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Abstract

Survival prediction and treatment selection in lung cancer care are characterised by high levels of uncertainty.
Bayesian Networks (BNs), which naturally reason with uncertain domain knowledge, can be applied to aid lung
cancer experts by providing personalised survival estimates and treatment selection recommendations. Based on the
English Lung Cancer Database (LUCADA), we evaluate the feasibility of BNs for these two tasks, while comparing
the performances of various causal discovery approaches to uncover the most feasible network structure from expert
knowledge and data. We show first that the BN structure elicited from clinicians achieves a disappointing area under
the ROC curve of 0.75 (± 0.03), whereas a structure learned by the CAMML hybrid causal discovery algorithm, which
adheres with the temporal restrictions, achieves 0.81 (± 0.03). Second, our causal intervention results reveal that BN
treatment recommendations, based on prescribing the treatment plan that maximises survival, can only predict the
recorded treatment plan 29% of the time. However, this percentage rises to 76% when partial matches are included.
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Introduction

The accelerating trend towards personalised medicine, in
parallel with the rapid development of various machine learning
(ML) tools, has triggered the utilisation of medical datasets to
propose diagnostic and prognostic options, to the point even of
recommending individualised treatment plans [1,2]. In the
context of clinical decision support (CDS), ML tools are used to
assist the clinicians arrive at more informed treatment
decisions based on past patient records. Such systems
typically operate by matching a patient record to the
information ‘learned’ from past patient records for which
prescribed treatment plans and patient outcomes are known.

Medical datasets are usually characterised by their
incompleteness and noisiness, which cause a substantial level
of uncertainty while processing them [2]. Overall, uncertainty
permeates causality in medicine, although it is not always
made explicit. For example, in a dataset that contains ‘Age’ and
‘Survival’, the causal relationship between the two is evident
even though it may not be straightforward to pinpoint through

which variables it may be established. More importantly,
uncertainty also arises naturally in patient care processes that
underlie the data, not least in questions such as: “What is the
probability of survival for this patient?” and “How do different
treatment decisions affect this probability?”

A prime example of a clinical setting, in which uncertainty is
ubiquitous, is treatment selection in cancer care, where the
diverse nature of the patient and disease characteristics and
the rapidly expanding range of treatment options often present
dilemmas regarding optimum treatment decisions [3]. As a
consequence of the complex and inter-disciplinary nature of the
decision making process, treatment plans for cancer patients
are managed in multidisciplinary team (MDT) meetings that
mobilise the joint expertise of clinicians from different
specialisations.

Personalised survival prediction and treatment selection are
prominent in the MDT environment. Predicting the answer to
the first of the above questions relates to prognostic reasoning
[4]. An accurate prediction of survival can be used to stratify
cancer patients into different risk groups and potentially aid in
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devising personalised treatment plans [5,6]. Furthermore,
predicted survival information can also be pivotal in managing
patient and family expectations on treatment outcomes [7]. As
a probabilistic expression, this prognostic question may be
denoted “P(Survival=Alive |Evidence)= ?”. Using a BN, this
question can be answered via observational inference, where
the focus is on discovering the posterior distribution of the
query variable: Survival, conditioned on the observed Evidence
for other nodes.

On the other hand, the second question, which queries the
effects of treatment selections on the prognostic outcome,
addresses the pragmatic goal of curative cancer care.
Naturally, if the prognosis for the patient is poor, the end goal
may be palliation and management of symptoms, rather than
increasing the likelihood of survival. In terms of probability
theory, this query is denoted as “P(Survival=Alive |Evidence,
T)= ?”, where T represents the treatment plan variable.
Compared to the former, this query aims to find the posterior
distribution of Survival conditioned on T, which is – unlike
Evidence- unobserved at the time of asking the question. In
other words, the question is hypothetical and cannot be
answered simply by the values observed to that point. In order
to predict what the survival probability is going to be, given
different treatment options, we would need to make a causal
intervention, which allows us to ask “What if?” questions. This
type of causal reasoning is highly important in CDS
applications and is not compatible with discriminative ML
methodologies such as regression models [8,9].

Bayesian Networks

BNs enable causally reasoning with domain concepts in a
visually appealing and more intuitive fashion compared to
many other ML techniques [9], and they can be used to
address the above clinical questions. They encode uncertain
domain knowledge in a natural manner. A BN consists of a
directed acyclic graph (DAG), and an underlying joint
probability distribution, which together provide a mathematically
sound and compact way to encode uncertainty in a given
domain. From the outset, medical informatics has been the
main driver in the development of BNs [10,11]. This is partly
due to their ability to intuitively encapsulate the causal links
between the diagnostic or prognostic factors that are stored in
medical datasets [4,12,13].

BNs are suitable tools for probabilistic inference that can aid
clinical decision making, since 1) their graphical nature enables
the information they contain to be easily understood by a
clinician [14]; 2) they can formally incorporate prior knowledge
while learning the structure and parameters of the network [15];
3) they facilitate parameter estimation due to their compact
representation of the joint probability space; 4) they not only
allow observational inference but also causal interventions [9];
5) they can be used to query any given node in the network
and are therefore substantially more versatile compared to
classifiers built based on specific outcome variables; and 6)
they perform well in making predictions with incomplete data,
since the predictor variables are used to estimate not only the

query variable but also one another [16][5,17]. For a detailed
coverage of BNs, the reader is referred to [9,13].

The primary motivation of this work is to investigate the
feasibility of developing BNs in providing decision support for
survival prediction and treatment selection in lung cancer care.
Lung cancer is the leading cause of cancer-related mortality
throughout the world [18][6]. Our analyses are based on an
anonymised subset of the English Lung Cancer database
(LUCADA), which includes more than 126,000 patients who
were diagnosed between 2006 and 2010. We utilise this large
and unique dataset to develop and evaluate a series of BNs
whose structures are learned in turn by manual, automated and
hybrid approaches. Structure learning of BNs remains
something of a black art and therefore a secondary goal of the
paper is to assess the suitability of different methodologies to
uncover the causal structure of the domain using a real-life
medical dataset of the size and complexity of LUCADA.

