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Abstract: Antibiotic resistance is a worldwide public health problem due to the costs and mortality
rates it generates. However, the large pharmaceutical industries have stopped searching for new
antibiotics because of their low profitability, given the rapid replacement rates imposed by the
increasingly observed resistance acquired by microorganisms. Alternatively, antimicrobial peptides
(AMPs) have emerged as potent molecules with a much lower rate of resistance generation. The
discovery of these peptides is carried out through extensive in vitro screenings of either rational
or non-rational libraries. These processes are tedious and expensive and generate only a few AMP
candidates, most of which fail to show the required activity and physicochemical properties for
practical applications. This work proposes implementing an artificial intelligence algorithm to reduce
the required experimentation and increase the efficiency of high-activity AMP discovery. Our deep
learning (DL) model, called AMPs-Net, outperforms the state-of-the-art method by 8.8% in average
precision. Furthermore, it is highly accurate to predict the antibacterial and antiviral capacity of
a large number of AMPs. Our search led to identifying two unreported antimicrobial motifs and two
novel antimicrobial peptides related to them. Moreover, by coupling DL with molecular dynamics
(MD) simulations, we were able to find a multifunctional peptide with promising therapeutic effects.
Our work validates our previously proposed pipeline for a more efficient rational discovery of
novel AMPs.

Keywords: antimicrobial; peptides; artificial intelligence; graphs; molecular dynamics

1. Introduction

Antibiotics have revolutionized medicine since their discovery in 1911, decreasing
morbidity and mortality rates of multiple diseases [1]. However, the emergence of re-
sistant microorganisms has led to antimicrobial resistance (AMR), becoming a public
health problem of increasing concern in recent years. AMR negatively impacts popula-
tion health, healthcare systems costs, and gross domestic product (GDP) worldwide [2].
AMR is thought to be the result of misuse and overuse of antibiotics, self-medication,
self-interrupted treatments, genetic plasticity, and sheer dogged adaptability of the microor-
ganisms themselves [3,4]. For the United States, the CDC reported that in 2019, 2.8 million
resistant bacterial infections resulted in 35,000 deaths. The cost associated with these in-
cidents was approximately USD $20 billion, representing a growth of 570% of reported
cases compared to 2016 [5,6]. Due to the rapid generation of AMR to newly discovered or
designed antimicrobials, the pharmaceutical industry has virtually stopped its search and
investment in this field [7]. By 2015, 15 out of 18 of the largest pharmaceutical companies
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had abandoned the search for novel antibiotics [7]. Recent studies have estimated that,
without new and more potent AM molecules, by 2050, resistant pathogens will claim more
than ten million deaths per year, with a higher prevalence in developing countries and an
associated cost of about USD $66 trillion [8].

Antimicrobial peptides (AMPs) have been studied during the last decade as an al-
ternative treatment, as they have been reported to overcome the resistance mechanisms
of an ample variety of microorganisms [9]. AMPs represent essential components of the
higher organism’s innate immunity with a broad spectrum of antimicrobial activities.
Additionally, they exhibit diverse chemical characteristics and varied target cells, acting
through multiple mechanisms depending on their topology, propensity for aggregation,
and lipid interactions with cellular membranes [10]. Those characteristics make them
promising agents with lower chances of acquiring resistance [9,11]. Furthermore, a com-
mon feature in AMPs, as for other peptides and proteins, is their multifunctionality, which
indicates that AMPs can generate multiple physiological outcomes by targeting different
intracellular components [12,13]. Polypharmacological peptides have become an area of
increased interest for researchers in recent years because of their multiple applications
in tissue engineering [14,15], and their proven effectiveness as treatments for numerous
diseases [13,16–20].

Several functions in a single antimicrobial peptide have high medical potential as
they might be helpful to increase specificity, facilitate organelle targeting, or enable cargo
delivery. Specifically for AMPs, high binding affinity towards DNA and the capability of
penetrating cellular membranes (CPPs) have been reported as critical features to enable
superior therapeutic performance [12]. Among many others, peptides with antimicrobial
and cell-penetrating capabilities might serve as enablers for the treatment of different
types of cancer, obesity, neurodegenerative diseases and even serve as key agents for
gene-delivery therapies [12,21]. Therefore, AMPs and multifunctional peptides (AMPs
& CPPs) are of great interest to the pharmaceutical industry and its allies, given that
they offer a much ampler number of routes for the recovery of their research investment.
However, the discovery of such molecules is a tedious, costly, and time-consuming task
since it involves the in vitro screening of large libraries of randomly or rationally designed
sequences [22,23].

Chemoinformatic models were designed to reduce the time and costs associated with
discovering novel AMPs. Nevertheless, their accuracy has been insufficient to improve the
process [24]. As an alternative, deep learning (DL) techniques have emerged with promising
preliminary results for sequences’ analysis through molecular representations built aided
by neural networks (NNs) [25]. The main differences between chemoinformatic tools and
DL approaches are related to how each model represents the molecules. While the former
uses manually designed representations, such as different fingerprints or physicochemical
descriptors designed by experts [24], the latter learns optimal representations by jointly
extracting and analyzing several features that an expert may disregard while performing
the task manually [26].

Traditional chemoinformatic approaches are more problematic to apply for multiple
molecules due to the hand-crafted features and because exploring large databases becomes
a highly tedious and time-consuming task. In contrast, once trained, DL models can
analyze millions of molecules simultaneously to identify the most promising candidates in
only a few minutes with relatively short post-processing times. Therefore, DL models are
thought to reduce the time and costs associated with discovering AMPs by identifying the
most promising candidates more accurately, which likely leads to a significant reduction in
the number of experiments [27].

Peptides’ discovery and analysis through artificial intelligence started in the 1990s;
nonetheless, literature reports only a few studies for antimicrobials based on deep learning
algorithms. These works have mainly implemented recurrent neural networks (RNNs)
initially designed for natural language processing [28]. Peptide sequences share common
features with a natural language, such as the essential information related to the order of the
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characters and their corresponding correlations. Therefore, RNN might be well-suited for
analyzing atom sequences, which is fundamental to understanding the potential bioactivity
of each peptide sequence [29]. The design of neural network-based algorithms for peptides
involves developments on two fundamental fronts: (i) the representation of the peptides
and (ii) the architecture used for each representation.

Vectors are commonly used as representations to preserve the order of amino acids.
In some research reports, peptides have been represented as 20 ×M one-hot vectors where
each row is intended to describe the presence of one of the 20 essential amino acids in the
sequence. At the same time, M is the entire length of the molecule [30,31]. Alternatively, 1D
1 ×M vectors have been considered, where each amino acid in the sequence is encoded by
a number from 0 to 19 [32]. More recently, peptides have been reproduced with the aid of
the word2vect embedding [33]. However, these representations disregard the interactions
between amino acids and the atoms within each amino acid. In addition to the sequential
representation, essential properties of AMPs must be computed to make the vectors more
descriptive. These include amino acid composition, composition-transition-distribution,
overall PseAAC, and the reduced amino acid composition pseudo-K-tuple [34].

Regarding the architectures, both long-short term memory (LSTMs) and gated recur-
rent units (GRUs) cells have been used for AMPs discovery. LSTM cells have been used
together with convolutional layers as feature extractors [32] or with attention and context
layers to extrapolate concepts learned in transformers [30]. In contrast, GRU cells have
been used with word2vect to generate trigrams of consecutive amino acids, successfully
discovering non-homologous peptides [33]. However, DL models are usually trained on
small databases, which implies a lower generalization power when it comes to assigning
features to the new data. Additionally, each research task usually designs its database to
develop the algorithms, and evaluation metrics vary significantly within the field. In this
regard, source codes are rarely publicly available; therefore, comparison within methods to
evaluate the advance of new algorithms is currently a significant challenge.

