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Abstract
Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch

on, or shelter within, the branches of coral colonies. This study examined habitat associa-

tions of hawkfishes, and explicitly tested whether hawkfishes associate with specific types

of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six loca-

tions from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A

total of 529 hawkfishes from seven species were recorded across all locations with 63% of

individuals observed perching on, or sheltering within, live coral colonies. Five species (all

except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habi-

tats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and
P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are

used disproportionately more than expected based on the local cover of these coral genera.

Habitat selection was consistent across geographic locations, and species of Pocillopora
were the most frequently used and most consistently selected even though this coral genus

never comprised more than 6% of the total coral cover at any of the locations. Across loca-

tions, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in

their abundance corresponded with local patterns of live coral cover and abundance of

Pocilloporid corals, respectively. These findings demonstrate the link between small preda-

tory fishes and live coral habitats adding to the growing body of literature highlighting that

live corals (especially erect branching corals) are critically important for sustaining high

abundance and diversity of fishes on coral reefs.
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Introduction
Strong microhabitat associations can have a major bearing on the distribution, abundance and
fitness of populations and/or species through the provision of resources (e.g., food, breeding
sites), and by mediating exposure to predators and competitors [1,2,3,4]. Species with a strong
reliance on a limited set of microhabitat types (i.e. habitat specialists) often have lower abun-
dances than their generalist counterparts [5,6,7,8]. However, specialist species may outcompete
and exclude generalists from using preferred microhabitats [9,10]. Currently, one of the most
pressing concerns in today’s rapidly changing environments is that highly specialised species
may be particularly prone to significant and widespread habitat degradation [5,11,12].

For many specialist and generalist small coral reef fishes (including juveniles of larger fishes)
and motile invertebrates, live corals provide an essential microhabitat offering food, shelter
from predation, or breeding sites [13,14,15,16,17]. In addition, studies have shown that the
abundance of coral reef fishes is strongly and positively correlated with live coral cover
[18,19,20]. Even more importantly, the individual abundance of many reef fishes has been
shown to decline in accordance with sudden or pronounced coral loss [21,22,23].

Branching corals, such as most species within the scleractinian families (e.g., Acroporidae
and Pocilloporidae), are key habitat-forming species on tropical reefs, yet they are highly sus-
ceptible to a wide range of natural and anthropogenic disturbances including climate-induced
bleaching, outbreaks of coral feeding starfish, disease, and severe tropical storms
[24,25,26,27,28]. The increasing incidence of these disturbances is leading to sustained declines
in live coral and loss of habitat structure at many locations [29,27]. How reef fishes are affected
by, and respond to, sustained declines in the availability of coral microhabitats depends on
their degree of habitat-specialisation and reliance on coral [21,22]. However, there is still a lack
of information on what coral species fishes prefer and if they have the ability to utilise alterna-
tive habitats following the loss of preferred coral habitats. Determining the specifics of reef fish
habitat requirements is important in understanding what elements of habitat are essential for
ecosystem function and resilience.

Previous research on habitat specialisation in coral-dwelling fishes has generally focussed
on newly settled or small benthic feeding fishes (e.g., [15,30,31]). There is however, a significant
knowledge gap in the level of habitat specialisation for other fish groups, especially predators.
Hawkfishes are small demersal reef predators, with 33 species distributed across the tropical
Western and Eastern Atlantic, Indian and Pacific Ocean [32]. Hawkfishes are generally
observed perched on raised substrata, often corals, which serve the purposes of protection
against larger predators, a vantage point for hunting small fish and crustaceans [32,33], and/or
for courting and spawning [34]. Despite this apparent association with live coral there is a lack
of information on the specific microhabitat preferences for most species of hawkfish. The
majority of research on habitat use in hawkfishes has focussed on a single species, the arc-eye
hawkfish Paracirrhites arcatus (e.g., [35,36]), while reproductive behaviour has been exten-
sively studied for another species, Cirrhitichthys falco (e.g., [37,38,39]). The objective of this
study, therefore, is to examine the patterns of habitat use by hawkfishes (family: Cirrhitidae)
and to determine the degree of reliance of individual species on live coral. Specifically, the aims
of the study are to i) quantify the distribution and abundance of hawkfish assemblages on shal-
low coral reefs across a broad geographic range, from Chagos in the Central Indian Ocean to
Fiji in the Central Pacific Ocean, ii) determine the affiliation and habitat selectivity of individ-
ual hawkfish species to live coral/habitat types, and iii) to determine whether habitat associa-
tions are consistent across the geographic scale of the study.

