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Abstract
Eubacterial genomes vary considerably in their nucleotide composition. The
percentage of genetic material constituted by guanosine and cytosine (GC)
nucleotides ranges from 20% to 70%.  It has been posited that GC-poor
organisms are more dependent on protein folding machinery. Previous studies
have ascribed this to the accumulation of mildly deleterious mutations in these
organisms due to population bottlenecks. This phenomenon has been
supported by protein folding simulations, which showed that proteins encoded
by GC-poor organisms are more prone to aggregation than proteins encoded
by GC-rich organisms. To test this proposition using a genome-wide approach,
we classified different eubacterial proteomes in terms of their aggregation
propensity and chaperone-dependence using multiple machine learning
models. In contrast to the expected decrease in protein aggregation with an
increase in GC richness, we found that the aggregation propensity of
proteomes increases with GC content. A similar and even more significant
correlation was obtained with the GroEL-dependence of proteomes: GC-poor
proteomes have evolved to be less dependent on GroEL than GC-rich
proteomes. We thus propose that a decrease in eubacterial GC content may
have been selected in organisms facing proteostasis problems.
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Introduction
Eubacterial organisms have genomes that vary largely in their nucle-
otide compositions. In this kingdom, the GC content varies from 
20% to 70% of the genome and this large variation has been docu-
mented in a number of reports that have aimed to explain it1–3. The 
amino acid compositions are also different in eubacterial proteomes 
due to the variation of GC content4. It has been reported that these 
difference of amino acid compositions alter the characteristics of pro-
teomes and as a consequence, proteins of GC-poor genomes are more 
prone to misfolding and aggregation compare to GC-rich genomes5,6. 
It has been hypothesized that GroEL plays a major role, if not an 
essential role, in the evolution of GC-poor organisms by buffer-
ing deleterious mutations that are fixed due to population bottle-
necks7–9. This has been supported by the observation that many of 
the small GC-poor endosymbionts tend to overexpress GroEL10–12.

However, the proposed chaperone dependence of GC-poor organ-
isms does not explain why some of the GC-poor endosymbionts of 
the mycoplasma group have lost the groEL copy from their genome13. 
It is notable that these are the only known eubacterial organisms to 
have lost this gene. This observation led us to test the proposed rela-
tionship of GC poorness of genome with the aggregation propensity 
of the encoded proteome.

Obtaining information on the aggregation propensity of proteins 
from different organisms is a challenging task. However, there has 
already been a careful characterization of the aggregation propen-
sity of different Escherichia coli proteins that was conducted in 
a high-throughput manner14–16. Kerner et al. classified the GroEL 
substrates into Class I, II or III based on the interaction strength 
and on the stringency of their requirement for GroEL. Class III 
(C3) substrates were completely dependent on GroEL for folding, 
whereas Class II (C2) substrates were partially dependent. Class I 
(C1) proteins interacted weakly with GroEL and were able to fold 
spontaneously. In a trivial approach, homologs of GroEL-dependent 
proteins may be identified in other organisms13,17. This approach 
however fails to predict the evolution of protein dependence on 
GroEL correctly, as the sequence differences between species have 
the potential to introduce or remove kinetic traps from folding path-
ways, thereby altering their dependence on GroEL. In addition to 
the solubility of the E. coli proteome in a chaperone-free system, 
substrates of another chaperone DnaK were also identified by two 
independent research groups18,19. Applications developed primarily 
on machine learning algorithms to classify soluble or GroEL sub-
strates16,18,20–24 are already available. However, these classifiers have 
not been trained with curated data prepared from multiple experimen-
tal results14,15,18,19. In this study, we have constructed a more reliable 
training dataset to build classifiers to determine the aggregation 
propensity and GroEL dependency in 1132 eubacterial proteomes, 
based solely on the amino acid sequences. We show a distinct trend 
in the aggregation propensity of proteins of an organism in relation 
to the GC content. Surprisingly, aggregation propensity decreased 
with lower GC content independent of symbiotic characteristics, 
suggesting that GC-poor organisms have indeed evolved a pro-
teome that is devoid of aggregation-prone proteins.