The work presented here follows our proposed pipeline for rational discovery [35],
focusing on the DL model. Briefly, we implemented DL techniques to find new AMPs
sequences with potentially high antimicrobial activity, followed by analyzing the candi-
dates’ interaction with a model cell membrane via molecular dynamics (MD) to select those
that also show potent cell-penetrating capabilities and, therefore, attractive multifunction-
ality. Furthermore, different from most currently available models, our algorithm is not
only capable of classifying antimicrobial from non-antimicrobial but also of classifying
them into the four main microorganisms’ including, antibacterial, antiviral, antifungal,
and antiparasitic. Subsequently, we validated the antimicrobial and cell-penetrating activity
in vitro. Our whole pipeline is illustrated in Figure 1. To overcome the limitations of the
existing DL methods, we proposed evaluating graph representations, which have been
primarily disregarded for this type of study and enable us to put into consideration the
interaction (i.e., bonds) between the amino acids and not only their primary sequence
(1D representation), as has been the case of most previous works. Furthermore, due to
the non-Euclidean nature of peptides, graph representations enable accurate and explicit
modeling of atoms’ and bonds’ spatial configurations, enabling learning from the most
basic information of the peptide molecules, as proven by [36] for organic molecules.

Additionally, we extensively collected 19 publicly available databases to ensure a much
more robust feature generalization to the newly incorporated data, which resulted in
around 25,000 peptides to train the DL models. To the best of our knowledge, our work
encompasses the most extensive AMPs recollection reported thus far. Finally, the proposed
pipeline was evaluated with a new peptide library generated by cutting in silico the genome
of Escherichia coli with restriction enzymes and subsequently translating the obtained
fragments with the aid of all the possible reading frames.
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Figure 1. AMPs rational discovery pipeline. (1) A peptide library was generated by cutting the
Escherichia coli genome in silico. (2.1) The improved DL algorithm analyzes the library to select
promising candidates with membrane activity. (2.2) Candidates were filtered using physicochemical
properties to obtain viable AMPs. (2.3) Molecular Dynamics was implemented to find candidates
exhibiting cell-penetrating capability. (3.1) AMPs candidates were evaluated in vitro to obtain the
MIC. (3.2) Peptides with additional cell-penetrating activity were evaluated in mammalian cells via
confocal microscopy. Created with Biorender.com.

2. Materials and Methods
2.1. Database

As mentioned above, one of the main limitations of the existing AI methods for AMPs
prediction is the quantity and diversity of data used for training the models, which implies
lower generalization power of crucial properties to newly added data [26]. Therefore,
an exhaustive search was performed over 19 public available databases (Table 1).

Table 1. Databases recollected to perform the IA model’s training. 1 The database consists of
8305 sequences; however, some are proteins, which are not of interest for this work.

Database Name Number of Peptides

BIOPEP-UWM Database [37] 3634

CPPsite 2.0 [38] 1155

CAMPR3
1 [39] 4519

TumorHoPe [40] 787

APD3 [41] 3072

SPdb [42] 2512

ParaPep [43] 194

CancerPPD [44] 556

BrainPreps [45] 92

Quorumpeps [46] 257
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Table 1. Cont.

Database Name Number of Peptides

YADAMP [47] 2525

LAMP2 [48] 5454

Milkampdb [49] 260

DADP [50] 2557

AntiTbPdb [51] 271

PeptideDB [52] 1903

NeuroPrep [53] 3875

SATPdb [54] 9664

Other peptides 1475

Total 44,762

Before processing the sequences, 44,762 peptides were collected. However, filter-
ing was performed to ensure that all data would be useful for the IA methods’ training.
The processing is detailed below:

1. Peptides with synthetic modifications were deleted.
2. Peptides with unknown amino acids (X) within their sequence were deleted.
3. Peptides with pyrrolysine (O), Selenocysteine (U), β-Alanine (Bal), 3-Naphthylalanine

(Nal), and 2-Aminobutanoic acid (Abu) were deleted.
4. Peptides with J (leucine or isoleucine) were maintained, considering both amino acids.
5. Peptides with B (aspartic acid or Asparagine) were maintained, considering both

amino acids.
6. Peptides with Z (Glutamic acid or Glutamine) were maintained, considering both

amino acids.
7. Duplicated sequences were deleted while preserving all their associated activities.

The database consists of 23,967 unique sequences with 38,924 labels associated with
28 biological activities. Table 2 shows their relative abundance within the database.

Table 2. Distribution of biological activities of peptides within the database.

Biological Activity Number of Peptides

Antimicrobial 13,468

Neuropeptide 3615

Signal-Peptide 2351

Anuran-Defense 1783

Anticancer 1602

Cell-Penetrating 1155

ACE-Inhibitor 934

TumorHoming 704

Antioxidative 637

Peptidase-IV-Inhibitor 420

Toxic 256
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Table 2. Cont.

Biological Activity Number of Peptides

QuorumSensing-Peptide 252

Opioid 136

BBB-Peptide 88

Immunomodulating 71

Peptidase-III-Inhibitor 66

Haemolytic 63

Antithrombotic 58

Antiamnestic 52

CaMKII-Inhibitor 50

Insecticidal 49

Alpha-glucosidase-Inhibitor 34

Renin-Inhibitor 19

Antimicrobial peptides represent 55.78% of all data and, in turn, 4303 are antibacte-
rials, 4006 antivirals, 2233 antifungals, and 248 antiparasitics. The remaining sequences
have no reported specific activity. Their average size is 28 AA, with lengths varying
from 2 to 344 AA. Likewise, the average size of non-AMPs is 24 AA. Figure 2 shows
the amino acid composition of AMPs vs. Non-AMPs. As expected, AMPs are richer in
lysine (K) and cysteine (C) compared with non-AMPs. On the contrary, arginine (R) and
tryptophan (W), which are related to AM activity by enabling electrostatic interactions
and hydrogen-bonding potential, have similar abundances in both types of peptides [55].
The homogeneous distribution of AAs and sizes for both types of peptides are well-suited
for DL techniques, as they will need to learn underlying physicochemical cues to predict
the peptides’ biological activity correctly.

Figure 2. Amino acids distribution. Abundance of each amino acid within all sequences of AMPs
and Non-AMPs.

This research proposes both a rough and a fine-grained problem. The former relates to
the prediction of antimicrobial and non-antimicrobial peptides. In contrast, the latter relates
to the classification of peptides within the four principal classes of AMPs: antibacterial,
antiviral, antifungal, and antiparasitic.

2.1.1. AM Prediction

Dataset partition involved labeling all peptides with no antimicrobial activity as non-
antimicrobial, which led to 13,468 AMPs and 10,499 non-AMPs. Both types of peptides were
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divided into 80% train and 20% test, considering both length and amino acid distribution
within the sequences. Furthermore, the train set was split into four folds for cross-validation
purposes. AP is reported over the ensemble of the four models.

2.1.2. Fine AM Prediction

The four main classes of AMPs are Antibacterial (AB), Antiviral (AV), Antifungical
(AF), and Antiparasitic (APT). We have 4303 AB, 4006 AV, 2233 AF, and 248 APT within the
dataset with 7393 unique sequences. All peptides were divided into 80% train and 20% test,
considering length, AA distribution, and antimicrobial activities. Moreover, the train set
was split into four folds to perform cross-validation. The normalized average precision
(NAP) is reported over the ensemble of the four models.

2.2. AMPs-Net

AMPs-Net builds upon previous work [36], a deep message-passing framework opti-
mized to predict target–ligand interactions. As shown in Figure 3, AMPs-Net comprises
two sequential modules. The first classifies the peptides between AMP and Non-AMP,
while the second predicts the AMPs probability towards the four main types of antimicro-
bial activities.