Habitat Use of Hawkfishes

PLOS ONE | DOI:10.1371/journal.pone.0138136 November 3, 2015 2 / 17



Materials and Methods

Survey sites
Surveys of abundance and habitat use for hawkfishes (family: Cirrhitidae) were recorded at six
geographically distinct locations across both the Indian (Chagos, Aceh, Christmas Island (CI),
and Western Australia (WA)) and Pacific (Great Barrier Reef (GBR) and Fiji) Oceans. The dis-
tances between these locations were greater than 2,500 km and spanned a total of 11,000 km of
geographic distance. A hierarchical sampling design was used to record abundance and habitat
association with 3–6 replicate transects within each of 2–15 sites at each location (see Fig 1 for
details). Data used in this study was derived from independent studies conducted in the six dif-
ferent locations, such that there were slight variations in the sampling intensity and units used.
However, all surveys were conducted at a water depth of 3–6 m, by divers using SCUBA
between 08:00 and 17:00 hours during the Austral summer months. No specific permissions
were required for these locations/activities. All fieldwork and data collection was observational
and non-extractive. The field studies did not involve endangered or protected species.

Habitat availability
Substratum composition was recorded to document the availability of benthic groups. Habitat
data was derived from replicate 20 m line intercept transects from the GBR and 30 m point
intercept transects (PIT) from Aceh, Christmas Island, Fiji, and 50 m from Chagos (see Fig 1
for replicate details). The substratum was recorded under uniform points (0.5 m intervals) for
PIT. Where possible, live coral was recorded to species level, but subsequently pooled to the fol-
lowing nine habitat categories; Acropora, Pocillopora, Porites, Stylophora, other hard coral,
dead coral (intact but dead coral colonies), pavement, non-coral and soft coral. This technique
provided an estimate of the habitats available to fish at each location. Variation in proportional

Fig 1. Reefs and number of sites sampled within each location. Key: number of sites (number of abundance transects, number of substrate transects).
Location abbreviations: CI = Christmas Island, WA =Western Australia, and GBR = Great Barrier Reef.

doi:10.1371/journal.pone.0138136.g001
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cover of different habitat categories was analysed using a permutational multivariate analysis
of variance [40] in R with the package vegan [41].

Community patterns in hawkfishes
To determine the abundance of hawkfishes, visual belt transects were conducted at each loca-
tion. Transects ranged from 10 x 1m in the GBR to 30 x 1 m in Chagos, Aceh, Christmas Island,
and Fiji and 50 x 2 m in WA (see Fig. 1 for replicate details). Variation in the transect dimen-
sions (mainly width) are not expected to greatly affect estimates of abundance (sensu [42]), and
are within the range of dimensions (especially the width of transects) that have been used pre-
viously to survey hawkfishes [35]. A total of 19 km2 was surveyed across the six locations. To
standardise differences in sampling area, abundance was converted to density (number of fish
per m2) for each transect and compared among locations using ANOVA. To explore variation
in hawkfish assemblage structure across and within geographic locations, a non-metric multi-
dimensional scaling (MDS) analysis based on Bray-Curtis dissimilarity was used. The BIOENV
routine was then used to explore what habitat variables best correlate (Spearman rank correla-
tion) to the observed hawkfish assemblages [43]. Analyses were conducted in R using the pack-
age vegan.

To further identify habitat variables and parameters that may predict the observed abun-
dance patterns among hawkfishes, distance-based linear models (DISTLM) were conducted on
the two most abundant species, Paracirrhites arcatus and P. forsteri. The analyses were based
on the abundance of hawkfishes and the benthic substratum recorded along each transect, with
the dependent variable being the abundance of each hawkfish species and the predictor vari-
ables the cover of Acropora, Pocilloporidae, Porites, other hard coral (OHC), and dead coral
(DC) which included dead coral, rubble, and pavement. All combinations of predictor variables
were considered in the models, with the best combination of variables producing the lowest
Akaike Information Criteria (AICc) with the least number of variables. In addition, all combi-
nations within two AICc units of this model were retained [44]. Weighted AICc values were
summed across all possible models to explore the relative importance of each variable. Analyses
were performed in PRIMER and PERMANOVA+ V6 [45].