Materials and methods
Data source
The aggregation-prone proteins of the eSOL database18,25 are depend-
ent on the chaperone network of E. coli to get their three dimension-
al native structure. GroEL and DnaK are two important components 
of this network and their substrates have been extensively studied 
via different experimental methods14,15,19,26. The integration of all the 
available information reveals that about half (457) of the soluble 
or chaperone-independent proteins identified by Niwa et al. were 
found to be GroEL- or DnaK-dependent18 (Figure 1). To construct a 
more reliable training set, we removed these proteins from the solu-
ble set. Thus, proteins identified as chaperone-dependent by more 
than one study, were only considered as aggregation-prone proteins. 
Furthermore, the proteins which were more than 30% (amino acid) 
sequence similarity among the remaining proteins were removed 
using CD-HIT27 clustering program. Therefore the final training set 
comprised of 502 aggregation prone and 475 soluble proteins.

Classifier building
The classifiers in this study were built with Pro-Gyan28 software. 
Pro-Gyan builds classifiers directly from training data set given in 
FASTA format by selecting relevant features from a large number 
of unbiased features. Following metrics which are useful to evalu-
ate performance of machine learning classifiers were reported by 
Pro-Gyan.

Accuracy(Acc)= (TP + TN)/(TP + TN + FP + FN)

Sensitivity or Recall (Sn) = TP/(TP + FN)

Figure 1. Integration of independent studies. A Venn diagram of 
proteins of E. coli identified by different experimental studies shows 
that ~45% of soluble proteins reported by Niwa et al. overlap with 
GroEL/S or DnaK substrates (soluble proteins are defined as having 
solubility >70% and aggregation-prone proteins have solubility 
<30%).
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Sencificity (Sp) = TN/(FP + TN)

Matthews correlation coefficient (MCC) = 
(TP*TN–FP*FN)/√{(TP + FP) * (TN + FN) * (TP + FN) * (TN + FP)}

where TP = True Positive, TN = True Negative, FP = False Positive, 
FN = False Negative predicted by the classifier.

Additionally, receiver operating characteristic (ROC) curves and 
area under this curve (AUC)29 were also generated.

Analysis on microbial genomes
The protein sequences of microbial genomes were downloaded 
from the Microbial Genome Database30 (archive no. mbgd_2011-01). 
To identify the chaperonins in the microbial organisms, chaperonin 
homologs were searched for using BLAST (e-value 1*10-4) against 
a chaperonin database cpnDB31 downloaded on June 2011. The 16S 
rRNA nucleotide sequence of E. coli was acquired from SILVA32 
and homologous were searched for in other microbial organisms 
using BLAST (e-value 1*10-4). GC contents for microbial genomes 
were calculated using following equation

   GC content = (G + C)/(total bases),

where G = number of guanosine and C = number of cytosine.

Statistical analysis
The Kendall correlation and analysis of covariance were performed 
in R33 statistical computing environment using the package ‘stats’ 
version 2.15.3. To account the effect of evolution on different traits 
of bacterial genomes, we performed phylogenetic independent con-
trast through the PDAP34 module on Mesquite35 application.

Results and discussion
Development of machine learning tool to identify aggregation- 
prone proteins
Recently protein solubility has been carefully measured in a chap-
erone-free system and the information has been made available 
through the eSol database18. Few classification models developed 
on this database can segregate soluble proteins from chaperone- 
dependent proteins22–24. However, these web-based classifiers are not 
suitable to classify large numbers of proteomes, and their soluble or 
negative training dataset (proteins not aggregation-prone or soluble) 
are not carefully curated, as most of the soluble proteins from eSol 
database are substrates of DnaK19 or GroEL14,15 (Figure 1). Therefore 
we built a classifier containing a curated list of aggregation-prone 

proteins and soluble proteins. The classifier was built using Pro-
Gyan28 which generates 5038 different features from a set of class 
labelled protein sequences and selects the “maximum relevant 
minimum redundant” feature subset. Finally, the tool built a sup-
port vector machine (SVM)36 classifier by five-fold cross valida-
tion. The classifier attained an accuracy of 83.21% with 0.66 MCC 
(Table 1). Although Pro-Gyan generated classifier was trained with 
a rigorously curated training data set, it performs equivalent to Fang 
et al.’s classifier and better than others22–24. The receiver operating 
characteristic (ROC) curves of the classifier are shown in Figure 2. 
For interested users, the classifier is available in ZENODO (https://
zenodo.org/record/10442/).