Figure 3. AMPs-Net overview. The FASTA sequence of a candidate peptide was transformed into
a graph representation and used as input to a Graph Convolutional Neural Network. Based on the
message-passing algorithm, a 256-Dimensional updated graph was obtained and averaged over the
feature dimensions. The representative vector was concatenated with the physicochemical properties
of the peptide, and a linear layer was then used to classify the peptide into an AMP or Non-AMP.
Peptides predicted as AMPs were further analyzed by a similar network that outputs the probability
of finding them within the four sub-classes of antimicrobial peptides.

The main component of both AMPs-Net modules is a Graph Convolutional Network
(GCN), which enables the analysis of non-euclidean data, such as that of chemical com-
pounds that need to preserve the spatial configuration in a 2D space. Peptides’ graph
representations were constructed from the FASTA sequences. Given a peptide, its graph
was represented as G = (V , E , Xv, Xe), where V denotes the set of nodes (atoms), E the set
of edges (bonds), Xv the set of atom features and Xe the set of bond features. The atom
feature vector x ∈ Xv contains nine properties of the atom v ∈ V , which are shown in
Table 3.

The bond feature vector xvu ∈ Xe was built from three characteristics of the bond
evu ∈ E between atom v and atom u, also shown in Table 3. Moreover, all bonds were
assumed bidirectional, Xevu = Xeuv . Glycine graph representation is shown in Figure 4,
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where it can be seen that such graph representation for molecules usually disregard the
hydrogen atoms within the molecule.

Table 3. Atom and bond features description. Feature vectors were obtained with the aid of the RdKit
and OGB libraries, which describe the state of an atom and a bond within a molecule.

Atom Features

Atomic Number 1, 2, . . . , 119

Chirality Unspecified, Tetrahedral clockwise,
Tetrahedral anti-clockwise, Other

Degree 0, 1, . . . , 10

Formal Charge −5, −4, . . . , 4, 5

Number of Hydrogens 0, 1, . . . , 8

Number of radical e− 0, 1, . . . , 4

Hybridization Sp, Sp2, Sp3, Sp3d, Sp3d2

Aromaticity 0, 1

Ring membership 0, 1

Bond Features

Type Single, Double, Triple, Aromatic

Stereochemistry None, Z, E, CIS, TRANS, Any

Conjugation 0, 1

Figure 4. Graph Representation of Glycine. In the graph representation of molecules, atoms are
represented as nodes and bonds as the edges. Each amino acid atom is represented within the graph
by nine physicochemical properties (Table 3). Likewise, bonds between the atoms were described by
three properties. The same color implies the same atom and/or bond and, therefore same feature
vector. Created with Biorender.com.

The GCN modules comprises a message-passing framework designed for molecular
property prediction [56]. Being Nv the set of neighbors of atom v, the message pass-
ing algorithm is described by message construction (Equation (1)), message aggregation
(Equation (2)) and node update (Equation (3)) equations.

Mvu = ρ(Xv, Xu, Xevu), u ∈ Nv (1)

Mv = ζ({Mvu|u,∈ N v}) (2)

Xvn = φ(Xvn−1,Mv) (3)

The message construction function ρ is applied over an atom’s, neighbor’s, and corre-
sponding edge’s features to obtain an individual message for each neighbor node. The mes-
sage aggregation function (ζ) takes all the individual messages of the neighbor nodes
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and outputs one aggregated message. Finally, the node update function (φ) updates the
node’s features using the aggregated message. Once all the update layers were completed,
the updated graph (i.e., atom) contains information about the local regions of the molecule.

Overall, AMPs-Net generates a graph representation of each peptide from its corre-
sponding FASTA sequence. Peptides graphs were then used as input for the GCN module
with 20 message-passing layers, a softmax as aggregation function, and 4-layers MLP
as update function. The GCN module follows an unconventional order, first the batch
normalization layer, followed by a ReLU activation, then a dilated message passing layer,
and finally, the addition of residual connections. The final updated graph has feature
vectors of 256 in size for each atom and bond. An average pooling over the atom’s features
was performed to obtain a unique representation for each peptide. This representation
was concatenated to a metadata vector with eight peptide physicochemical properties and
was used as input to a linear layer that outputs a new 256-D vector. This vector was sub-
sequently employed for binary or multiclass classification, AMP prediction for the coarse
task, and the probabilities for each AMP activity for the fine task. AMPs-Net was trained in
1 GPU QuadroRTX8000 of 48 GB for 160 epochs with a batch size of 112; a learning rate of
5× 10−5, and an adamax optimizer.

2.3. AMP Candidates

Escherichia Coli (E. coli) genome was cut in silico by the restriction enzyme Sau3IA,
which can be replicated experimentally to build a peptide library in vitro for screening
purposes in future work. Furthermore, the restriction site of Sau3IA is often found within
the genome, enabling a large number of peptide candidates [57]. All segments were
transcribed and translated, assuming the presence of an initiating codon in all cases.
Translation involves the use of multiple reading frameworks. Figure 1 (1.1) illustrates the
entire process.

Once the probability scores for AMPs were obtained, the sequences were further
filtered to obtain the most promising candidates. This was achieved by considering several
properties to classify membrane-active peptides, including size, Boman Index, net charge at
pH 7.4, hydrophobic ratio, hydrophobic moment, aliphatic index, instability index, and iso-
electric point. Furthermore, as a negative control, we included AHB-1 (MFVFLVLLPLVS),
a potent membrane-translocating peptide that exhibited no antimicrobial activity and
was recently discovered by us from a comprehensive analysis of the spike protein of
SARS-CoV-2 [58].

2.4. Molecular Dynamics Analysis

Some of the filtered peptide candidates were selected by size, net charge at pH 7.4,
and Boman index to evaluate their cell-penetrating capabilities. The prediction of these
peptides’ secondary and tertiary structures was carried out to assess the molecule’s bi-
ological activity after folding. This prediction was conducted in the I-Tasser server [59].
The server generates a top 5 predicted de novo structures in PDB format. The sequences
with the highest C-score, representing the most accurate prediction, were selected for
further studies.

MD simulations were carried out using the GROMACS version 2019.3 software with
the semi-atomistic Force Field GROMOS96 53a6, modified to its correct usage with lipid
membranes by adding the Berger lipid parameters [60]. A leap-frog integrator was used in
all simulations, with an integration time step δt of 0.001 ps. Van der Waals and short-range
electrostatic interactions cutoff were set at 1.2 nm, while long-range electrostatics were
calculated by the Particle Mesh Ewald (PME) method. Finally, 3-D periodic boundary
conditions were imposed.

2.4.1. Non-Equilibrium Pulling (Flat-Bottom)

The simulation box (6.41840 × 6.44350 × 12.00000 nm) was built with a simplified
eukaryotic cell membrane model (which was composed of 128 lipids of dipalmitoylphos-
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phatidylcholine (DPPC)), water as a solvent, and the peptide to be evaluated located parallel
to the membrane at a distance of 5 nm from the bilayer’s headgroups. Ions of Na+ or Cl−

were employed to assure the system’s electroneutrality. Subsequently, an equilibration of
50,000 steps was carried out at a constant temperature (323 K), using the modified Berend-
sen thermostat (V-rescale), and at a constant pressure (1 bar) by 50,000 steps according
to the Parrinello-Rahman barostat, ensuring equal conditions for each component of the
system. Lastly, energy minimization was done to obtain relaxed low-energy conformations
to prevent significant steric hindrance limitations [61]. Once the system was correctly
parameterized, position constraints were removed. The system was allowed to interact
through a steered MD simulation where a flat-bottom potential of 2000 kJ/mol-nm2 was
applied at 3.5 nm from the center of mass of the membrane. The simulation was run for
500 ns, which encompassed 250,000,000 steps.