Literature Review

Cruz and Wishart [19] report that the adoption of ML
techniques for prognosis prediction and treatment selection is a
relatively recent development. The existing literature on BNs
and cancer mainly concerns applications to aid diagnosis, risk
evaluation and survival prediction. Furthermore, among
different cancer domains, there has been a concentration on
applications in breast cancer [20–24] as compared to BN
applications in other types of cancer [5,7,25–28].

In terms of relevant BN applications on survival prediction, in
a study published in 2011, which aims to predict the 1-year life
expectancy of 189 patients with skeletal metastases, Forsberg
et al. achieved good predictive performance with an area under
the ROC curve (AUC) of 0.83 [7]. In a more recent study based
on a substantially larger dataset containing 146,248 patient
records, Stojadinovic et al. built a BN to carry out personalised
survival prediction for colon cancer, reporting an AUC value of
0.85 [16]. Neither of these studies compared the suitability of
different approaches in the causal discovery of the domain
structure. In addition, both causal interventions and the
feasibility of treatment recommendations by the BNs were out
of the scope of both studies.

Focusing on lung cancer specific applications of BNs, in
2010 Jayasurya et al. designed a BN in order to predict survival
in non-small cell lung cancer (NSCLC) patients treated with
radiotherapy. They concluded that BN models achieve a higher
predictive performance with missing data, compared to support
vector machines and are therefore more suitable for the
medical domain [5]. In a more technically oriented publication,
Oh et al. proposed a BN structure learning algorithm that
combined both physical and biological factors for predicting
local failure in lung cancer [27]. However, both of these studies
were based on datasets that contained limited numbers of
patient records -for one study in [27] only 18 patients-
necessitating replication on larger datasets.

In summary, the number of studies reporting the application
of BNs to cancer is limited. Furthermore, apart from a handful
of exceptions, most published results are from preliminary
studies based on limited patient data. To our knowledge, no
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prior work, which takes into account histological, clinical and
demographic information based on a national dataset of the
size of LUCADA, exists in survival prediction or treatment
recommendation in lung cancer.

Materials and Methods

The National Lung Cancer Audit (NLCA) has been collecting
electronic patient data within the English Lung Cancer
Database (LUCADA) since 2004. Through a data sharing
agreement between the NLCA and the University of Oxford, we
have had access to an anonymised subset of the LUCADA
dataset in order to carry out research in the biomedical
engineering fields of clinical decision support and machine
learning. This dataset includes 126,986 English patient records
entered into the system from the beginning of 2006 until the
end of 2010. All potentially patient identifiable data were
removed by the NLCA prior to making the data available.

Since LUCADA is collected primarily for audit purposes, it
includes many administrative variables which are of tangential
interest to this study. Based on the input of our clinical
collaborators and the literature review, we focused our
analyses on the 13 most commonly encountered LUCADA
variables in the major national and international lung cancer
care guideline documents [6,29–31]. In addition to their clinical
relevance, these were selected on the basis of being available
at the time a new patient is presented for a treatment decision
to the MDT. These variables are listed in Table 1.

In Table 1, the first 11 variables are categorised as “pre-
treatment variables”. They contain information about the patient
or disease specific aspects of a patient record that are required
before a treatment decision is made. Among the patient-related
specifics listed: ‘Performance Status’ indicates general physical
well-being, whereas ‘FEV1 Absolute Amount’ and ‘FEV1
Percentage’ store the lung capacity (more precisely, forced
expiratory volume in 1 second) of a patient. In addition,
‘Number of co-morbidities’ provides information on the number
of significant co-morbidities, such as cardiovascular disease
and renal dysfunction, that a patient has at the time of
diagnosis.

Among the disease specific variables, ‘Primary Diagnosis’
identifies the ICD-10 code [32] that best describes the location
and the general type of the disease. ‘Histology’ indicates the
SNOMED code [33] of the histo-pathological type of the
primary tumour, and the American Joint Committee on Cancer
(AJCC) defined ‘TNM category’ summarises the overall
severity of the disease in terms of tumour size and spread of
cancerous cells. Similarly, ‘Site-specific Staging Classification’
stores whether the disease is limited or extensive for small cell
lung cancer patients.

The ‘Suggested cancer treatment plan’ variable stores the
treatment given to the patient. The definitive treatment for non-
metastatic lung cancer is surgical resection. However, since
most patients are only diagnosed when the disease is at an
advanced stage, only 10-15 % of patients can be treated with
surgery [34,35]. Table 2 lists all available treatment plan types
within LUCADA, along with their frequencies. In this table, all
treatment types, apart from Palliative Care (5) and Active

Monitoring (6), are categorised as curative treatments. The
treatments coded 1, 9, 10 and 11 are those that involve
surgical resection. The rest of the treatments, coded 2, 3, 7 and
8, comprise individual chemotherapy and radiotherapy or a
combination of the two.

Finally, in Table 1, the ‘1-year survival’ variable contains the
survival outcome information for all patient records. In cancer
care, the 5-year survival rate is the most commonly used cut-
off point to measure disease-free survival. Since LUCADA
does not yet contain much patient data on 5-year survival, we
use 1-year survival as a surrogate outcome measure. This
choice was supported both by our clinical collaborators and by
the literature, which reports almost all improvement in lung
cancer survival as being attributable to an increase in 1-year
survival [36,37]. The overall ‘1-year survival’ rate within
LUCADA is 33%.

Pre-processing the LUCADA dataset
Before designing a set of domain-specific BNs, we first

analysed and pre-processed the LUCADA dataset. Data pre-
processing is a crucial step in any machine learning exercise,

Table 1. The 13 patient and disease specific variables from
LUCADA, along with the values they can take and their
temporal orders.