Discriminating features of aggregation prone proteins
To build the classifier, Pro-Gyan28 selected 24 relevant features 
through an automated process. The top ten significant (by Mann-
Whitney test) features were the sequence patterns, the pseudo amino 
acid composition37 of phenylalanine (F), aspartic (D) and glutamic 
(E) acid, the distribution of positively charged amino acids, the 
features calculated from FoldIndex38 and the auto-correlation of 
hydrophobicity and relative mutability (Table 2). The remaining 

Table 1. Comparison of previous classifiers with our classifier.

Method Sensitivity Specificity Accuracy AUC MCC

SVM25 80

J48 (decision tree algorithm)23 72 0.72

VTJ48 (visually tuned J48)23 76 0.81

Fang et al.22 82.00 85.00 84 0.91 0.67

SolubEcoli.pgc* 86.25 80.00 83.21 0.88 0.66 

* Built on a curated training data set.

Figure 2. Receiver operating characteristic (ROC) curves. ROC 
curves of the soluble protein classifier (SolubEcoli.pgc) and the GroEL 
obligate protein classifier (GDP1.pgc). The areas under the curves 
(AUC) are given in the legend.
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Table 2. Selected features of proteins used to build the “SolubEcoli.pgc” 
classifier.

Serial 
no. Feature id† Description p-value*

1 SW_SOC2 Quasi-sequence-order calculated from 
physicochemical distance matrix50. 2.20E-16

2 PPR Distribution of positively charged amino 
acids in sequence pattern51. 2.20E-16

3 H(8)M Amino acid pair composition of histidine to 
methionine with 8 gaps52. 2.33E-15

4 M-B(Hydr)1 Moreau-Broto auto correlation (lag 1) of 
amino acid index; hydrophobicity53. 2.24E-08

5 PseAAC_T1_3 Pseudo amino acid composition of aspartic 
acid (D)37. 9.45E-06

6 PseAAC_T1_5 Pseudo amino acid composition of 
phenylalanine acid (F)37. 6.87E-05

7 FI_16_psavgl Average length of folded segments of 
proteins according to FoldIndex38. 8.14E-05

8 PseAAC_T1_4 Pseudo amino acid composition of glutamic 
acid (E)37. 0.000542

9 Dstrbu_Pol_2:3 Distribution of amino acids according to 
polarizability54. 0.001289

10 M-B(mutblty)6 Moreau-Broto auto correlation (lag 6) of 
amino acid index; relative mutability53. 3.65E-03

11 T Composition of amino acid Threonine53. 5.00E-03

12 Mrn(vlum)27 Moran auto correlation (lag 27) of amino 
acid index; residue volume53. 0.00926

13 Mrn(Polar)22 Moran auto correlation (lag 22) of amino 
acid index; polarizability53. 0.013

14 M-B(mutblty)9 Moreau-Broto auto correlation (lag 9) of 
amino acid index; relative mutability53. 0.01988

15 Geary(sterc)4 Geary auto correlation (lag 4) of amino acid 
index; steric parameter53. 0.03536

16 M-B(mutblty)24 Moreau-Broto auto correlation (lag 24) of 
amino acid index; relative mutability53. 0.05416

17 M-B(Hydr)12 Moreau-Broto auto correlation (lag 12) of 
amino acid index; hydrophobicity53. 5.92E-02

18 Mrn(RsdAcc)24
Moran auto correlation (lag 24) of amino 
acid index; residue accessible surface area 
in tripeptide53.

0.1077

19 Mrn(Hydr)23 Moran auto correlation (lag 23) of amino 
acid index; hydrophobicity53. 0.2106

20 Geary(Free)13 Geary auto correlation (lag 13) of amino 
acid index; free energy53. 0.3271

21 Comp_Vol_2 Composition of normalized van der Waals 
volume of amino acids of range 2.95–4.053. 0.4631

22 Geary(vlum)20 Geary auto correlation (lag 20) of amino 
acid index; residue volume53. 4.95E-01

23 Geary(Free)14 Geary auto correlation (lag 14) of amino 
acid index; free energy53. 0.499

24 M-B(vlum)30 Moreau-Broto auto correlation (lag 30) of 
amino acid index; residue volume53. 0.9559

†Internal feature id of the Pro-Gyan application.

Page 4 of 12

F1000Research 2014, 3:137 Last updated: 07 OCT 2014



are multiple amino acids that change in frequency as a function of 
GC content (Figure 3) and this change that has been attributed to 