2.4.2. Non-Equilibrium Pulling (Umbrella SAMPLING)

Peptides with the most marked tendency to penetrate the lipid bilayer were chosen
to determine their preferential location within the membrane by an Umbrella Sampling
simulation. Each peptide was located at a distance of 6 nm from the bilayer’s headgroups in
a simulation box of 13 nm in length. The system was solvated with water, and counterions
were added for electroneutrality. Next, an NVT equilibration of 50,000 steps was conducted,
followed by an NPT equilibration of 50,000 steps.

The free energy of the peptides through the lipid membrane was obtained from the
Potential Mean Force (PMF) curve generated by the Umbrella Sampling simulation. This
was accomplished by running a 65,000-step steered MD simulation right after equilibration.
In this approach, the peptide was transferred from the bulk of the aqueous phase into the
membrane under a harmonic potential of 600 kJ/mol-nm2. The simulations resulted in
several configurations with an average distance of 0.2 nm between them. Finally, each
configuration was taken as an independent simulation, balanced, and minimized again,
and a production run of 5,000,000 steps was taken further. The PMF profile was obtained
by applying a Weighted Histogram Analysis Method (WHAM).

2.4.3. Behavior Inside Membrane

An orthorhombic simulation box was built with the membrane model at its center,
and the peptide molecule was located vertically to the bilayer’s center of mass (COM).
The system was parameterized as described previously, and finally, position constraints
were removed, allowing the system to interact for 100 ns. The trajectories obtained enabled
the extraction of structural analysis such as Root Mean Square Displacement (RMSD),
Radius of Gyration, Average Mass Densities, and Interaction Energies.

2.5. In Vitro Validation
2.5.1. Antimicrobial Activity Validation

Peptides’ antibacterial activity was evaluated for concentrations ranging from 250 µM
to 0.12 µM in serial dilutions. The assay was performed as described previously by
Perez et al. [62]. Briefly, Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative
E. coli were cultured at 37 °C in LB agar plates overnight, followed by a culture in fresh LB
medium until they achieved a 0.5 value according to the McFarland standard. Cells were
centrifuged at 3600 rpm for 5 min, washed three times with 2 mL of 10 mM Na2HPO4 buffer
(pH 7.4) or NaCl 0.9% w/v, and diluted in the same solution to obtain a concentration of
104 CFU/mL. CFU was calculated with the aid of the growth curve for each bacterial strain
and its absorbance at 595 nm (Equations (4) and (5)).

S. aureus UFC = (11.9 ∗ CultureAbs595 − 0.547) ∗ 108 (4)

E. coli UFC = (7.97 ∗ CultureAbs595 − 0.367) ∗ 108 (5)
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100 µL of samples were prepared at 1:1 ratio peptides:bacteria by triplicate in a 96-well
microplate and subsequently incubated for 2 h at 37 °C. Next, 100 µL of LB medium was
added to each well, followed by incubation at 37 °C for 18 h. The absorbance was measured
at 595 nm to evaluate possible inhibitory growth effects. The negative control for this assay
was buffer with LB medium and bacteria (without antibacterial activity), and the positive
control was only buffer and medium (maximal antibacterial activity). The collected data
was used to estimate the minimum inhibitory concentration (MIC).

2.5.2. Synthesis of Low Molecular Weight Chitosan Nanoparticles (CNPs)

CNPs were synthesized following the ionic gelation method [63]. Briefly, 2.4 mg/mL of
LMW Chitosan (50–190 kDa, deacetylation degree of 75–85%, CAS 9012-76-4) was dissolved
in acetic acid 2% v/v under magnetic stirring for 3 h. This procedure protonates the amine
groups of monomers and therefore increases its solubility. Afterward, to induce a partial
charge restoration, the pH of the mixture was adjusted to 3.6. To obtain the CNPs, chitosan
chains were crosslinked with 1.2 µL of glutaraldehyde per milliliter of chitosan, added
dropwise, and left under stirring for 1 h. To purify the CNPs, the reaction mixture was
dialyzed against Type II water at room temperature for three days using a 2 kDa membrane
(Sigma-Aldrich, St. Louis, MO, USA). Lastly, the CNPs were lyophilized and stored at 4 °C.

2.5.3. Functionalization of CNPs

CNPs (100 mg) were resuspended in 70 mL of type II water, mixed with 2 mL of
glutaraldehyde 2% v/v, activating the CNPs surface for 1 h. Afterward, 1 mg of the peptide
was added and left to conjugate under agitation for two days. Rhodamine B was used
as a fluorophore to label the CNPs. Before conjugating to the CNPs, 7 mg of EDC and
5 mg of NHS were mixed in 5 mL of type II water until complete dissolution. Next, 200 µL
of DMF and 6 mg of Rhodamine B were added to the mixture and left to react at 40 °C
for 15 min. Afterward, this activated Rhodamine B was mixed with the CNPs-peptide
nanobioconjugates and left under agitation for 24 h at room temperature. To remove
unconjugated rhodamine B, the mixture was dialyzed against Type II water using a 2 kDa
membrane (Sigma-Aldrich, St. Louis, MO, USA). Finally, the labeled nanobioconjugates
were lyophilized and stored at 4 °C until further use.

2.5.4. Cell Penetrating Activity Validation

The ability of immobilized peptides (CNPs-peptide nanobioconjugates) to translocate
cell membranes and distribute intracellularly was assessed by estimating the surface area
coverage after internalization into NHA cells (Lonza CC-2565). Endosomal escape after 3 h
of exposure was estimated by calculating the colocalization between the nanobioconjugates
and Lysotracker Green DND-26 (Thermo Fisher, Waltham, MA, USA) through the Pearson
correlation coefficient (PCC). Imaging was conducted in an Olympus FV1000 confocal laser
scanning microscope (CLSM) (40X/0.6 UCPlan FL N and PlanApo 60x/1.2 oil immersion
objective, Olympus, FV1000). Briefly, 18,000 cells per well were seeded on a glass slide of
3.5 mm diameter previously coated with Poly-D-Lysine (Thermo Fisher (Gibco), Waltham,
MA, USA). NHA cells were incubated in an ABM medium supplemented with 3% (v/v)
FBS for 24 h (37 °C, 5% CO2) to allow cell adhesion. After incubation, cells were exposed
to labeled CNPs-peptide nanobioconjugates for 3 h in a non-supplemented medium at
12.5 µg/mL concentration. Then, cells were exposed to an ABM solution with Hoechst
33342 (Thermo Fisher, Waltham, MA, USA) (1:10,000) and Lysotracker Green DND-26
(1:10,000) for 5 min before observation via confocal microscopy. Excitation/Emission wave-
lengths were set at 405 nm/461 nm, 488 nm/535 nm, and 559 nm/600 nm to detect nuclei,
endosomes, and nanobioconjugates, respectively. Nanobioconjugates were compared with
bare CNPs to evaluate the impact of the novel peptides on membrane translocation. Image
analysis was performed with the Fiji-ImageJ software. Data analysis was completed using
the GraphPad Prism V 6.01 software (GraphPad Software, La Jolla, CA, USA). Statistical



Membranes 2022, 12, 708 12 of 27

comparisons were made using the unpaired t-test, and p ≤ 0.05 (*) results were considered
significant. Data are given as average ± one standard deviation.