Habitat association
Habitat association of hawkfishes across the six locations were conducted simultaneously dur-
ing the surveys to document patterns of microhabitat use. For each hawkfish encountered dur-
ing the visual surveys, the substratum on which individuals were perching on or sheltering
within, when first observed, was recorded. Substratum categories were the same as those used
for the benthic surveys. Habitat specialisation for each hawkfish species was then determined
using Smith’s measure of niche breadth (FT). FT is a standardised measure of specialisation
and niche breadth that evaluates the range of resources used by a species within a location. Cal-
culated values for each species and location are between a minimum of 0 (habitat specialist)
and a maximum of 1 (habitat generalist). This measure takes into account resource availability
and is much less sensitive to the selectivity of rare resources over other measures [46]. Niche
breadth (FT) was calculated with 95% confidence intervals [46] for each of the nine habitat cat-
egories at each site using:

FT ¼
X

ð ffiffiffiffiffiffiffi
pjaj

p Þ

where pj is the proportion of individuals using habitat category j and aj the proportion of total
habitats comprised by resource j. Confidence intervals (95%) were calculated using the arcsine
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transformation:

sin½x � 1:96

2
ffiffiffiffi
Y

p �

where x = Arcsin (FT) and Y = Total number of individuals studies = ∑Nj.
Niche breadth was calculated for each species in each location, providing comparisons of

overall levels of specialisation in habitat use among locations and species. Species without suffi-
cient records of habitat association at each location were omitted from the analysis.

Size specific habitat relationships
For individual hawkfishes associating with live coral colonies in Christmas Island and Fiji, the
size of individual fish (TL, nearest cm) and size of their host colony (maximum diameter: 0–20,
20–30, 30–40,> 50 cm) was estimated to examine if there was a relationship between fish size
and coral colony size. Separate regression analyses were conducted for P. arcatus and P. forsteri
(pooled across the two locations), and P. hemistictus from Christmas Island. To determine if
fish coral relations differed between locations, the analysis was run with and without location
as a random factor. The two models were compared (likelihood ratio test) and location was
found to be non significant for both P. arcatus (χ2 = 0.009, P = 0.94) and P. forsteri (χ2 = 0.000,
P = 1.00). Results were therefore reported without location as a random factor in the model
(package lme4 in R). Size-specific habitat use (Acropora, Pocilloporidae, and other live hard
corals) was tested for these three hawkfish species using ANOVA.

Habitat selectivity
Resource selectivity ratios were calculated to investigate if hawkfishes associate with any spe-
cific habitats disproportional to availability. The resource selectivity ratios were based on the
nine benthic categories identified above as not all coral species were present at all sites and
locations, and pooling coral data to genus facilitated greater comparison of habitat selection
among locations. Resource selectivity functions were calculated for each hawkfish species, at
the reef level, for each of the nine habitat categories following [47] Model Design I, Sampling
Protocol A, which allowed for random sampling of used resource units and available resource
units at the population level. Selection ratios (wi) were calculated with the formula:

wi ¼ oi=PrðiÞ

where oi is the proportion of all habitat occupied by a species of hawkfish in which the habitat
is i and Pr(i) is the proportion of total available habitat that is i [47]. Bonferroni corrected 95%
confidence intervals (CI) were calculated for each selection ratio to account for multiple com-
parisons using the formula:

Za=2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½oið1� oiÞ=ðU þ PrðiÞ2Þ�

p

where Za/2k is the critical value of the standard normal distribution corresponding to an upper
tail area of a/2k, a = 0.05, k = the total number of habitats use, and U+ is the total number of
habitats of all categories used by that species of hawkfish. A significant positive use of habitat
was indicated if selection indices (± 95% CI) were above the value of one, while a value (for
each species within a location) around one was regarded as habitat used in equal portions to its
availability, and a value below one indicates disproportionally low use of a habitat [47]. Selec-
tion ratios were only calculated for sites in which more than five individuals were recorded per
hawkfish species.
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Results