the difference in the GC content in the codons of these amino acids. 
On the basis of these differences, it has been reported that proteins 
encoded by GC-poor organisms should be more prone to aggrega-
tion than proteins encoded by GC-rich organisms5,6. However, the 
GC composition of the training data showed that aggregation-prone 
proteins were significantly more GC-rich than the soluble proteins 
(Figure 4, Mann-Whitney test p-value = 1.3e-15). Subsequently, we 
sought to verify the fraction of aggregation-prone proteins across 
different bacterial proteomes. We used the SolubEcoli.pgc classi-
fier to predict aggregation-prone proteins in 1132 eubacterial spe-
cies. Our prediction on bacterial genomes showed that the fAg 
(aggregation prone proteins as fraction of proteome) of a genome 

selected features (Table 2) were enriched with auto-correlation 
measurement of amino acid indices such as steric parameter, free 
energy, accessible surface area, polarizability, residue volume etc. 
The features which represent patterns of physico-chemical proper-
ties encrypted in protein sequences were unique to SolubEcoli.pgc 
when compared to earlier methods.

Genome wide prediction of aggregation prone proteins
From the analysis of features, it was noticed that the compositions 
of amino acids are significantly different within aggregation prone 
and soluble proteins. Sequence features of amino acids have been 
used to understand protein overexpression related to toxicity39. Addi-
tionally, it has been also shown that the amino acid composition is 
drastically altered in organisms with GC-poor genomes4,40. There 

Figure 3. Composition of basic amino acids over ~1100 eubacterial genomes. The x-axis of each subplot shows for GC composition of 
each genome whereas y-axis shows corresponding amino acid composition.
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GC content and fAG (Figure 5B). This corroborated well with the 
difference seen between soluble and aggregation-prone proteins in 
E. coli (Figure 4). Thus the increase in the GC composition of a 
genome may encode proteome that harbours a higher fraction of 
aggregation-prone proteins.

This is in contrast to previous reports hypothesizing that GC-poor 
organisms have unstable and aggregation prone proteomes. Notably, 
the earlier hypothesis that GC poorness is associated with GroEL-
dependent aggregation-prone proteomes was based on the observa-
tion that GroEL is overexpressed in GC-poor organisms. Therefore, 
to segregate GroEL-dependent proteins from aggregation-prone 
proteomes, we developed another classifier (ZENODO, https://zenodo.
org/record/10442/) trained with 475 curated soluble and 83 GroEL 
obligate (Class 3 or C3) proteins14. The classifier achieved an accu-
racy of 92.29% with MCC of 0.69. We used GDP1.pgc to iden-
tify the C3 proteins within aggregation-prone proteins (predicted 
by SolubEcoli.pgc) to examine the evolution of the GroEL-dependent 
proteome with GC composition. Indeed we found that the fC3 
(fraction of C3 proteins) of bacterial proteome are more correlated 
with GC content than the fAg fraction (Figure 6A). The phylo-
genetically independent contrasts of fC3 and GC also correlated 
strongly (0.7, p-value < 2.2e-16, Figure 6B). The phylum Teneri-
cutes, members of which have GC-poor genomes, was predicted 
to encode less GroEL-dependent proteins. Mycoplasma and Urea-
plasma are the main genera of the phylum Tenericutes and many 
species of these groups lack GroEL43. In our analysis, we also 
observed that the Tenericutes without GroEL (red dots in Figure 6A)
had very few fC3 proteins. This motivated us to investigate the effect 
of groEL copy number on misfolded proteins. Interestingly, there 
was a strong correlation between the groEL copy number and the 

