched KEGG pathways were cell adhesion
molecules (CAMs), glycosaminoglycan biosynthesis-
chondroitin sulfate/dermatan sulfate, amino sugar and
nucleotide sugar metabolism and axon guidance. In
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Fig. 2 Heatmap analysis of sex-specific differentially expressed genes (DEGs) involved in high temperature response. Each row represents a gene

listed on the right. Each column stands for a comparison of heat-stress (HS) vs. control (CT) groups in females, pseudomales and males. The
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males, the most enriched KEGG pathways included sys-
temic lupus erythematosus, neuroactive ligand-receptor
interaction, cellular senescence and pancreatic secretion
(Additional file 3).

Shared DEGs among three sexes under heat stress

The Venn diagram showed that there were 1048 shared
DEGs among female, pesudomale and male individuals
from the HS vs. CT comparison (Fig. 1c). EEF1A lysine
methyltransferase 3 (eeflakmt3), EEF1A lysine methyl-
transferase 4 (eeflakmt4), phenylethanolamine N-
methyltransferase (pnmt), and hsp family members, such
as heat shock protein family B (small) member 1 (hspbl),
heat shock protein family B (small) member 9 (hspb9),
heat shock 70 kDa protein 1 (hspal), heat shock tran-
scription factor 4 (hsf4), and heat shock transcription
factor 2 binding protein (hsf2bp) were found (Additional
file 2). GO annotations of the shared DEGs were per-
formed. In the biological process, cellular process, meta-
bolic process and biological regulation were abundant.
Cell, membrane and membrane part were abundant in
the cellular component. In molecular function, binding,
catalytic activity and transporter activity were enriched
(Fig. 3a). A total of 26 KEGG pathways were significantly
enriched (p < 0.05), including cell cycle, DNA replication
and oocyte meiosis (Fig. 3b).

Validation of RNA-seq by real-time qualitative polymerase
chain reaction (qRT-PCR)

To validate the transcriptome results, a total of nine sig-
nificantly differentially expressed DEGs in at least one
comparison group were selected for qRT-PCR analysis.
Of these, three genes were the members of the hsp fam-
ily, including hspal (LOC103393458), hsf4 and hsc70
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(LOC103395053). The eeflakmtd gene was a candidate
regulator of HSP70. The saml gene (LOC103387328)
was involved in S-adenosylmethionine synthesis and epi-
genetic regulation. The hsd11b2 and hsd17b1 genes were
involved in cortisol synthesis. In addition, esrra and ar
genes were encoded for sex hormone receptors. For /sf4,
RNA-Seq analysis showed significantly down-regulation
in females, pseudomales and males under heat-stress,
while gRT-PCR indicated no significant differences in fe-
males between high and control temperatures. For esrra,
RNA-Seq showed significantly down-regulation in fe-
males under heat-stress, while qRT-PCR indicated that
there were significant differences in both females and
males. Nevertheless, the down-regulation patterns of
hsf4 in females and esrra in males were consistent
between qRT-PCR and RNA-Seq. For the other seven
genes, RNA-Seq and qRT-PCR showed similar signifi-
cant up- and down-regulation patterns (Fig. 4). These
results indicated that gene expression patterns deter-
mined by qRT-PCR were consistent with those deter-
mined by RNA-seq analysis, which supports the
reliability of our transcriptome data.

Discussion

Water temperature is an important external factor,
which can significantly influence various physiological
processes in fish. Females and males may have a sex-
specific adaptation to the changing environments, which
is a form of sexual dimorphism [2]. To access the go-
nadal performance in different sexes under heat stress,
high-temperature stimulation in female, pseudomale and
male C. semilaevis were performed in the present study,
and the gonadal transcriptome data were analyzed.
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In C. semilaevis, the response to acute high
temperature was different among sexes. Females exhib-
ited more DEGs than pseudomales and males. Similarly,
Ribas et al. reported that females exhibited more DEGs
than males in heat-treated zebrafish [23]. Interestingly, dif-
ferences among sexes are so obvious in only 48-h acute
heat treatment. In C. semilaevis, ovarian differentiation
can be observed earlier than the testicular differentiation.
Histological observations show that gonadal differenti-
ation begins at ~ 62 days post hatching (dph) [24]. At this
stage, primordial germ cells (PGCs) begin mitosis rapidly
to form clusters of oocytes. The appearance of the ovarian
cavity is observed at ~ 100 dph. On the other hand, in de-
duced testis, PGCs start mitosis at ~ 80 dph to develop
into spermatogonia, and testicular differentiation begins at
~ 100 dah [25]. In this study, 90 dph females showed more
variable responses to heat stress, indicating that the early
gonadal differentiation is vulnerable to high temperature,
and different cell types may have different performance
under heat stress.