3. Results and Discussion
3.1. AMP Prediction

Table 4 compares binary AMPs-Net with four state-of-the-art deep learning methods.
Pre-trained models on their original dataset or prediction servers were used to evaluate the
performance of all the other methods in our test set. Even though this approach might have
some advantages, we failed to obtain retraining methods in our dataset due to the lack of
publicly available or non-working codes. Nevertheless, all the evaluated methods claim
that their performance and generalization are high enough to be used as virtual-screening
tools for peptides. Our method outperforms all of them by a margin that ranges from 8.8%
to 19.02% in average precision (AP) and from 5.74% to 24.23% for accuracy (ACC). All
methods considered for comparison are based on recurrent neural networks of both GRU
and LSTM cells; however, the input representation of the peptides was different from ours.
The boost in performance entails that our data recollection process and formulation of the
problem through neural graph networks effectively enhanced the prediction capability
for antimicrobial activity. Furthermore, it is essential to note that even though the AP is
a more robust metric, we also calculated ACC given that both CAMPR3 and AMPDiscovery
prediction servers failed to return the prediction probabilities.

Table 4. Comparison with SOTA. We compare AMPs-Net with multiple state-of-the-art deep learning
methods and the best Random Forest algorithm. For comparison with DL methods, pre-trained
models or prediction servers were used; no retraining was possible due to a lack of public or non-
working codes. 1 Prediction servers failed to return the probability scores; therefore, we failed to
calculate AP. 2 Best Random Forest algorithm to date as it was retrained with our data.

Method AP ACC

AMPScanner [32] 82.1 65.58

AI4AMPs [64] 76.74 67.64

CAMPR3
1 [65] - 67.82

AMPDiscover 1 [66,67] - 71.63

AMPlify [30] 86.96 75.07

AMPs-Net (Ours) 95.76 89.81

Non-deep learning SOTA

AMPEPpy (RF) 2 [68] 97.37 90.33

AMPEPpy, one of the most recent Random Forest algorithms, was also evaluated in the
AMPs prediction task. AMPEPpy consists of 128 decision trees with 105 encoded features
for each peptide. Publicly available code-enabled training with our data. As shown in
Table 4, both methods (AMPs-Net and AMPEPpy) have comparable performance, with AM-
PEPpy outperforming ours by a slight margin. Nevertheless, it is important to highlight
that its developers stated that AMPEPpy’s performance is highly dependent on the training
data, which implies that the prediction could be significantly compromised if the predicted
peptides have a different distribution in length, AA composition, or physicochemical prop-
erties than the ones used for training purposes [68]. Furthermore, inference time with
AMPEPpy is much slower than AMPs-Net’s, i.e., 326 s vs. 45 s. This indicates that the
processing time increases about seven times compared to AMPs-Net. Conversely, our
algorithm is likely much more suitable for extensive genome searches.

Table 5 shows the optimization process required for our binary AMPs-Net architecture.
A deeper network was beneficial to learning peptide structures. This was expected as
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peptides exhibit larger structures compared to the small organic compounds that Deeper
GCN was initially designed to process. Our data suggest that increasing the GCN layers
from 10 to 20 enhances the performance; however, beyond such depth, the network’s
learning ability is significantly impaired. This decrease can be explained by the considerably
large databases needed to assure that deeper networks learn generalizable features instead
of learning just their training dataset. In both cases (i.e., 25 and 30 layers), the AP over
the training set is higher compared with the test set, demonstrating an over-fitting for the
training set.

Increasing the hidden size (HS) of features for up to 256 consistently led to increased
the network’s performance; however, a further increment failed to improve the AP signif-
icantly. However, under this scenario, the computational time required almost doubled.
The number of multilayer perceptrons (MLPs) showed similar behavior with an increase
in performance for up to 4MLPs. Finally, the essential physicochemical properties used to
select the most promising AMPs were added to the model as metadata for each peptide.
This extra data enhanced the performance even further.

Table 5. Binary AMPs-Net performance. Optimization of the GCN Module. In bold best configura-
tion attained.

Parameter Test AP

GCN layers

10 Layers 94.48

15 Layers 94.32

20 Layers 95.04

25 Layers 94.86

30 Layers 94.6

Features Hidden Size

HS 32 91.52

HS 64 94.12

HS 128 94.67

HS 256 95.04

Aggregation Function MLPs

2 MLP 94.72

3 MLP 95.04

4 MLP 95.09

Metadata concatenation

8 Features 95.76

The Antimicrobial Peptide Prediction module achieves a performance of 95.76% in
Average-Precision (AP). This very high performance enabled us to use the model to perform
virtual screening of the peptide library generated as described in Section 2.3. Furthermore,
after achieving the best architecture for the binary task, we trained the same architecture for
specific activity prediction; however, no increase in performance was obtained after further
optimization. To the best of our knowledge, this DL method is the first to classify within
the four main AMP classes with only one model. AMPs-Net specific activity prediction
achieved 71.36% for the normalized AP (Table 6). Even though the performance is much
lower than in the binary setup, the AP for antibacterial and antiviral classes were 90.67% and
84.54%, respectively. This performance was considered sufficiently high for the needs of the
proposed virtual screening. On the contrary, antifungal and antiparasitic activities showed



Membranes 2022, 12, 708 14 of 27

much lower performances, reaching 50.93% and 24.73%. The performance distribution
correlated well with the number of samples per class in our database. Therefore, more
antiparasitic and antifungal peptides validated experimentally will be needed in future
work to increase the performance further.

Table 6. Multilabel model performance.

Antimicrobial Activity AP

Antibacterial 90.57

Antiviral 84.54

Antifungal 50.93

Antiparasitic 24.73

Overall evaluation NAP

Multiclass 71.36

3.2. Candidates Selection

Digestion and translation of E. coli’s genome with Sau3AI led to 423,697 sequences to
analyze. Out of them, 2284 were predicted as AMPs with an extremely high probability
score (<0.99). Some physicochemical properties of the peptides, including size, charge,
hydrophobic ratio and moment, Bowman index, and instability and aliphatic indices, were
considered to further reduce the number of potential candidates before undergoing molec-
ular dynamics (MD) simulations. All molecules with less than 4 AA or more than 30 AA
were disregarded, considering the average size of most potent already reported AMPs.
Furthermore, since most AMPs typically interact with negatively charged membranes of
microorganisms, only cationic peptides were taken into account [35].

Additionally, to enable a transmembrane and phospholipid-peptide interaction, it
has been recommended that the hydrophobic ratio and hydrophobic moment must have
values of at least 0.4 and less than 0.3, respectively [69,70]. The Eisenberg Scale was used to
calculate both indexes. Moreover, given the disruption-membrane capability of most AMPs,
the isoelectric point of AMPs has been reported near 10, which is similar to that of soap or
detergents [70–72]. Finally, the Boman Index estimates the potential of peptides to bind
to other proteins. A low index value suggests that the peptide is likely to exhibit a high
antimicrobial activity without promoting significant side effects. A higher index value
indicates that the peptide is likely to have multifunctional roles within the cell, leading to
higher chances of side effects [73,74]. Therefore, intermediate Boman indexes are desirable
to balance toxicity and broad-spectrum activity.

Likewise, stability, as determined through the instability and aliphatic indices, is an
essential characteristic of therapeutic peptides. In this regard, peptides are considered
unstable when the instability index is above 40, which is related to low bioavailability and
short half-life [75]. On the contrary, for the aliphatic index, which is related to heat stability,
the higher its value, the higher the heat stability the peptide will exhibit [76]. After filtering
the peptide candidates with such criteria, we found 252 that fulfilled all of them. Figure 5
shows their amino acid distribution.



Membranes 2022, 12, 708 15 of 27

Figure 5. Average percentage of each amino acid within all sequences of predicted AMPs.

The predicted AMPs are rich in lysine (K), cysteine (C), and arginine (R), which
correlates well with previous reports available in the literature [55]. Somewhat surprisingly,
valine was the most abundant AA in the sequences. Even though it has not been reported
as the most prevalent AA in the database statistics, recent reports indicate its capability
to enhance antimicrobial activity by increasing hydrophobicity. This strongly suggests
that it is very likely that the DL model is capable of learning hidden patterns related
to the underlying chemistry of peptides that pass undetected to humans. Even though
252 candidates are feasible for screening at the industrial scale, a further reduction was
needed for the scope of this work.