Habitat availability
The cover of live coral (hard and soft coral combined) differed significantly between locations
(F5,9 = 6.34, P<0.001) and among reefs within locations (F9,40 = 10.37, P<0.001). Hard coral
cover was greatest at Christmas Island (59.0% ± 2.6 SE), lowest in Aceh and Fiji (26% ± 2.6 and
27% ± 1.5, respectively) and intermediate in Chagos and Australia’s Great Barrier Reef (35–
40%, Fig 2A). Dead coral cover ranged from 19 to 67%, contributing a significant proportion of
the substrate in some locations. Coral assemblages tended to be dominated by Acropora species
and varied in cover from 5% in Fiji up to 22% in Chagos (Fig 2B). Pocillopora cover was rela-
tively low across all locations ranging from 2% cover in Aceh to 6% in Fiji. The other major
genera of hard corals, Porites spp. ranged between 1% cover in Fiji up to 9% in Chagos. Other
hard corals made up the remaining component of the live coral cover and was particularly high
in Christmas Island (28%).

Community patterns in hawkfishes
A total of 526 individual hawkfishes from seven different species were recorded across the six
locations. Overall, Paracirrhites arcatus (268 individuals) and P. forsteri (185 individuals) were
the most abundant, while Cirrhitichthys oxycephalus, P. hemistictus, C. falco and Cirrhitus pin-
nulatus were much less common (25, 18, 16, and 13 individuals, respectively). Only one Neocir-
rhites armatus individual was observed in Vauaqava (Fiji) and no species were observed from
the remaining 17 species known to exist within the study area, suggesting they are either rare,
extremely cryptic or occur in locations/habitats that were not surveyed (e.g., sheltered and
deeper sites, different reef zones). Paracirrhites arcatus was the most abundant species overall,
but displayed marked variation among sites, from 0–0.08 fish per m2 at Aceh and Christmas
Island, respectively (Fig 3). Paracirrhites forsteri was the only species recorded on reefs at all six
locations and was four times more abundant in Aceh (mean 0.04 fish per m2 ± SE 0.01) than
the other five locations (range: 0.004–0.009 fish per m2). The remaining five species were rela-
tively uncommon, recorded at only one or two of the six locations.

Composition of hawkfish assemblages varied among the six locations (PERMANOVA F4,34
= 34.62, P =<0.001). The GBR and Aceh hawkfish assemblages were separated from those of
the Fiji, Chagos and Christmas Island assemblages along the first dimension of the MDS (Fig
4). The combination of habitat variables that best correlates with hawkfish community patterns
across locations were Pocilloporidae and dead coral (Spearman rank correlation: 0.124). Aceh
and GBR assemblages were characterised by a relatively high abundance of P. forsteri, Christ-
mas Island by P. hemistictus, and Fiji by P. arcatus (Fig 4).

At the species level, 23% of the variation in P. arcatus abundance was explained best by the
combined proportional cover of all live coral groups, and revealed no support for dead coral
substrata (Table 1). In addition, summed AICc weights further support the importance of live
corals in predicting abundance (Table 2). Combinations of all substrata groups tested explained
weak relationships between habitat and the abundance of P. forsteri (Table 1), although
summed AICc weights showed strong support for Pocilloporidae corals in explaining abun-
dance patterns along with high variation among locations (Table 2). Relationships between
abundance and available resource habitats could not be confidently tested for the other five
species of hawkfish due to their low occurrences.

Habitat Use of Hawkfishes
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Fig 2. Mean percentage cover (± SE) of habitat categories at six study locations. (A) Three non-live scleractinian categories, soft coral, and pooled live
hard coral (Total HC). (B) Four common coral genera and pooled other hard live corals (Other HC). Means for each location calculated from transects across
all reefs.

doi:10.1371/journal.pone.0138136.g002
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Habitat associations
Despite the relative low cover of Pocilloporidae across all locations (max 6%), the use of these
corals by hawkfish was relatively high. Overall, 45% of all hawkfish were observed sheltering or
perching on Pocilloporidae and 26% on Acropora species. A high percentage of P. forsteri, P.
arcatus, C. falco and the single individual of N. armatus were recorded on species of Pocillopor-
idae regardless of the local availability of these corals (Fig 5). Among species of Pocilloporidae,
P. arcatus was more commonly observed on Pocillopora verrucosa (21% ± SE 2.5), P. damicor-
nis (14% ± SE 2.1), and P. eydouxi (11% ± SE 1.9) and C. falco was commonly observed with P.
verrucosa (19% ± SE 10.1). All other species, except C. pinnulatus, associated with P. eydouxi
(Fig 5).