Code Name Values Temporal Tier

1 Age <50; 50-60; 60-70; 70-80; >80 Pre-treatment

2 Staging Identifier 6; 7 Pre-treatment

3
FEV1 Absolute
Amount

<1.0; 1-1.5; 1.5 - 2.0; >2.0 Pre-treatment

4 FEV1 Percentage <30; 30-40; 40-80; >80 Pre-treatment

5 Performance Status 0; 1; 2; 3; 4 Pre-treatment

6
Number of
Comorbidities

0; 1; 2; 3; 4; 5 Pre-treatment

7 Primary Diagnosis
C33; C34; C34.0; C34.1;
C34.2; C34.3; C34.8; C34.9;
C38.4; C38.3; C38.8

Pre-treatment

8 Tumour Laterality
Left; Right; Midline; Bilateral;
Not Applicable

Pre-treatment

9 TNM Category
IA; IB; IIA; IIB; IIIA; IIIB; IV;
Uncertain

Pre-treatment

10 Histology

M8010/2; M8041/3; M8046/3;
M8070/3; M8140/3; M8250/3;
M8012/3; M8020/3; M8013/3;
M8240; M8980/3; M8940/3;
M9999/9

Pre-treatment

11
Site-specific Staging
Classification

Limited; Extensive; Unknown Pre-treatment

12
Suggested cancer
treatment plan

Listed in Table 2 Treatment

13 1-yr Survival Alive; Dead Post-treatment

doi: 10.1371/journal.pone.0082349.t001
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since the reliability of a predictive model depends crucially on
the quality of data used [38]. For this purpose, we carried out
the following pre-processing steps.

First, we manually removed those records where the patient
was diagnosed with Mesothelioma, since our focus was on
NSCLC and small cell lung cancer (SCLC) patients. In addition,
we removed those patient records for which the recorded
treatment plan was Brachytherapy (less than 100 patients,
making it unlikely) or there was no 1-year survival information.
These deletions reduced the number of observations available
in the dataset from 126,987 to 117,426.

Second, we discretised the “Age”, “FEV1 Percentage” and
“FEV1 Absolute amount” data fields, which are the only non-
categorical fields in the LUCADA dataset. While it is possible to
build BNs with continuous variables, the majority of clinical
applications to date utilise categorical variables [4]. These
three variables were discretized based on clinician advice and
on the cut off values given in the guideline rules. Although
there are various techniques for automatic discretisation of
continuous variables [39–41], the availability of cut-off values
within the guideline documents and clinical collaborator advice
enabled us to perform manual discretisation based on clinically
meaningful intervals. These expert elicited intervals are as
listed in Table 1.

Third, we developed a strategy to deal with missing data,
which comprises 32% of LUCADA. Data incompleteness is a
fact of life for clinical datasets [5,42] and depending on how the
incompleteness of any particular variable is related to other
variables, missing data is commonly modelled based on one of
three different assumptions: 1) missing completely at random
(MCAR); 2) missing at random (MAR); or 3) not missing at
random (NMAR), where the latter comprises all those cases
that do not fall under 1 or 2, and as such necessitates
modelling missing data explicitly.

The two common methods to deal with MAR data are
Expectation Maximisation (EM) and Multiple Imputation (MI)

Table 2. The available treatment plan options in LUCADA
and their frequencies.

Code Name Percentage (%)

1 Surgery 10

2 Radiotherapy 14.79

3 Chemotherapy 19

5 Palliative care 23

6 Active Monitoring 9

7 Sequential chemotherapy and radiotherapy 7

8 Concurrent chemotherapy and radiotherapy 1

9 Induction chemotherapy to downstage before surgery 0.08

10 Neo-adjuvant chemotherapy and surgery 0.13

11 Surgery followed by adjuvant chemotherapy 2

- Null 14

doi: 10.1371/journal.pone.0082349.t002

[43]. However, it has to be borne in mind that both EM and MI
are computationally complex algorithms that may not be
feasible for large datasets with high rates of incompleteness.
More importantly, their usage depends substantially on the
validity of the MAR assumption, without which they result in
biased estimates [44]. Graham advises that “the best way to
think of all missing data is as a continuum between MAR and
MNAR” and one has to decide whether the MAR violation in a
given data set is big enough to render the estimates of MI and
EM invalid [45].

Informed by our interactions with the NLCA staff, we
concluded that NMAR missingness was prominent in LUCADA
and the adoption of EM or MI could have negative effects. As a
result we opted to model “missingness” explicitly given the
context. In fact, missing data patterns in clinical datasets are
often correlated with the clinical relevance of the missing
values for a specific patient and may often embody information
[42,46]. In order to evaluate whether or not the absence of data
in the LUCADA data could provide useful information in
building prediction models, we ran a set of experiments on our
chosen 13-variable subset with 117,426 patient records.

To this end, we chose 1-year survival as our binary outcome
variable and separated the rest of the dataset as our prediction
matrix. Following this, we prepared a binary ‘indicator matrix’
whose elements were zero or one depending on whether the
corresponding elements of the prediction matrix were observed
or were missing. We input the resulting indicator matrix into the
Naïve Bayes [47] and Logistic Regression [47] algorithms and
in each case predicted 1-year survival. The AUC values and
predictive accuracy percentages achieved by the information
on data incompleteness alone are given in Table 3. The values
reported in the table are the averages and the standard
deviations of 10-fold stratified cross-validation results.

These results clearly show that the missing data pattern is
actually highly informative in predicting 1-year survival in the
LUCADA dataset. For this reason, we opted to model missing
data explicitly in our analyses. In doing so, we used
PostgreSQL[48] queries to replace the null observations in the
database with an explicit “Unknown/Missing” state.

Experimental Methods

The applicability of BNs to predicting 1-year survival in the
LUCADA dataset was motivated above. Structure learning of
the associated DAGs can be carried out manually or, in the
presence of a comprehensive data set, via automatic causal

Table 3. Area under the curve (AUC) and predictive
accuracy performance results for the missing data indicator
matrix in predicting 1-year survival outcome.