The 1048 DEGs shared in females, pesudomales and
males may represent the inherent difference between
high and normal temperatures. Of these, several mem-
bers of hsp gene family were found, which is consistent

with previous studies [26, 27]. The Hsps, mainly Hsp70s
and their chaperons, can re-fold thermally damaged pro-
teins and prevent their cytotoxic aggregation [28, 29].
Potential regulators of isp gene family were differentially
expressed under high temperature. For example, RNA-
seq showed that eeflakmt3 was up-regulated in females
and pseudomales, but down-regulated in males. The
eeflakmt4d was down-regulated in all three sexes, both in
RNA-seq and qRT-PCR validation. The translation
elongation factor, eEF1A participates in heat shock re-
sponse (HSR) in mammalian cells. It can rapidly activate
HSP70 transcription by recruiting HSF1 to its promoter,
stabilize HSP70 mRNA and facilitate its transport from
the nucleus to ribosomes [30]. The eeflakmt3 and
eeflakmt4 are methyltransferase-related genes, which
specifically target Lys-165 and Lys-36 in eEF1A [31, 32].
The differentially expressed eeflakmt3 and eeflakmt4
genes may indicate the change in the eEF1A methylation
state and the eEF1A mRNA expression level.

In addition, some DEGs are sex-specific under heat
stress. In transcriptome data of females, kdm6b was
down-regulated after heat stress. kdm6b is an epigenetic
regulator demethylating H3K27me3 at dmrtl promoter,
which plays a causal role in male sex determination in
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red-eared slider turtle (Trachemys scripta elegans). The
kdmé6b can rapidly respond to temperature change, and
it can be down-regulated in the high temperature [13].
In turtles, high temperature increased the production of
females, while it increased the production of males in C.
semilaevis. Our results may indicate kdm6b as a con-
served responder to high temperatures among fish and
reptiles. Its role in promoting masculinization of C.
semilaevis under high temperatures deserves further
study. Another candidate epigenetic regulator, saml, was
specifically up-regulated in heat-treated pseudomales
both in RNA-seq and qRT-PCR analyses. The S-
adenosylmethionine synthase enzyme is sensitive to
abiotic stress and catalyzes the S-adenosylmethionine
synthesis, which provides methyl groups for the methy-
lation of DNA, RNA and proteins [33]. These results
may indicate the role of epigenetic regulation during the
physiological response to high temperature.

Two cortisol related genes, hsd11b2 and hsd17b1 were
specifically down-regulated in heat-treated females, both
in RNA-seq and qRT-PCR analyses. Cortisol is a stress-
related hormone, which plays an important role in high-
temperature induced masculinization [9-11]. There is
crosstalk between cortisol and androgen synthesis [34].
The esrra and ar genes were down-regulated in heat-
treated females, while erryl was specifically down-
regulated in males. These changes in sex hormones indi-
cate the role of cortisol and androgen pathways response
to high temperature. However, expression of sex-related
genes, such as cypl9ala, foxI2, dmrtl and amh was not
significantly different under heat stress. This may show
that 48-h heat stress can only affect the upstream hier-
archy but cannot change the expression level of sex-
related genes.

Conclusions

Our study revealed different performances among sexes
under heat stress in C. semilaevis. Besides, several genes
were identified to participate in high temperature per-
ception by comparative transcriptome analysis, and
some of them showed a sex-biased characteristic. These
results may provide a clue for understanding the re-
sponses of genes and networks to environmental
temperature and expand our current understanding of
the effects of gonadal gene expression in teleosts. How-
ever, future studies are required to determine the role of
these temperature-sensitive genes on sex determination
and differentiation.

Methods

Heat stress treatment and sample collection
Three-month-old sex determined C. semilaevis were
used in this study. The number of fish was determined
in order to sample a sufficient number of pseudomales.
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The genetic female: male ratio was close to 1:1, and ap-
proximately 14% of genetic females could spontaneously
sex revered into pseudomales [20, 21]. At least five pseu-
domales of both control and heat-stress groups with
three biological replicates for each group were randomly
selected for transcriptome sequencing. Thus, a total
number of 140 fish were used in the experiment. Fish
were obtained from Laizhou Mingbo Aquatic Co., Ltd.,
Yantai, China (body length: 5.457 + 0.663 cm), trans-
ported to the laboratory and reared in 120L tanks at
22°C. After the acclimation period, fish were randomly
divided into two groups. The heat stress group (HS, n =
70) was exposed to high temperature (28°C) with a
gradual increase of temperature (2 °C per hour) up to 48
h. The control group (CT, n =70) was maintained at
22°C. The temperature treatment used in this study
would not induce pseudomale formation. After treat-
ment, fish were anesthetized with 0.05% MS-222 (Sigma,
Shanghai, China) via immersion bath and decapitation
[35]. The gonad of each fish was dissected and immedi-
ately stored in liquid nitrogen for RNA extraction, and
the caudal fin was stored in ethanol for genetic sex
determination.