Niche breadth (FT) with 95% confidence intervals (CI) for P. arcatus varied from 0.39 (± CI
0.01) in Fiji up to 0.65 (± CI 0.01) and 0.82 (± CI 0.01) for Chagos and Christmas Island respec-
tively. For P. forsteri, niche breadth ranged from 0.43 (± CI 0.17) and 0.48 (± CI 0.01) for GBR
and Aceh respectively to 0.79 (± CI 0.08) and 0.81 (± CI 0.01) for Christmas Island andWA
respectively showing some variability between locations within species but an overall low spe-
cialisation of habitat use (i.e., values close to 1). Habitat specialisation was also low for P. hemi-
stictus 0.82 (± CI 0.06) and C. oxycephalus 0.53 (± CI 0.07) but high for C. pinnulatus 0.20 (±
0.15) in the observed locations (Christmas Island, Chagos and Aceh respectively).

Size specific habitat relationships
There were significant differences among the mean observed size (TL) of the three most com-
mon hawkfish species (F2,2 = 50.26, P<0.001) ranging from 7.5 cm (± SE 0.23) for P. arcatus,
to 9.3 cm (± SE 0.66) for P. forsteri to 15.5 cm (± SE 0.32) for P. hemistictus (S1 Fig). However,
there was no evidence of size-specific habitat use for these three abundant species (F2,2 = 0.85,

Fig 3. Mean (per m2 ± SE) relative abundance of seven hawkfish species at six locations.

doi:10.1371/journal.pone.0138136.g003
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Fig 4. Multidimensional-scaling plot (MDS) of reefs within locations based on hawkfish community composition. Each location point represents a
reef within the location. Location abbreviations: CI = Christmas Island, and GBR = Great Barrier Reef. Position of hawkfish species represents correlations
between fish assemblages and reefs based on habitat variables. Plot stress = 0.043.

doi:10.1371/journal.pone.0138136.g004

Table 1. Best models for predicting the influence of available substrata on the abundance of Paracirrhites arcatus and P. forsteri.

Model K AICc ΔAICc AIC wt R2

P. arcatus

Acropora, OHC, Pocilloporidae, Porites, Location 7 1384.6 0 0.342 0.226

Acropora, OHC, Pocilloporidae, Porites 6 1385.2 0.6 0.254 0.218

P. forsteri
Pociiloporidae, Location 4 1298 0 0.169 0.137

Acropora, Pocilloporidae, DC, Location 6 1298 0 0.169 0.151

Pocilloporidae, OHC, Location 5 1298.6 0.6 0.125 0.142

Acropora, Pocilloporidae, Location 5 1298.7 0.7 0.119 0.142

Acropora, Pocilloporidae, OHC, Location 6 1299.4 1.4 0.084 0.146

Pociiloporidae, DC, Location 5 1299.7 1.7 0.072 0.139

Pociiloporidae, Porites, Location 5 1299.7 1.7 0.072 0.139

Acropora, Pocilloporidae, Porites, DC, Location 7 1299.9 1.9 0.065 0.151

Distance–based linear models (DISTLM) for P. arcatus and P. forsteri across all locations. Best models shown are based on Akaike Information Criteria

(AICc) values and weighted AIC values (AIC wt) and are within 2 units of the lowest AICc value. Predictor variables included Acropora, Pocilloporidae,
Porites, other hard coral (OHC), and dead coral (DC). All models contained the random factor location.

doi:10.1371/journal.pone.0138136.t001
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P = 0.496) with similar sized individuals within each hawkfish species associating with a range
of habitat types, including species of Pocillopora, Acropora, and other corals.