 
Average
AUC

Std. Dev.
AUC

Average
Accuracy

Std. Dev.
Accuracy

Logistic
Regression

0.72 0.024 72 0.37

Naive Bayes 0.69 0.021 71 0.36

doi: 10.1371/journal.pone.0082349.t003
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discovery algorithms. In our experiments, we compared the
plausibility of the DAG structures, which were 1) elicited from
the clinicians’ perception of the domain; 2) learned strictly from
data; and 3) learned via a hybrid approach that incorporates
the expert knowledge into automated structure learning.

Expert elicited structures are very common in clinical
applications, since the causal relationships between different
variables are well understood by clinicians. Lucas et al. report
that many of the BNs [28,49–55] developed for real life
applications in biomedicine and healthcare have been
constructed manually [4]. However, such BNs are prone to
subjective biases and may not be able to fully capture
statistical signatures (such as independencies) that are implicit
in the data. These may result in suboptimal models, especially
in cases where the end goal is posterior parameter estimation
or classification, rather than making explicit the causal
relationships to gain a better understanding of the problem
domain.

On the other hand, the automatic learning of the causal
structure of a BN from data is an active challenge pursued in
ML, particularly because there is no unique BN that represents
the joint probability distribution given by the data [9]. In general,
automatic structure learning algorithms can be categorised
into: 1) Constraint-based algorithms that use conditional
independencies; and 2) Score-based search algorithms, which
search for the DAG model that maximises a metric score in the
causal model space [13]. The constraint based methods are
focused on recovering a causal structure based on conditional
independencies in the data. In our experiments we made use
of an improved version of Inferred Causation (IC) algorithm as
described in [56] and implemented by Bouckaert in WEKA 3
[57].

The score-based search algorithms make use of
decomposable scores that allow the total score for a DAG to be
calculated as the sum (or product) of the individual node scores
in the network. In our experiments, we made use of the K2
score [58], which is a type of Bayesian score [58–60], in order
to calculate the joint probability of a graph (G) and the dataset
(D) [58]. The general equation for a Bayesian score is given in
equation 1.

(1)

All automated learning algorithms presented in this paper
were implemented either in the MatLab BNT toolbox [61] or the
WEKA 3 [57] machine learning software. Specifically, in our
experiments we used the following score-based search
algorithms: 1) Tree Augmented Naïve Bayes (TAN), which was
introduced by Friedman and Geiger as a relaxation of the
strong independence assumption between the predictor
variables in a Naïve Bayes classifier [62]. The version of TAN
that we used was implemented in WEKA 3; 2) K2, which was
proposed by [58] and implemented in the BNT toolbox; 3)
Markov Chain Monte Carlo Model Decomposition MC3, first
proposed by Madigan and York [63] and implemented in the
BNT toolbox; and finally 4) Simulated Annealing for searching

the space of all probability models, as implemented by
Bouckaert in WEKA 3 [57].

In addition to these fully automated algorithms, we also
explored the use of a hybrid structure learning algorithm,
named Causal Minimum Message Length (CaMML) [64], which
enables different types of expert knowledge, such as temporal
tiers (A happens before B, denoted as A ≺ B), direct relations
(A and B are related, denoted as A − B) and direct causal
connections (A directly influences B, denoted as A → B), to be
incorporated into the automated learning process. For structure
learning, we used the Java implementation of CaMML,
developed at Monash University. It has previously been used
by Flores et al. [15] and Twardy et al. [65] to learn clinical
causal structures in the domain of cardiovascular disease.
Overall, a common attribute of all the structure learning
algorithms used was that they assumed all variables to be
discrete and the dataset to be fully observed.

Experimental Setup
In all of the BN experiments, we represented the joint

probability distributions using conditional probability tables
(CPTs), which were learned via maximum likelihood
estimations by assuming uniform Dirichlet prior distributions
over all discrete variables. This “levelled the playing field” in
terms of parameterisation. We focused our efforts on
comparing the variation of the structure learning algorithms.

We carried out all experiments by partitioning the selected
117,426-patient-strong subset of LUCADA into 10 equally-
sized parts with approximately equal prior outcome
probabilities, where probability of 1-year survival was 0.33. For
each BN experiment, structure and parameter learning were
performed on 9 partitions and tested on the remaining one. By
iterating this process over all ten partitions, we ensured the
inclusion of all patient records in the experiments. The
performances of all causal BNs and other predictive models
were evaluated based on the AUC values and predictive
accuracy percentages of these stratified ten-fold cross-
validations.

The experimental set-up by which we learned the structure
and parameters and report predictive performance metrics with
each algorithm is summarised in Figure 1. For each fold of
cross-validation, we separated the dataset D(xv) into training
and test sets. We used the training set to learn the DAG and
parameters of the BN, and then the test set to evaluate the
predictive performance of the learned structure. According to
this, we represented the DAG (xv) for each fold in the form of a
logical adjacency matrix. At the end of the cross validation, we
input the DAG array, which consisted of all structures learned
during the 10-fold cross validation, into a directed maximum
spanning tree (MWST) algorithm in order to acquire the
resulting DAGfinal. We then made use of the Bayesian Score
metric, given in Equation 1, in order to calculate P (D, DAGfinal).

Though our main focus is on BNs, in order to provide
baseline reference benchmarks, we also report classification
performances obtained by the widely used Naïve Bayes (NB),
Logistic Regression, and the C4.5 decision tree algorithm. In
our experiments, we made use of the NB algorithm in MatLab
R2011a. For Logistic Regression and the C4.5 decision tree

Bayesian Networks for Clinical Decision Support

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e82349

 



algorithms we used WEKA 3 [66]. NB has been adopted as the
baseline performance metric in many ML studies. Despite its
simplicity, it has been reported to yield comparable results to
more sophisticated ML techniques, especially in the presence
of large datasets [67,68]. Logistic regression is commonly used
in clinical cohort studies and trials [69]. The specific
implementation of Logistic Regression in WEKA 3 is based on
using ‘ridge estimators’ for improving coefficient estimates [70].
C4.5 is a commonly used algorithm for building decision trees,
which are deemed to be particularly suitable for domains with
discrete variables like ours [71,72]. The specific implementation
of the C4.5 algorithm that we used in WEKA 3 is named “J48”.