Figure 5. GC content is associated with fAg. (A) GC content of the genome correlates with the fraction of proteome that is aggregation-
prone (fAg) (analysis of 570 bacterial genomes using the classifier). Rank-based correlation is provided along with the p-value. The black line 
shows a linear regression model. (B) The relationship between GC content and fAg was obtained through a phylogenetically independent 
contrast method (570 bacteria). A positive correlation (0.4) was identified between GC content and fAg (p-value < 2.1e-16).

correlates positively with the GC composition (Kendall tau=0.38 
p-value < 2.2e-16) (Figure 5A). We further examined the correla-
tion, with respect to phylogenetic ancestry, using the Mesquite sys-
tem35, because the Kendall correlation assumes that observations 
are independent even if organisms are linked through common ances-
tors41. The required phylogenetic tree was constructed from the 16S 
rRNA gene sequences of 570 bacteria42. We found a significant cor-
relation (0.4, p-value < 2.2e-16) between independent contrasts of 

Figure 4. Aggregation-prone proteins are richer in GC-content 
than soluble proteins. In E. coli, aggregation-prone proteins contain 
higher GC-content than soluble proteins. Mann-Whitney test p-value 
(*) is 1.3e-15.
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Figure 6. Decrease in GC content is associated with decrease in fC3. (A) Correlation of GC content with the fraction of the proteome 
that is GroEL obligate (fC3) over 570 bacterial genomes. Members of the phylum Tenericutes with and without the groEL gene are coloured 
in blue and red, respectively. Rank-based correlation is provided along with p-value. The black line shows a logarithmic regression model. 
(B) A positive correlation (0.7) was identified between independent contrast of GC content and fC3 with respect to phylogenetic information of 
bacterial genomes (570 bacteria, p-value < 2.2e-16). (C) The organisms were classified based on the number of groEL genes present in the 
genome. fC3 exhibited a significant increase with an increase in the number of genome-encoded groEL copies. The p-values were calculated 
by Mann-Whitney test using two-sided hypothesis.
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It is hypothesized that these organisms have accumulated more del-
eterious mutations compared to non-endosymbionts8. If this were 
true then endosymbionts should show a greater aggregation pro-
pensity or dependence on GroEL than that predicted by the GC 
content of free-living eubacterial species. To measure the impact of 
a symbiotic relationship on C3 proteins, we performed an analysis 
of covariance ANCOVA on 570 eubacterial species42. There was no 
significant effect of a symbiotic relationship on fAG/fC3 (p-value 
0.24/0.65, Data set) or significant interaction (p-value=0.36/0.38) 
with GC composition (Figure 7). Thus we were unable to obtain 
proof for any association of a bottleneck in evolutionary history with 
protein aggregation propensity. Therefore we rule out the possibil-
ity of bottleneck evolution as the reason for the evolution of GroEL-
independent proteomes like Ureaplasma and GroEL-independent 
mycoplasma species.

fraction of genome coding for C3 proteins (Figure 6C). Due to the 
presence of noise in the experimental data, we tried to benchmark 
the classifiers. Fujiwara et al. reported that five C3 homologs of 
groEL-lacking Ureaplasma urealyticum are soluble in GroEL depleted 
cells26. Hence, we also examined the tolerance of our classifiers by 
predicting the GroEL dependency of these homologs. Four of these 
homologs were predicted to be GroEL independent with a high 
confidence score (Table 3). Overall, the results indicated that C3 
proteins and in general aggregation-prone proteins do decrease with 
the GC content of genomes.