There were statistically significant but very weak relationships observed between body size
(TL) and coral colony size (max dia.) for P.arcatus (R2 = 0.10, F1,68 = 18.87, P<0.01; y = 0.75x+-
5.89) and P. forsteri (R2 = 0.34, F1,17 = 10.20, P = 0.01: y = 2.41x+5.08), however these relation-
ships are likely to be biologically insignificant. The largest hawkfish species P. hemistictus, did
not reveal a relationship (R2 = 0.06, F1,15 = 0.12, P = 0.73) (S2 Fig). Individual P. arcatus and P.
hemistictus associated with a wide range of colony sizes (8 to>50 cm mean dia.) regardless of
body size. While P. forsteri revealed a slight positive but non-significant relationship between
TL and colony size they were not observed to associate with coral colonies larger than 40 cm
max dia. despite their availability. Overall, these species did not show any evidence of size spe-
cific habitat relationships with many large individuals of all species found to associate with
small colonies.

Habitat selectivity
Based on the frequency of use relative to the proportional availability of the substrata, habitat
selectivity of hawkfishes varied among species and among locations. Four of the six hawkfish
species recorded selected live coral habitats in greater proportion than other available habitats
(Table 3). The two most widespread species P. arcatus and P. forsteri consistently selected for
Pocillopora and Acropora corals. Interestingly, P. arcatus selected Pocillopora corals at almost
all reefs where it was observed, the exception being in Chagos, where Stylophora corals were
relatively more abundant and the preferred coral genera. Similarly, C. falco selected for Pocillo-
pora whilst P. hemistictus selected other hard corals and pavement habitats, although both
these species were only recorded at single locations. In contrast to those species that selected
for live corals, both C. pinnulatus and C. oxycephalus displayed positive selection for pavement
habitats.

Discussion
Broad geographic surveys of hawkfishes revealed differences in overall abundance and assem-
blage structure across locations. Paracirrhites arcatus was the most abundant of the seven
recorded species and was the dominant species in Chagos, Aceh and Fiji. Also relatively abun-
dant, P. forsteri was the only species recorded across all locations. Variation in abundance
among locations and reefs suggest that a multitude of processes (e.g., recruitment, predation,
competition) are acting on these species over their geographic range. The majority of species

Table 2. Relative importance of each habitat variable on the abundance of Paracirrhites arcatus and
P. forsteri.

P. arcatus P. forsteri

Acropora 0.89 0.5

Pocilloporidae 1 1

Porites 0.91 0.2

OHC 1 0.33

DC 0.4 0.37

Location 0.56 1

Summed AICc weights (across all models) for abundance of P. arcatus and P. forsteri predictor variables.

OHC = other hard corals, DC = dead coral.

doi:10.1371/journal.pone.0138136.t002
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Fig 5. Proportion of available versus used habitat categories for hawkfishes. Proportion of available habitat categories (black bars) across all locations
and the proportion of fish that each benthic category was used by each hawkfish species (white bars). Figures on the left display habitat associations for each
species across all habitat categories and on the right among different species of Pocilloporidae. Note scale differences for available. Abbreviations:
DC = dead coral, OHC = other hard corals, Acro = Acropora, Pav = pavement, Por = Porites, Poc = Pocilloporidae, SC = soft coral, NC = Non-coral, P.ve r =
Pocillopora verrucosa, Oth Poc = Other Pocilloporidae, P.eyd = P. eydouxi, P.dam = P. damicornis, Styl = Stylophora, P.mend = P.meandrina.

doi:10.1371/journal.pone.0138136.g005
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were associated with live coral, with four of the seven species displaying positive selection for
live pocilloporid and acroporid coral colonies. At local scales, colonies of Pocillopora were con-
sistently selected by P. arcatus, P. forsteri and C. falco and appear to be the favoured habitat
despite the relatively low abundance of this coral at most locations (2–6% cover). Accordingly,
the availability of live coral colonies explain 15 and 22% of the variation in the abundance of P.
arcatus and P. forsteri respectively across locations, suggesting that live branching corals play
some role in shaping abundance and distribution patterns of hawkfishes.

Similar habitat associations have been reported previously in Hawaii and the lagoons of
French Polynesia where P. arcatus used Pocillopora colonies disproportionately to their avail-
ability [35,36]. This study shows that this selection is conserved across a wider geographic
range for P. arcatus and also extends to P. forsteri and C. falco. In addition, the former two spe-
cies showed strong selectivity for Acropora habitats in over half of the reefs where present.
Acropora and Pocillopora colonies are often large (e.g., A. hyacinthus, P. eydouxi) or form
expansive thickets (e.g., A. formosa, P. damicornis) and are proposed to provide two important
functions for hawkfishes. Firstly, this structure provides an important shelter through the avail-
ability of a complex structure and deep refuge spaces for small fishes to retreat into when
threatened by predators [35]. Secondly, these structures are an important habitat for prey

Table 3. Habitat selectivity of hawkfishes.