Inference
As emphasised earlier, one of our reasons to represent our

domain as a BN is the versatility of probabilistic inference
provided by BNs, whereby entering evidence on any variable in
the network results in updating the posterior distributions of the
rest of the variables. These probability updates, i.e. belief
updates, can be visualised on top of the graph structures,
providing a degree of transparency during inference. This
differentiates BN inference from “black-box” ML processes [9].

In all our experimental results, we made use of the Junction
Tree algorithm [73] as separately implemented by Murphy [61]
in the MatLab BNT toolbox and by Bouckaert [57] in WEKA 3.
This algorithm consists of ‘moralising’ and ‘triangulating’ a DAG
structure to create a junction tree structure over which a
message passing algorithm is run for belief updating. The
usage of such a message passing algorithm has certain
implications in belief updating in causal interventions [9]. This
can be explained with a context-specific example as given in
Figure 2.

The message passing algorithm operates through forward
and backward propagation of observed evidence in the graph.
As a result, when we intervene manually on T, as shown in
Figure 2, Pearl suggests that all edges from the parents of T to

Figure 1.  The experimental setup for structure
learning.  The pseudo-code of the experimental setup for
learning and assessing DAGs via different algorithms.
doi: 10.1371/journal.pone.0082349.g001

T need to be removed in order to eliminate the indirect path
connecting T to S through P [8]. Put more simply, the direct
intervention on T should render the effects of all parents of T
on T ineffective; we illustrate this in Figure 2 with the edge from
P to T “cut”.

Results

BN structures learned from LUCADA
In order to discover a structure that encapsulates the causal

domain knowledge of the clinicians, while achieving a high
Bayesian score and predictive performance, we tried various
causal discovery approaches. First, without any algorithmic aid,
we elicited the causal structure of the domain with the help of
our clinical collaborators. This structure, given in Figure 3a,
was built by asking the clinicians to connect the 13 domain
variables based on a notion of causality; more specifically,
asking them to point out the direct influences each variable has
on others. As can be seen in Figure 3a, there is limited
interaction between the pre-treatment variables (1-11) and the
edges often point from the pre-treatment variables to the
‘Suggested Cancer Treatment Plan’ (12) and ‘1-year Survival’
(13) variables.

During knowledge elicitation, we also gathered different
types of pairwise relational information from the clinicians in
order to use for hybrid learning with CaMML. As can be seen in
Figure 4, the direct causal influences (“A→B”) of the pre-
treatment variables on the treatment selection and treatment
outcome variables are also prevalent in this pairwise-relations
matrix. However, the flexibility of defining additional relation
types as undirected relations (“A−B”) and temporal orders
(“A≺B”) yields a slightly different view of the domain. Overall,
we ran three experiments with CaMML that used 1) no expert
knowledge; 2) temporal tiers information as colour-coded in
Table 1; and 3) structural pairwise relations given in Figure 4.
We used confidence levels of 1.0 and 0.8 for the temporal tier
and pair-wise relationship experiments, respectively.

Following these, we ran the automated learning algorithms
listed in the previous section in order to learn the structures
directly from the data. The results of our experimental runs,
which reflect the Bayesian scores and predictive performances
achieved by different learning approaches, are given in Table
4. To serve as a reference, in the same Table we also include

Figure 2.  Schematic explanation of a causal intervention
on a BN.  
doi: 10.1371/journal.pone.0082349.g002
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the performances of the three baseline benchmark algorithms
on predicting the “1-yr Survival” outcome.

Focussing initially on the average predictive performances
listed in Table 4, we see that Logistic Regression and the TAN
algorithm achieve marginally higher AUC (81%) and predictive
accuracy (0.77) results. However, the results achieved by
these two algorithms are not statistically different from the rest.
Overall, the performances of the reference benchmark
algorithms and the BNs are quite similar. The two exceptions to
this are 1) the decision tree learned by the C4.5 algorithm,
which achieves a low AUC value relative to all other algorithms;
and 2) the manually elicited structure given in Figure 3a, which
obtains the worst classification performance among all.
Although it may be intuitive to expect that the dependencies as
perceived by the domain experts should be more robust
compared to those that are learned from a dataset of limited
size, this low predictive performance of the manual DAG
structure may be explained by implicit dependencies in the
data that the clinically elicited network is unable to capture.

Furthermore, from Table 4 it is also evident that the manually
elicited structure attained the lowest Bayesian score among all
others. On the other hand, the structure that obtained the
highest Bayesian score is the one learned via the TAN
algorithm in Figure 3b. It should be noted that despite our
inclusion of TAN among our structure learning algorithms, as a
slight relaxation of NB, it is not intended for causal discovery.

Despite operating to maximise a different metric score,
namely Maximum Message Length (MML), the structures
learned by CaMML achieve comparable Bayesian scores to the
other score-based search algorithms. The structures learned
by CaMML by incorporating the pair-wise relationships and the
temporal tiers are as given in Figures 3c and 3d, respectively.
Compared to the manually built structure (Figure 3a), these are
less connected and have lower number of parents directly

pointing to the treatment selection (12) and survival (13)
variables. Examining these structures and their corresponding
rows in Table 4, we can see that while the incorporation of
expert knowledge into the learning process has little effect on

Figure 4.  Expert elicited structural pairwise relations
based on the selected 13 LUCADA variables.  The variable
codes are as given in Table 1. The notations can be read as:
“A≺B”: A happens before B; “A−B”: A and B are related; and
“A→B”: A influences B.
doi: 10.1371/journal.pone.0082349.g004

Figure 3.  DAG structures learned by different methods.  (a) manual construction, (b) Tree Augmented Naive Bayes (TAN)
algorithm, (c) CaMML algorithm with structural pair-wise priors, (d) CaMML algorithm with temporal tiers.
doi: 10.1371/journal.pone.0082349.g003
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the Bayesian score or the predictive performances attained, it
helps yield structures that look more similar to the expert
elicited structure given in Figure 3a.