Sex identification of C. semilaevis

The sex of each fish was identified after the heat treatment.
Genomic DNA (gDNA) was extracted from the caudal fin
using the phenol-chloroform method. The genetic sex was
identified by PCR using sex-F and sex-R primers, which
amplify two bands of 169 and 134 bp in females, and one
band of 169 bp in males [22]. The pseudomales were distin-
guished from females by qRT-PCR against the sex-
determining gene, dmrtl [36] (Additional file 4).

Total RNA extraction, cDNA library construction and
sequencing

Total RNA from each gonad was extracted using Trizol
(Invitrogen, Carlsbad, USA) according to the manufac-
turer’s instructions. The quantity and quality of the
RNA were determined using an Agilent 2100 bioanalyzer
(Thermo Fisher Scientific, Santa Clara, USA). High-
quality RNA (RIN > 7) was used for mRNA library con-
struction via the conventional protocol. Three biological
replicates for each group were used. The libraries of
heat-stressed females (HS_F1-3), males (HS_M1-3) and
pseudomales (HS_P1-3) were sequenced on BGISEQ-
500 platform by PTM Biolabs (Hangzhou, China). The
raw reads were deposited in NCBI's Sequence Read
Archive (SRA) database (BioProject no. PRINA605682).
The transcriptome data of CT group were reported in
our previous study [37] and downloaded from SRA data-
base (BioProject no. PRINA576366).
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Quality control, mapping and annotation of sequencing
reads

The quality of the raw reads was assessed using SOAP-
nuke v1.4.0 [38]. Adapters and low-quality bases were
trimmed by Trimmomatic v0.36 [39]. All filtered clean
reads from CT and HS groups were mapped to the C.
semilaevis reference genome (NCBI, Cse_v1.0, BioPro-
ject no. PRJNA73987) using HISAT2 v2.1.0 [40] and
aligned with the reference transcript sequence by Bow-
tie2 v2.2.5 [41].

Identification of DEGs

Gene expression levels were estimated using RNA-Seq
by Expectation Maximization, RSEM v1.2.8 [42], and
Fragments Per Kilobase Million (FPKM) was calculated
to represent the expression level of each gene. The DEG-
seq and DEseq2 were used to determine the DEGs [43,
44]. Genes with an adjusted p-value of less than 0.001
and fold change greater than 2 were defined as DEGs.
PCA was performed using OmicShare tools (www.omic-
share.com/tools). The heatmap of sex-biased genes was
drawn by R Package pheatmap v1.0.12 (https://CRAN.R-
project.org/package=pheatmap). The average expression
level of three biological replicates was used to represent
the corresponding group and conduct the PCA, DEG,
GO enrichment and KEGG enrichment analyses.

GO and KEGG pathway enrichment analyses

GO (http://www.geneontology.org/) and KEGG (http://
www.kegg.jp/) enrichment analyses of annotated DEGs
were performed by Phyper (http://en.wikipedia.org/wiki/
Hypergeometric_distribution) based on Hypergeometric
test. The threshold of p<0.05 is considered to be
significant.

RNA-seq data validation by qRT-PCR

Nine candidate genes related to high-temperature re-
sponse (hspal, hsfd, hsc70, eeflakmtd, saml, hsd11b2,
hsd17bl, esrra and ar) were selected to validate the
RNA-seq data by qRT-PCR. The primers were designed
based on their sequences from the NCBI database (Add-
itional file 5). S-actin gene was used as the internal con-
trol. One microgram of total RNA for high-throughput
transcriptome sequencing was reverse transcribed into
¢DNA with the PrimeScript™ RT reagent Kit with gDNA
Eraser (Takara, Japan). Then, qRT-PCR was performed
using QuantiNova™ SYBR Green PCR Kit (Qiagen,
Germany) in 20-pl reactions, containing 10 pul 2 x SYBR
Green PCR Master Mix, 2 pl QN ROX Reference Dye,
0.7 uM forward primer, 0.7 uM reverse primer and 1 pl
¢DNA. The cycling program was carried out at 95 °C for
2 min, followed by 40 cycles of 95 °C for 5s and 60 °C for
10's; this was followed by a melting curve analysis in an
ABI StepOnePlus Real-Time PCR system (Applied
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Biosystems, USA). Reactions were performed in tripli-
cate. The relative expression fold changes of these genes
were analyzed using the 272" method.

Statistical analysis

The results of the qRT-PCR analysis were expressed
as means = S.E.M.. The values were compared by
multiple t-test using GraphPad Prism 7.0 (GraphPad,
USA). Statistically significant differences were defined
as p<0.05.
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