Correlation of GC content with protein solubility is 
independent of the population bottleneck
Endosymbionts are crucial to this study as the literature suggests 
that these organisms have undergone bottlenecks during evolution44. 

Table 3. Evaluation of classifiers on five C3 homologous proteins of groEL-lacking Ureaplasma urealyticum. 
The homologous were found in U. urealyticum by NCBI BLAST at a threshold of E value of 1e45. Then the aggregation 
propensity and GroEL dependency of these proteins were classified by SolubEcoli.pgc and GDP1.pgc.

C3 homologous proteins 
in Ureaplasma urealyticum E value Accession Is aggregation prone? 

(classifier: SolubEcoli.pgc)
Is GroEL dependent? 
(classifier: GDP1.pgc)

UuMetK 2e-99 YP_002284849.1 Yes (0.739) No (0.804)

UuDeoA 2e-80 WP_004026878.1 Yes (0.586) No (0.938)

UuCsdB 4e-62 D82890 Yes (0.884) Yes (0.665)

UuGatY 8e-46 H82870 Yes (0.672) No (0.973)

UuYcfH 7e-41 E82944 Yes (0.518) No (0.881)

Figure 7. fAG and fC3 are correlated to the GC content independent from the species habitat. The ANCOVA test on 570 organisms showed 
that a symbiotic relationship has no significant effect or interaction with GC content on the aggregation propensity or GroEL-dependency of 
the proteins of an organism.
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between ability to evolve and folding advantage could be crucial 
in facilitating protein evolution in the presence of chaperones and 
other folding machineries45–48.

Our work suggests that organisms facing continuous proteostasis 
problems would tend to shift towards a more GC-poor genome. This 
is supported by findings of Xia et al.49 who have reported that the 
preponderance of GC to AT conversions during high temperature 
laboratory adaptation of Pasteurella multocida. Further in vitro evo-
lution experiments will be required to demonstrate whether labora-
tory adaptation to low GC content may provide folding advantage.

Data availability
F1000Research: Dataset 1. Application of SolubEcoli.pgc and GDP1.
pgc classifiers, 10.5256/f1000research.4307.d2962455.

ZENODO: Training data of protein classifier SolubEcoli.pgc and 
GDP1.pgc, doi: 10.5281/zenodo.1044256.
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Proteome wide prediction of GroEL obligatory protein fraction (fC3) 
and aggregation prone protein fraction (fAg) in 1132 eubacterial 
genomes with their genome size, GC content and GroEL copy number.

Conclusions
Several machine learning (ML) classifiers have been developed to 
predict aggregation-prone or GroEL-dependent proteins, but very 
few of them used data sets generated and curated from multiple exper-
imental studies. Our classifiers were based on curated data from 
multiple studies and performed well also against the false positive 
C3 homologs of Ureaplasma, showing accuracy and noise toler-
ance. According to previous theories, GC-poor organisms might 
have evolved through population bottlenecks. This allows mildly 
deleterious mutations to be fixed in the population with a high prob-
ability2,44. It has been hypothesized that the GC-poor genomes that 
accumulated a large number of deleterious mutations in the course 
of evolution, through population bottlenecks and hence harbour 
proteins that are aggregation-prone. Although overexpressions of 
chaperones are observed in GC-poor organisms that have reduced 
genomes, there are also other GC-poor organisms that lack GroEL. 
Our work provides strong evidence that the general stability of the 
proteome increases with the decrease in GC content of eubacterial 
genomes. Decrease in GC content restricts the amino acid space 
that the organism can sample, thereby compromising protein evolu-
tion. We hypothesise that, even with this limited amino acid space, 
GC-poor organisms are still abundant as growth is facilitated under 
conditions that compromise protein folding capacity. This antagonism 
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The genesis of this paper is the proposal that genomes containing a poor percentage of guanosine and
cytosine (GC) nucleotide pairs lead to proteomes more prone to aggregation than those encoded by
GC-rich genomes. As a consequence these organisms are also more dependent on the protein folding
machinery. If true, this interesting hypothesis could establish a direct link between the tendency to
aggregate and the genomic code.