Location Reef Stylophora Pocillopora Acropora Porites OHC DC Pavement Non-coral Soft coral

P. arcatus Chagos Great Chagos o o + o o o o o o

Peros Banhos + o o o o o o o o

Salamon + o o o o o o o o

Fiji Matuku + + o o o o

Totoya + + + − o − o

Tuvu Na Sici + + o o o − o

Vuaqava + + o − o − o

CI Ethel Beach + o + o o o o

Flyingfish Cove o + = o = + − o o

Jacksons Point o + + = + o o o

Ryans Ravine o + + = o o o o

Thomas Point o = + = o o o o

Thundercliff o + = − = − + o o

P. forsteri Aceh Pulau Aceh + o o o o o o

Pulau Weh + + + − − o o o

Sumatera + o o o o o o

CI Thundercliff o = = − + o + o o

C. oxycephalus Chagos Salamon o o o o o o + o o

P. hemistictus CI Thundercliff o o o − + o + o o

C. falco Aceh Pulau Weh + o o o o o o o

C. pinnulatus Aceh Pulau Weh o o o o o + o o

Sumatera o o o o o + o

‘+’ indicates habitat used significantly more than expected,

‘ = ‘ habitat used in proportion to availability,

‘-‘ habitat used significantly less than expected,

‘o’ habitat not used.

OHC = other hard coral,

DC = dead coral.

doi:10.1371/journal.pone.0138136.t003
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[48,49] and may provide a structure from which to launch an attack [50,51,52]. Small coral-
dwelling fishes (e.g., damselfish) and crustaceans are important prey items for hawkfishes
[50,53,54] and are known to be abundant within live complex colonies [16,49]. Interestingly,
DeMartini [55] reported that approximately 60% of predatory strikes by P. arcatus were on the
substratum rather than the water column, and of these, 81–96% were directed at prey on dead
coral and rocks, as opposed to within live coral colonies. This relationship implies corals may
be favoured as a shelter or raised platform from which P. arcatus can launch attacks and defend
their territory rather than as a prey source. This feeding strategy may vary among species, but
regardless of the mechanisms, these hawkfishes appear to have a clear preference for live Acro-
pora and pocilloporid species.

While the majority of hawkfishes were recorded on live coral, C. oxycephalus and C. pinnu-
latus both selected for pavement habitats. Individuals of C. oxycephalus were observed on all
categories of live coral, but the majority were documented on pavement habitats. It appears
that this species uses this microhabitat proportionately more for daily activities than nearby
live corals, although this may make them more vulnerable to predation. Cirrhitus pinnulatus
appears to be a habitat specialist, displaying a narrow niche breadth and only documented on
pavement microhabitats. This species is large (ca. max 280 mm TL) and has markings and col-
ouration complementing non-coral hues and patterns. These physical characteristics suggest
that this species is more suited to non-coral areas of the reef using camouflage and spaces
between colonies and within the reef matrix for shelter rather than among coral colony
branches. Interesting, C. oxycephalus and C. pinnulatus are widespread species but were only
documented in Chagos and Aceh respectively. Clearly, further research is needed to elucidate
differences in microhabitat requirements and the underlying mechanisms among hawkfish
species.

In this study, the majority of hawkfishes were found associating with live coral, and while
five of the seven species appeared to preferentially associate with live coral habitat, they do not
appear to be obligately dependent on live corals and often associate with alternative, non-
preferred habitats. This was supported by a low to medium niche breadth for all but C. pinnula-
tus among locations suggesting that these species are habitat generalists but with strong habitat
preferences, with species either using these alternative habitats for specific actions or when pre-
ferred habitats are scarce or unavailable. Across the study sites, Pocillopora only accounted for
2–6% cover. Thus, given the rarity of Pocillopora, these hawkfishes may be forced to associate
with alternative habitats. The rarity or loss of preferred habitats may have indirect effects on
hawkfish fitness if alternative habitats do not fully provide essential resources (e.g., shelter,
access to prey, prey capture success). Alternatively, hawkfishes may utilise other microhabitats
for different functions within their territory (e.g., territory defence, mate guarding). Hawkfishes
are extremely territorial, with estimates of territory size ranging from ca. 3 m2 (female C. falco,
[37]) to ca. 150 m2 (male P. hemistictus, [34]). Hawkfishes move around within a defended ter-
ritory, and documented microhabitats may not offer any specific ecological benefits other than
a stepping-stone between important functional habitats. Furthermore, individuals may utilize
different colonies during the day (feeding and territory maintenance) versus night (shelter).