This is an important feature that meets our criteria of
uncovering the most feasible causal structure that has a high
probability given the data, while being in line with -or at least
not openly violating- the causal understanding of the domain as
perceived by the clinicians. For this reason, we chose the
causal structure learned based on the CaMML temporal tiers
(Figure 3d), since it achieves the highest Bayesian Score
among other structures that take into account expert
knowledge. We used this structure in our causal intervention
experiments, the results of which are presented in the next
section.

Effects of Treatment Selection on Survival
After selecting the BN structure, we set out to investigate

whether it could be used for making plausible treatment
recommendations based on the interventional query of
“P(Survival=Alive | Evidence, T)= ?”. As a prelude, we
investigated: 1) the probabilities of treatment plans:
P(Treatment); and 2) the conditional probabilities of 1-year
survivals when a specific treatment plan was given:
P(Survival=Alive |Treatment), as observed in LUCADA. Figure
5 shows these treatment probabilities and the 1-year-survival
probabilities conditional on treatment plans as (striped) blue
and green columns respectively for each treatment plan. The
lack of correlation between the treatment frequencies and
conditional survival probabilities in Figure 5 may reflect the fact
that survival maximisation is not the only parameter affecting
the eligibility of the patients for a particular treatment plan. We
elaborate further on this while discussing our results.

The discrepancy between P(Treatment) and P(Survival
=Alive |Treatment) is more pronounced in treatment plans that

Table 4. Predictive performance metrics and Bayesian
Scores for the 10-fold stratified cross validation experiments
with the corresponding algorithms.

 AUC Accuracy %
Log Bayesian
Score DAGfinal

Logistic Regression 0.812 (±0.04) 77.00 (±0.61) -

C4.5 0.767 (±0.04) 75.64 (±0.59) -

Naïve Bayes 0.793 (±0.04) 75.04 (±0.67) -
Tree augmented Naïve
Bayes

0.810 (±0.05) 76.93 (±0.63) -1,558,894

BN, IC 0.793 (±0.04) 75.04 (±0.74) -1,763,061

BN, K2 0.809 (±0.04) 76.49 (±0.69) -1,590,874

BN, Simulated Annealing 0.807 (±0.04) 76.50 (±0.71) -1,567,118

BN, MCMC 0.807 (±0.05) 74.24 (±0.54) -1,600,891

BN, CaMML - no priors 0.806 (±0.03) 73.10 (±0.73) -1,586,574

BN, CaMML - temporal tiers 0.806 (±0.03) 74.31 (±0.72) -1,570,878

BN, CaMML - structural
priors

0.805 (±0.03) 74.27 (±0.64) -1,581,243

BN, manually built structure 0.749 (±0.03) 68.30 (±0.62) -2,093,036

doi: 10.1371/journal.pone.0082349.t004

involve surgery (1, 9, 10, 11 in Figure 5). For instance, focusing
on ‘11.Surgery followed by adjuvant chemotherapy’, we
observe that P(Survival=Alive│Treatment=11)=0.81, while
P(Treatment=11)=0.02. This means that despite the high
chances of survival if given the treatment, the joint probability,
P(Survival=Alive, Treatment=11), of observing a patient, who
has been given ‘Surgery followed by adjuvant chemotherapy’
and survived at least one year, is relatively low at a meagre
(0.81×0.02)=0.016 in the database.

Our primary motivation was to compare the concordances of
the recorded treatment plans with the BN treatment
recommendations based on survival maximisation. We
evaluated concordance with respect both to exact and partial
matches between the top system recommendations and the
recorded treatments for a carefully selected subset of
LUCADA. This subset only contained patients who: 1) were
diagnosed with SCLC or NSCLC; 2) were given a curative
treatment plan; and 3) had no missing data. This resulted in a
fully observed patient subset of 4020 patients. In addition, we
excluded from our causal interventions the non-curative
treatment plans, namely ‘Active Monitoring’ and ‘Palliative
Care’.

Furthermore, before running the causal interventions, we
modified our chosen DAG structure (Figure 3d) by removing
the edges directed at the intervened “Suggested Cancer
Treatment Plan” (12) variable, as recommended by Pearl [8].
The resulting DAG is shown in Figure 6. We re-parameterised
this modified BN, excluding the 4020-patient strong subset that
we set aside to assess the plausibility of survival-based causal
intervention queries.

Overall, the percentage of patients for whom there was an
exact concordance between the top BN recommendation,
argmax(T)[P(Survival=Alive |Evidence, T)], and the recorded
treatment was very low at 29%. However, and crucially, this

Figure 5.  The treatment plan probabilities as calculated
from LUCADA.  P(Treatment) is represented in striped blue
columns, and the conditional 1-year survival probabilities given
specific treatment plans, P(Surv = Alive│Treatment), is
represented in green columns The horizontal axis, which
contains the treatment plan options, is ordered in descending
order of P(Treatment) from left to right.
doi: 10.1371/journal.pone.0082349.g005
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percentage rose to 76% when we included partial matches
between the two. An example of a partial match is where the
recorded treatment plan is ‘Surgery’, while the top BN
recommendation is ‘Surgery followed by adjuvant
chemotherapy’.