3.2.1. Monofunctional Peptides: AM Activity

To reduce the number of candidates, we performed a study of AM motifs based on
a dermaseptin (AL) AMP extracted from a skin micro-organ of Phyllomedusa bicolor, pre-
viously evaluated in our laboratory [77]. The analysis predicted four possible AM motifs
for the peptide: (i) LWKD, (ii) ALWK, (iii) WKDL, and (iv) LKKV. The first motif has
been widely studied within dermaseptin peptides, and the second one is merely an ex-
tension of it [78–82]. The third one has also been identified and studied previously [83].
However, the fourth motif has not been reported previously, so we focused on the new
sequences containing it. Conversely, we chose two promising candidates, KLKKVTGKKM-
SKCMKCKIYVCS(KS22) and VFVVVTLLKKVKLLC(VC15), which also showed Boman
indexes that might lead to different interactions with microorganisms’ membranes.

3.2.2. Bifuctional Peptides: AM + CP Activity

We selected five random peptides within the 252 candidates with a BI of around 2.0 and
a GRAVY index close to 0.2 for analysis via MD simulations to find possible cell-penetrating
peptides. Their traces along 500 ns of simulation ((a1) in Figure 6a) showed significant
membrane interactions but incapacity for translocation. Peptides move from the bulk (at
around 5.0 nm) to about 2.4 nm along the z-axis of the simulation box where the membrane
was located and remained semi-static throughout the simulation. This behavior has been
reported previously for several AMPs: they first accumulate near the membrane before
acting through various mechanisms, including carpeting, induction of non-lamellar lipid
phases, or formation of discrete pores [84]. (a2) in Figure 6a shows the final position of the
CFD peptide where it is strongly interacting with the head groups of the lipid bilayer, most
likely through electrostatic interactions, but fails to penetrate it. Its parallel orientation on
the membrane surface can be related to the carpet mechanism of membrane interaction
exhibited by some cationic peptides [85].
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a1

a2

a3

(a) (b)

Figure 6. RD10 peptide interaction with a model lipid bilayer as estimated by Molecular Dynamic
(MD) simulations. (a) Penetrating capability of multiple promising candidates. Only the RD10
peptide can penetrate the cellular membrane. (b) PMF profiles of RD10 and three already validated
cell-translocating peptides in vitro. (a) Flat bottom. (a1) Peptides position traces within the simulation
box for 500 ns. Cellular membrane positioned at 2.4 nm. Only the RD10 sequence is likely to penetrate
the cellular membrane; however, the other candidates seem to interact with the headgroups of the
phospholipid bilayer strongly and remain therein. (a2) Final position of the CFD peptide. (a3) In its
final position, the RD10 peptide has completely penetrated the bilayer and is located deeper within
the hydrophobic core. (b) Umbrella Sampling. Free energy profile (PMF) for peptides translocating a
simplified eukaryotic membrane. Free energy profile (PMF) for peptides translocating a simplified
eukaryotic membrane. (b1) TP2, a cell-penetrating peptide added for comparison. (b2,b3) The
antimicrobial peptide Frenatin 2.3 and the antimicrobial, cell-penetrating, and DNA binding peptide
Buforin II. Also added for comparison. (b4) RD10, an antimicrobial and cell-penetrating candidate.

Even though highly charged cationic peptides have been reported to penetrate cellular
membranes, the energy requirement is significantly high depending on the underlying
mechanism. Therefore, to enhance the probability of membrane translocation rather than
disruption, we selected a peptide with a lower net charge [86,87]. In contrast to other
peptide candidates, RTLFVCRVGD (RD10) (red in Figure 6a1) was able to penetrate the
cellular membrane and locate deeper within it (Figure 6a3). We then conducted an Umbrella
Sampling simulation to calculate the energy requirement needed for RD10 to translocate the
membrane. Figure 6b shows the free energy profile (PMF) of the RD10 (b4) and three already
validated and reported peptides, analyzed with the same MD simulation. Compared to
Frenatin 2.3S (a cell-penetrating antimicrobial peptide extracted from skin micro-organs of
the Orinoco Lime Treefrog), RD10 has a similar energy profile (b3) with an additional DNA
binding capability. This result strongly suggests that RD10 should be able to translocate the
membrane effectively [88]. Furthermore, given its lower ∆PMF compared with TP2(b1),
a non-disruptive membrane-translocating sequence, RD10 should be able to enter the cell
without causing integral damage to the membrane [89]. Finally, compared to Buforin II(B),
a cell-penetrating antimicrobial peptide with DNA binding affinity, RD10 has a significantly
higher energy requirement to penetrate the cell. This implies that RD10’s translocation
efficiency is likely to be below Buforin II and that if trafficked intracellularly by endocytosis,
it should remain trapped within endosomes to a larger extent [90].

Given the slight variations in RMSD and RG (Figure 7A,B), RD10 is likely to preserve
a stable 3D conformation along the translocation process, specifically its folded structure
and its globularity [91–94]. The membrane was deconstructed into headgroups, glycerol
ester, and acyl chains. Their distribution, the peptides, and water were determined in the
z-direction, perpendicular to the surface of the bilayer, as shown in the density profiles of
Figure 7D. No alteration or asymmetry was observed in the profiles. The peptide remained
mainly within the acyl chains; however, also a portion interacted with the headgroups.
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Those interactions are corroborated by the interaction energies, which indicate an electro-
static binding mechanism (coulomb energy) driven mainly by the peptides’ interaction
with the partial charges of the head groups (P-HG). Alternatively, the Lennard Jones (LJ)
potential energies suggest that the most significant interaction is with the acyl chains (P-AC)
(Figure 7C). Overall, the MD results strongly indicate that RD10 is a promising candidate
for membrane translocation.

Figure 7. Stability of the RD10 peptide inside the cellular membrane. A minor variation on (A) RMSD
and (B) Rg indicates that the peptide maintains its 3D conformation along the translocation pro-
cess. (C) Coulombic (COUL) energies dominate the interactions over Lennard-Jones (LJ) energies.
Headgroups (P-HG) and acyl chains (P-AC) play a significant role in peptide-membrane interaction.
(D) Density distribution of the peptide along the z-axis of the membrane. The right y-axis presents
the density scale for peptides, while the left y-axis represents the membrane components and bulk
water. It indicates that the peptide remained mainly within the acyl chains, with a minor fraction
interacting with the headgroups.

To choose another promising peptide candidate, we performed a motifs analysis on
RD10 and discovered the FVCR motif, which has not been reported previously. We selected
one of the two possible candidates that share such a motif. Selected peptides for in vitro
validations and their corresponding physicochemical properties are shown in Table 7. All
peptides but FTFYLPLFVCRRNPRPRRVSCRE (FE23) fulfilled the metadata requirements;
however, it was chosen due to its unique motif and compliance with most of the desired
physicochemical properties. Furthermore, it was also taken into consideration that stability
and bioavailability can be enhanced further through subsequent biochemical modifica-
tions after experimental validation confirms its potential. Finally, to asses AMPs-Net’s
performance towards non-AMP peptides, we evaluated AHB-1 (MFVFLVLLPLVS), a potent
membrane-transloacting peptide that was recently discovered by us from a comprehensive
analysis of the spike protein of SARS-CoV-2. AHB-1 is predicted as non-AMP with a proba-
bility of 99.7%. Its physicochemical properties are shown in Supplementary Table S1.
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Table 7. Physicochemical properties of selected peptides. Values for each selection criteria on the
four peptides selected for in vitro experimentation. 1 Monofunctional peptides: AMPs. 2 Bifunctional
peptide: AMP + CPP.