In their paper, the authors have tested the hypothesis on the genomes of eubacteria using a genome-wide
approach based on multiple machine learning models. Eubacteria are an interesting set of organisms
which have an appreciably high variation in their nucleotide composition with the percentage of CG
genetic material ranging from 20% to 70%. The authors classified different eubacterial proteomes in terms
of their aggregation propensity and chaperone-dependence. For this purpose, new classifiers had to be
developed which were based on carefully curated data. They took account for twenty-four different
features among which are sequence patterns, the pseudo amino acid composition of phenylalanine,
aspartic and glutamic acid, the distribution of positively charged amino acids, the FoldIndex score and the
hydrophobicity. These classifiers seem to be altogether more accurate and robust than previous such
parameters.

The authors found that, contrary to what expected from the working hypothesis, which would predict a
decrease in protein aggregation with an increase in GC richness, the aggregation propensity of
proteomes increases with the GC content and thus the stability of the proteome against aggregation
increases with the decrease in GC content. The work also established a direct correlation between
GC-poor proteomes and a lower dependence on GroEL. The authors conclude by proposing that a
decrease in eubacterial GC content may have been selected in organisms facing proteostasis problems.
A way to test the overall results would be through evolution experiments aimed at testing whetherin vitro 
adaptation to low GC content provide folding advantage.

The main strengths of this paper is that it addresses an interesting and timely question, finds a novel
solution based on a carefully selected set of rules, and provides a clear answer. As such this article
represents an excellent and elegant bioinformatics genome-wide study which will almost certainly
influence our thinking about protein aggregation and evolution. Some of the weaknesses are the not
always easy readability of the text which establishes unclear logical links between concepts.

Another possible criticism could be that, as any  study, it makes strong assumptions on the in silico
sequence features that lead to aggregation and strongly relies on the quality of the classifiers used. Even
though the developed classifiers seem to be more robust than previous such parameters, they remain
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sequence features that lead to aggregation and strongly relies on the quality of the classifiers used. Even
though the developed classifiers seem to be more robust than previous such parameters, they remain
only overall indications which can only allow statistical considerations. It could of course be argued that
this is good enough to reach meaningful conclusions in this specific case.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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doi:10.5256/f1000research.4611.r5273

 Amnon Horovitz
Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel

In this study, the authors describe machine-learning classifiers for predicting aggregation propensities of
proteins.  A novel aspect of this work is that the classifiers are based on experimental data obtained from
different sources regarding chaperone dependence (GroEL or DnaK) and solubility in chaperone-free
systems. The authors then use their machine-learning approach to test for ~1100 eubacterial proteomes
whether a low GC content correlates with a greater tendency to aggregate or mis-fold as suggested by
earlier studies.  One possibility is that the GC content affects the amino acid composition of proteins that,
in turn, affects their folding and aggregation propensities. The authors show in Figure 3 of the paper that
amino acid compositions do indeed correlate strongly with GC content (the Figure shows data for all 20
naturally occurring amino acids, although its title suggests otherwise). They then show that
aggregation-prone proteins have a higher GC content than soluble proteins. This finding is not really new
since it has already been reported (see ref. 21 in the paper) that GroEL substrates tend to have a
relatively high GC content.  However, the observation for a large number of genomes that the fraction of
aggregation-prone proteins increases with an increasing GC content is novel.  A weakness of the paper is
that the authors do not discuss the problems of distinguishing between (i) causation and correlation; and
(ii) cause and effect.  In other words, is the correlation between high GC content and an increased
tendency to mis-fold due to some unidentified factor(s) that correlates with both GC content and
mis-folding or to a direct effect? In addition, it is also possible (at least in principle) that a high GC content
reflects selection against mis-folding rather than being one of its ‘causes’.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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