Concordances with Respect to Recorded Cancer
Treatment Plans

We analysed the level of exact and partial concordances with
respect to the recorded treatment plan types in the dataset.
Figure 7 is a confusion matrix summarising the aggregated
discrepancies between the recorded treatment plans in the
dataset and the top recommendations provided by the BN. The
highlighted non-diagonal cells represent the most prevalent
sources of discordance between the recorded treatments and
the top BN recommendations.

A pattern that is clearly visible in Figure 7 is that the top
treatment recommendations by the BN almost exclusively
comprise surgery (labelled as 1, 9, 10, and 11). If we focus on
the non-surgical treatment plan columns (labelled as 2, 3, 7,
and 8) we see that the single modality plans: radiotherapy and
chemotherapy are never recommended by the system, and the
multimodal chemo-radiotherapy plans are recommended very
rarely.

Focusing on the ‘Surgery’ row in Figure 7, we see that for the
majority of the cases, the BN favours multimodal surgical
treatment plans: 9, 10, and 11 over surgery alone. Analysing
the characteristics of the 681 concordant cases, we found that
these were all early stage patients for whom surgery alone
yielded marginally better survival likelihoods compared to the
multimodal surgical plans. Another interesting observation is
that the treatment plans 9 and 10 are on-going clinical trials
and are currently only given to a limited number of patients. As
can be seen in the confusion matrix, based on maximising the

Figure 6.  The modified BN Structure for causal
interventions.  All edges towards the intervened “Suggested
Cancer Treatment Plan” are removed.
doi: 10.1371/journal.pone.0082349.g006

probability of 1-year survival, the BN recommends these plans
for a significant number of patients.

In addition to the confusion matrix in Figure 7, Figure 8 is a
stacked column graph that summarises the exact and partial
concordances with respect to different treatment plan types.
Concentrating on the non-surgical treatment columns, we
observe that they mostly contain discordant cases.

It is clear both from Figures 7 and 8 that the maximum a
posteriori (MAP) estimations of argmax(T)[P(Survival=Alive |
Evidence, T)] produce recommendations that are heavily

Figure 7.  The confusion matrix that displays the recorded
versus the recommended treatment plans.  The
recommended treatment plans are the ones that maximise 1-
year survival for a patient, acquired via causal intervention on
the BN.
doi: 10.1371/journal.pone.0082349.g007

Figure 8.  The exact and partial concordances between the
recommended and the recorded treatment plans.  The
concordances are stratified with respect to treatment plan
types. The recommended treatment plans are the ones that
maximise 1-year survival for a patient, acquired via causal
intervention on the BN.
doi: 10.1371/journal.pone.0082349.g008
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biased towards surgical treatment plans. For this reason, we
carried out a second set of experiments in which we only
included those patients from the selected subset for whom the
recorded treatment plan was non-surgical. Furthermore, in
order to assess whether the concordance levels improved
when we manually eliminated surgical treatment plans as
viable options, we excluded surgical treatment plan types 1, 9,
10 and 11 from our interventions. Figure 9 shows that when
surgical treatment plans are discarded, the exact concordance
levels between the system recommendations and recorded
treatments increase substantially.

When we investigated the characteristics of the concordant
and discordant cases on the ‘Radiotherapy’ row, we found that
the 161 concordant cases were all early-stage (IA to IIB)
cancer patients, for whom the 1-year survival probabilities
achieved by ‘Radiotherapy’ alone are marginally higher than
the multi-modal treatment plans 7 and 8. However, from stage
IIB and upwards, the BN recommendations heavily favour
multimodal chemo-radiotherapy treatment plans 7 and 8 over
radiotherapy alone.

Further analysis of the posterior survival distributions for the
patients, who were recommended either sequential or
concurrent chemo-radiotherapy plans (7 and 8) according to
survival-maximisation, showed that in most cases the 1-year
survival probabilities with either treatment plan were very
similar, slightly varying in favour of 7 or 8 depending on patient
characteristics. The system’s inability to distinguish between
these two plans may be indicative of additional criteria, other
than maximising survival, that affect this decision in real life.
Finally, a striking observation in Figure 9 is that, apart from 2
patients (who were both stage IIA), the causal non-surgical
treatment plan interventions on the BN never resulted in
‘Chemotherapy’ being the treatment that maximises survival.
As is evident, in the majority of such cases, the system
favoured the multi-modal chemo-radiotherapy plans over
chemotherapy alone.

Figure 9.  The non-surgical confusion matrix for patients
who have been treated with non-surgical treatment
plans.  The recommended treatment plans are the ones that
maximise 1-year survival for a patient, acquired via causal
intervention on the BN.
doi: 10.1371/journal.pone.0082349.g009

Concordances with Respect to TNM Stages

In addition to our analyses of concordance based on
treatment plan types, we also investigated the levels of exact
and partial concordances with respect to the TNM stages of the
test patients, as plotted in Figure 10.

As can be seen, the exact concordance levels plummet for
locally advanced (IIIA and IIB) and advanced (IV) stage
patients. This may be explained by the fact that in clinical
practice, the proportion of patients who are suitable for surgery
decreases as the severity of the disease (judged by the TNM
stage) increases. However, in contrast, the BN favours surgical
treatment plans regardless of the stage of the disease. These
results indicate that the BN treatment recommendations, which
are solely based on maximising survival, do not agree with the
recorded treatment plans in general.

Discussion

This study presents an evaluation of the feasibility of BNs in
providing accurate personalised survival estimates and
treatment selection recommendations based on the effects of
different treatment plan options on this estimated survival. The
empirical results are based on various patient and disease-
specific variables selected from a large national lung cancer
patient dataset, namely LUCADA. In order to obtain a plausible
causal structure that also achieves a high Bayesian score, we
have compared the performances of manual structure
elicitation to various automated and hybrid causal discovery
algorithms.

Consistent with the findings of Forsberg et al. [7] and
Stojadinovic et al. [16], our survival prediction results indicate
that BNs are both viable and robust inference tools for
predicting patient survival outcomes with high predictive
accuracy and AUC rates. However, we also found that the
predictive performances achieved by the BNs do not offer a
significant improvement over, but are comparable to, those
resulting from less complex classifier algorithms as Naïve
Bayes, Logistic Regression or C4.5 decision trees.