Sequence Size Net
Charge

Boman
Index

Hydrophobic
Ratio

Hydrophobic
Moment

Aliphatic
Index

Instability
Index

Isoelectric
Point

VFVVVTLLKKVKLLC 1 (VC15) 15 2.834 −1.661 0.733 0.257 200.666 −15.226 10.425

KLKKVTGKKMSKCMKCKIYVCS 1 (KS22) 22 7.521 1.205 0.409 0.244 61.818 32.141 10.527

RTLFVCRVGD 2 (RD10) 10 0.836 2.293 0.5 0.195 97.0 0.509 8.759

FTFYLPLFVCRRNPRPRRVSCRE 1 (FE23) 23 4.68 3.463 0.391 0.240 59.103 107.39 11.428

3.3. AM Validation

The minimum inhibitory concentration (MIC) assay was performed for KS22, RD10,
and FE23 (Table 8). VC15 was not thoroughly evaluated due to solubility issues both in
organic and aqueous media. The validation was performed in media containing both
Na2PHO4 and NaCl due to the insolubility of KS22 and FE23 in Na2PHO4. Both FE23
and KS22 exhibited a bactericidal activity, while RD10 exhibited a bacteriostatic activity
in Na2PHO4. FE23 has the most significant activity against both E. coli and S. aureaus,
with MIC values of 7.8 µM and 15.63 µM, respectively. These results are comparable with
the most effective AMPs described in the literature, in which MIC values range from 0.125 to
16 µM [95]. However, it is important to note that the insolubility might be reducing the
performance of both FE23 and KS22, leading to higher MIC values compared to a scenario
where the peptides would be completely soluble [96,97]. In this regard, even though KS22
has a relatively high MIC value, it inhibits 50% of bacterial growth starting at 7.8 µM for
both evaluated strains. Likewise, RD10 inhibits 50% of bacterial growth starting at 0.48 µM
for E. coli and 3.9 µM for S. aureus. However, this peptide showed no solubility issues that
might potentially decrease its activity at higher concentrations. Therefore, RD10 can be
considered a bacteriostatic peptide as it reduces bacterial cellular activity but is incapable
of causing bacterial death [98]. A similar situation was observed for the NaCl assay, where
no MIC values were recoverable. However, 50% of inhibition was observed at the same
low concentrations. This behavior correlates well with the results of MD simulations since
it has been reported that highly bactericidal AMPs usually exhibit high membrane activity,
but not necessarily translocation capacity [99]. It is important to highlight that RD10 is
likely to exhibit less selectivity towards microbes than mammalian cells due to its low
charge, thereby limiting its possible use in clinical applications [100]. Nevertheless, this can
only be confirmed by standardized cytotoxicity, hemolytic, and platelet aggregation assays,
which are mandatory before moving to pre-clinical validation scenarios.

Table 8. Antimicrobial assay. MIC values for the four peptides in Na2PHO4 buffer and NaCl for
Gram-negative E. coli and Gram-positive S. aureus.

Sequence

Na2PHO4 NaCl

MIC (µM) MIC (µM)

E. coli S. aureus E. coli S. aureus

VFVVVTLLKKVKLLC (VC15) >160 >160 - -

KLKKVTGKKMSKCMKCKIYVCS (KS22) 250 250 >250 >250

RTLFVCRVGD (RD10) >250 >250 >250 >250

FTFYLPLFVCRRNPRPRRVSCRE (FE23) 7.8 15.62 >250 >250

On the contrary, both FE23 and KS22 significantly reduce their antibacterial activity
when evaluated in NaCl. This reduction is likely related to the presence of ions that might
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block the active moieties involved in the interaction with the bacterial membranes. In this
regard, salts have been reported to reduce the peptide-membrane initial binding event’s
kinetics, especially in highly cationic peptides, such as FE23 and KS22. An increased NaCl
concentration might shield the charges responsible for interaction, resulting in a delayed
binding process [101]. This phenomenon occurs due to sodium ions binding on deep sites
within the lipids’ head group region, leading to the complexation of lipids and a decrease
in the average area available for the peptide intermingling and final disposition within the
bilayer. Since highly cationic AMPs are likely to have a similar interaction mechanism, salt
cations compete for the same interaction sites, reducing the possibility of triggering any
possible damage to bacterial membranes. In other words, the closer packing of the lipids in
the presence of salt molecules leads to less potential destabilization of the lipid bilayer by
the membrane-active peptides [101,102].

Even though we failed to find MIC values for FE23 and KS22 when evaluated in
NaCl, growth-inhibitory activity was observed for both peptides (Table 9). KS22 inhibits
50% of growth at 125 µM for E. coli and 31.25 µM for S. aureus. Likewise, FE inhibits
50% of the growth of S. aureus at 125 µM; however, we failed to find the corresponding
value for E. coli. The higher activity of KS22 compared with FE23 (which showed higher
activity in Na2PHO4) is likely related to a stronger competition of sodium cations with less
positively-charged peptides. Given KS22’s higher charge, it has more affinity towards the
membrane’s lipids’ head group region, with a lower binding time for the peptide-membrane
complex. Therefore, when exposed to NaCl under the same conditions, the reduction of
the antibacterial effect is more marked in peptides with lower charges, specifically, FE23.

The differences in activity observed for the peptides towards the two different types
of bacteria evaluated (i.e., gram-negative vs. gram-positive) is most likely related to the
differences in bacterial surface charge distribution. This results in more or less inhibition
by interactions with the salt cations present in the medium [103].

Table 9. Inhibition in Bacterial Growth. Peptides’ concentration (µM) that have inhibitory effects on
bacterial growth.

Sequence
Concentration (µM)

E. coli S. aureus

VFVVVTLLKKVKLLC (VC15) 80 80

KLKKVTGKKMSKCMKCKIYVCS (KS22) 7.8 7.8

RTLFVCRVGD (RD10) 0.48 0.48

FTFYLPLFVCRRNPRPRRVSCRE (FE23) 3.9 3.9

Overall, the proposed DL model correctly predicted the AMP activity of the three pep-
tides; however, the obtained probability scores failed to show a correlation with the relative
potency of the peptides. FE23, KS22, and RD10 obtained scores of 0.9937, 0.9928, and 0.9916,
which indicated a similar potency that was not observed experimentally. Nonetheless, it is
important to keep in mind that the binary model considers not only antibacterial activity
but also antiviral, antifungal, and antiparasitic activities. Therefore, RD may have a higher
potency towards other microorganisms that were not in the scope of the present contribu-
tion. This hypothesis appears further corroborated in silico with the aid of a multilabel
model, where the highest predicted activity for RD was antiviral with a probability score
of 0.7103. Furthermore, AMPs-Net specific model correctly predicted the bacteriostatic
activity of both FE23 and KS22 with probability scores of 0.7066 and 0.7584, respectively.
Overall, the antibacterial assays validated our models’ potential to screen peptides in silico
and reduce the most promising candidates to a few that can be validated experimentally,
thereby saving time and other valuable resources.

As an additional validation of the predicting capacity of AMPs-Net, we performed
the same MIC assay with AHB-1. Even though the peptide showed no solubility issues,
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we failed to find the MIC value for any of the evaluated bacterial strains. Furthermore, no
growth inhibition was observed even at the highest concentration evaluated of the peptide,
i.e., 250 µM (Supplementary Table S2). The non-AM activity goes in accordance with the
prediction of AMPs-Net. More details are available in the supplementary material.