Figure 10.  The exact and partial concordances between
the recommended and the recorded treatment plans.  The
concordances are stratified with respect to the TNM stages.
doi: 10.1371/journal.pone.0082349.g010
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Despite not providing a significant improvement in prediction
performance, we contend that BNs still provide unique benefits
pertaining to encoding of and reasoning with large patient
cohort data. In particular, their suitability for carrying out causal
interventions allows them to be utilised for answering complex
clinical questions that are based on unobserved evidence.
Another advantage of the probabilistic inference provided by
the BNs is that the probability distributions underlying the
network can be automatically updated to incorporate newly
added patient information. This adaptive nature of the BNs
allows building autonomous systems that can evolve as more
data is added [74] .

To date, we have experimented with the most prominent
structure learning algorithms. The results presented herein are
not sufficient to make a definitive statement about which
structure learning methodology is the best, since different
methodologies prioritise different factors -e.g. various score
metrics, statistical dependencies, and expert opinion- for
causal discovery. However, we found that different automated
learning algorithms yield substantially different final structures.
As a stark example from our results, despite their relatively
similar Bayesian scores, there is actually a substantial
difference between the DAGs learned by the CaMML and TAN
algorithms, whereby the arc directions in the highest scoring
TAN algorithm actually defy any temporal or causal pattern
within the domain. This inability of the automated structure
learning algorithms to yield a single DAG that faithfully
represents the causal structure of a given domain is a well-
known issue in causal discovery. Many causal discovery
algorithms avoid dwelling on this issue, or presuppose some
solution to the problem of identifying a correct variable order
[9].

As an alternative to automated structure learning, we also
elicited a manual structure from our clinical collaborators. As
mentioned earlier, this approach is commonly used for BN
applications in clinical domains. Our experimental results
indicate that the manually constructed BN does not represent
the best model in terms of either predictive performance or fit to
data in our case. In practice, both automated and manual
constructions of DAGs have limitations. As an alternative to
these, hybrid causal learning is an emerging field and -as our
results indicate- shows promise in making the most of the two
separate approaches by obtaining causal structures that yield
high performance metrics while retaining the causal patterns
set out by domain experts. This allows a facilitated combination
of domain knowledge and data, a key function that BNs are
inherently suitable for. Our empirical results with the hybrid
learning algorithm CaMML are a contribution to this developing
field.

Meanwhile, the causal intervention results, which compare
the concordances between the recorded treatments and the
recommended treatments by the BN, reveal that a posteriori
estimations based on maximising 1-year survival are highly
biased and therefore not reliable in predicting recorded lung
cancer treatment plans on their own. The main source of
disagreement between the top system recommendations and
recorded treatment plans stems from the discrepancies
between the conditional and joint probabilities of 1-year survival

as reflected in Figure 5. Due to the nature of our causal
interventions, the system recommendations are based on the
conditional survival probabilities, while the frequencies in the
database reflect the joint probabilities P(Survival=Alive,
Treatment). The lack of correlation between the two indicates
that survival maximisation is clearly not the only parameter
affecting a patient’s eligibility for a treatment plan.

In fact, there are various other factors that govern treatment
selection decisions [6,29], as: 1) the suitability of the patient for
surgery or other treatment modalities; 2) the quality of life
evaluation during and after treatment; and 3) an economic
analysis on the cost efficiency of the treatment plans. Despite
their importance, the causal intervention queries in our
experiments do not take these additional factors into account.
This is primarily due to lack of available data on these factors in
LUCADA, which prevented us from causally intervening on
additional variables such as ‘suitability for resection (R)’ and
‘cost effectiveness (C)’, alongside 1-year survival (S). In the
presence of relevant data, such interventions can be carried
out more efficiently via Bayesian decision networks [75,76],
which are generalisations of BNs with added functionality that
allow multi-criteria decision and utility analyses.

Although the maximum a posteriori estimations achieved by
the causal interventions on the BN were not accurate in
predicting the recorded treatments, embedding the posterior
distributions returned by the BN within a decision support
system and making them available to the clinicians may enable
them to not only see what the treatment plan that would
maximise survival is; but also to what extent it would improve
survival expectancies relative to the alternative options. We are
currently working on building such a system to be used in lung
cancer MDT meetings.

Overall, the results presented in this paper give sufficient
encouragement to conduct more extensive experiments.
Nevertheless, we recognise that the experiments reported here
have a number of limitations. First, due to the lack of
information (to this point) on 5-year survival rates, we have
adopted a surrogate outcome measure, namely 1-year survival.
Though this is justifiable [36,37], it is possible that the
probabilistic treatment recommendations may eventually
change when 5-year survival rates are used.

Second, LUCADA, upon which we trained our BN and ran
retrospective experiments on, contains treatment decisions
which were supposedly arrived at by following clinical guideline
rules. As such, it may reflect biased treatment patterns and
survival rates. Unfortunately, the only systematic way of
circumventing this inherent limitation would be by using data
collected during prospective pilot studies, which span a
minimum of 5-years and ideally involve randomised control
groups.

Third, as the causal intervention results reveal, the system is
not able to distinguish those patients eligible for surgery from
those who are not. According to the British Thoracic Society
and National Institute for Clinical Excellence guidelines,
suitability for surgery should be determined by factors such as:
risk of peri/post-operative mortality, cardiac functional capacity,
lung function, and post-operative quality of life [6,29].
Unfortunately, we cannot incorporate these into our
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probabilistic queries since the relevant information is not
available in LUCADA. Once the database is extended to store
this information, the BN can be augmented with the addition of
such variables and a “Suitability for Surgery” variable that
would be a parent of “X-year Survival”, which can in turn be
utilised to distinguish patients who are not suitable for surgery.
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