3.4. CP Validation

The Pearson correlation coefficient (PCC) was used here to quantify colocalization with
endosomal compartments and the percentage of area covered as a measure of the CNPs-
peptide nanobioconjugates that internalized cells successfully. Figure 8A,B,D compare the
internalization of bare chitosan nanoparticles (CNPs) and RD10 immobilized on CNPs
(CNPs-RD10 nanobioconjugates). The red fluorescent signal confirms the internalization
of CNPs and CNPs-RD10 nanobioconjugates; however, the merged channel shows high
colocalization levels with Lysotracker Green in both cases. CNPs-RD10 nanobioconjugates
show more non-colocalized regions than bare CNps, which confirms the role of RD10 as
a potent membrane-translocating peptide (Figure 8D). The colocalization of bare CNPs
with endosomes appears to have distributed all along the cytosol, while in the case of the
nanobioconjugates, they seemed to cluster in specific regions. These qualitative observa-
tions were confirmed quantitatively with both the PCC and the percentage of area covered
by the nanobioconjugates (Figure 8C), as evidenced by a statistically significant difference
in both metrics between bare CNPs and CNPs-RD10 nanobioconjugates. CNPs-RD10
nanobioconjugates reached a percentage of the covered area of 99.31 ± 0.5, while that of
bare CNPs was 89.16 ± 4.4. Additionally, the PCC for the CNPs-RD10 nanobioconjugates
approached 0.72 ± 0.02, while it was 0.81 ± 0.03 for the bare CNPs. Taken together, both re-
sults support the notion that once internalized, the CNPs-RD10 nanobioconjugates escaped
endosomes to a larger extent, reaching a higher cytosol coverage. Also, given the relatively
low positive charge of RD10, it is likely that the most plausible mechanism for endosomal
escape is direct translocation [104]. Further analyses need to be carried out to elucidate the
mechanistic details of internalization and intracellular trafficking. All in all, our findings
confirm that the discovery approach introduced here is well-suited for finding new and
more potent membrane-active peptides.

Figure 8. Cell-Penetration assay. (A) Internalization of bare CNPs into NHA cells (B) and CNPs-
RD10 nanobioconjugates (20X magnification, 3 h of exposure). The scale bar corresponds to 100
µM. (C) Quantification of colocalization between CNPs and CNPs-RD10 nanobioconjugates by the
Pearson correlation coefficient (PCC) and the fraction of cytosol area covered by CNPs and CNPs-
RD10 nanobioconjugates. There is a statistically significant difference between both treatments.
p ≤ 0.05 (*), p ≤ 0.01 (**). (D) Visual inspection of colocalization studies via confocal imaging. Yellow
arrows point to colocalization regions between the green and the red channels, showing CNPs or
CNPs-RD10 nanobioconjugates trapped in endosomes. The white arrows indicate non-colocalized
regions where CNPs or CNPs-RD10 nanobioconjugates likely escaped endosomes or reached the
intracellular space by different internalization mechanisms.
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3.5. Clinical Applications

Along with the development of antibiotics, bactericidal agents have been presumed
superior to bacteriostatic agents. However, in clinical practice, bacteriostatic pharmaceu-
ticals have been used to treat effectively multiple gram-positive bacterial infections and
are even preferred in some cases where the sudden death of the infecting bacteria might
lead to the release of exotoxins that can be dangerous for the patient [105]. Furthermore,
there is no solid evidence in the literature that corroborates that bactericidal antibiotics
are more effective clinically than bacteriostatic agents [106]. Therefore, the preliminary
results shown here for RD10 make it a promising candidate for further biocompatibility
and antimicrobial testing prior to pre-clinical and clinical trials. Specifically, it would be of
particular interest to evaluate its antiviral activity, which our model predicted as the most
important. Moreover, RD10 holds much promise in the pharmaceutical arena mainly due
to its bifunctional activity, which could be helpful in multiple clinical scenarios, including
cancer therapy, obesity, and neurodegenerative diseases treatment. [12,14–20].

In contrast, FE23 and KS22 have a much lower potential for clinical usage because
of their low solubility in buffers with compositions similar to that of plasma and their
high sensitivity to salts also present in plasma and blood. Even though in some cases the
loss of activity in media containing salts could be overcome by larger exposure times, this
solubility issue demonstrates that our discovery pipeline requires further optimization to
find clinically relevant candidates. For instance, our models could only select as active
candidates those with relatively low MIC values in NaCl (0.9% w/v), which might be
a challenging task considering that such information might be scarce.

Additionally, a more rational design would be needed to overcome the solubility
issues encountered. The IA models within our pipeline would focus on finding bioactive
motifs instead of complete sequences. Considering that the most stable peptides in buffers
containing similar salts concentrations of human plasma and blood might be obtained from
marine life [97], one could use the non-motif regions of the peptides from marine life as
templates to merge with the motifs found by IA. It is important to consider that the relative
position of these two regions within the peptide sequence is vital to maintaining or losing
the bioactivity of the original peptides.

Finally, the solubility of peptides might be enhanced by their immobilization on nano-
materials modified with polyethylene glycol, a polymer that has been widely used to
increase the solubility and stability of numerous biomolecules [107,108]. Thus, the mod-
ified nanobioconjugates could exhibit improved solubility, stability against degradation,
increased circulation times, and prolonged biological activity [109]. Furthermore, it has
been reported that some peptides significantly increased their activity against gram-positive
and gram-negative bacteria upon immobilization on nanomaterials compared with free
AMPs [110,111]. Therefore, the activities of FE23 and KS22 could be enhanced following
either of the proposed approaches and therefore re-evaluate whether they could eventually
undergo further testing to reach pre-clinical and clinical stages.

4. Conclusions

To the best of our knowledge, we proposed a new database that has a more signif-
icant number of antimicrobial peptides experimentally validated than other previously
recollected datasets. Our AMPs-Net outperforms all deep learning methods proposed thus
far and pioneers the implementation of graph representations to precisely describe the
relationship between atoms, which is fundamental for predicting peptides’ bioactivities
more accurately. Furthermore, besides the superior capacity of AMPs-Net for specific
antibacterial and antiviral activity prediction, it is the first deep learning model to study
the four main antimicrobial activities simultaneously.

Additionally, bioprospection of a peptide library derived from E. coli’s fragmented
genome through graph convolutional networks was performed to identify new antimicro-
bial peptide candidates. Three out of the four selected peptides were evaluated in vitro,
and all presented antimicrobial activity, therefore validating the virtual screening conducted
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with the aid of our artificial intelligence algorithms. Furthermore, through molecular dy-
namics simulations, we investigated in more detail the peptide-membrane interactions of
novel molecules and hypothesized possible mechanisms of action that will be studied in fu-
ture work. Our results show that the components of our proposed discovery pipeline work
properly and can be further optimized to enhance the velocity at which AMPs discovery
might take place as more experimental data become available.

RD10 was validated as a multifunctional bacteriostatic peptide and is a promising
candidate to study further as an antiviral molecule. Additionally, its biocompatibility needs
to be tested comprehensively via standardized tests in line with the ISO-10993 standard,
which is mandatory prior to move to pre-clinical and clinical assays. Even though the
developed neural networks correctly predicted the AM activity of the peptide sequences
FE23 and KS22, some crucial physicochemical properties related to solubility and stability
in physiological media (primarily due to the presence of salts) were disregarded in the
model’s design. This resulted in a significant loss of activity; however, we proposed to
address this issue in future work by engineering new sequences through a combination
of active and already known stable motifs derived from proteins of marine organisms.
This can be complemented by their immobilization on nanostructured materials as this
approach has been reported to favor half- and shelf-life and thermal stability for numerous
therapeutic proteins.

Notably, the significant reduction in the candidate molecules to test experimentally
(only 252) is advantageous for biopharmaceutical companies whose high-throughput
screening platforms can complete such tasks very rapidly and at a meager cost. All in
all, our work provides an appealing route for AMPs discovery that relies on a relatively
inexpensive computational framework that can be further optimized by running only
selected experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
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