Size of coral colonies may also relate to suitability as a shelter or availability of prey, larger
hawkfish potentially require larger colonies with wider refuges and more prey than smaller
bodied counterparts. Previous research has found that P. arcatus preferred large, opened-
branched Pocillopora colonies but may use smaller, more tightly branched colonies when their
preferred habitat is rare or absent [35]. The present study found no evidence for ecologically
significant relationships between total length (TL) and the type of live coral used, or TL and
colony size (max dia.) for P. arcatus, P. forsteri, and P. hemistictus. There was a weak positive
correlation between size of P. forsteri and coral colony size, although large individuals were still
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observed on small colonies and vice versa for all three species investigated, inferring size of
coral colonies present does not have a strong effect on habitat preference of these hawkfish spe-
cies. For P. forsteri this may be an artefact of the size range observed in this study (maximum
size 13 cm TL) as this species reaches ca. 22 cm TL [32]. Additionally, location and the defence
of food and sexual mates rather than shelter per semay explain the weak relationships between
fish and colony size and the presence of individuals perching on colonies that appear too small
for them to shelter within.

While the availability of preferred habitats (e.g., Pocillopora spp.) partially accounts for
these large-scale differences in patterns of abundance, the local abundance and composition of
hawkfish assemblages are likely to be structured by a range of other factors, including inter-
specific competition, predation, prey availability and variation in larval supply and settlement
of individual species. Many hawkfish species maintain a polygamous social structure with a
single dominant male and several smaller subordinate females existing in non-overlapping ter-
ritories [34,54,56]. While it has been hypothesised that territories are maintained to defend
optimal microhabitats (e.g., coral colonies), recent evidence suggests that females defend food
resources whereas the primary concern of males is defending territories against male conspecif-
ics [54]. Substratum characteristics (e.g., coral cover, composition, complexity) may however
still play a role in influencing territory size and some less dominant individuals may be forced
to associate with, or occupy sub-optimal microhabitats. This may partially explain why hawk-
fish are not always observed on preferred habitat. In addition, environmental conditions (e.g.,
water quality, turbidity) and larval dispersal may also explain variations in distribution and
abundance of hawkfish that are not fully explained by differences in benthic cover and
composition.

The preferred hawkfish habitats, Pocillopora and Acropora colonies are highly susceptible to
both physical and biological disturbances. Acroporid and pocilloporid corals are directly tar-
geted by coral feeding starfish [57]; are vulnerable to climate induced coral bleaching [58] dis-
ease [59]; and their morphology renders them particularly susceptible to destruction from
tropical storms [60]. In addition to reductions and degradation of available habitats, the loss of
potential prey that is associated with these habitat types is expected to have a negative impact
on these fishes. This study shows that hawkfishes displayed some flexibility in habitat use, sug-
gesting they may not be significantly affected by patchy disturbances, although comprehensive
and extensive coral loss is expected to have a detrimental affect on the abundance of the coral-
dwelling species. For example, Pratchett et al. [22] documented that P. forsteri experienced sig-
nificant declines in abundance following coral bleaching which resulted in greater than 50%
coral loss. Interestingly, the same study found that C. oxycephalus increased in abundance fol-
lowing coral loss, suggesting habitat versatility is an advantage under a low-moderate coral loss
scenario. If coral-dependent species of hawkfishes are impacted by environmental distur-
bances, there may be broader trophic consequences. Hawkfishes are important predators of
small fishes and invertebrates on the reef as well as possible prey for larger fishes. Therefore,
the loss or decline of these species may have far reaching effects for coral reef food webs.

This study illustrates the importance of live coral habitats for a small reef predator and
builds on the growing list of fishes that have some dependency on live coral as habitat. The
majority of these species appear to be habitat generalists but show strong selectivity for specific
coral habitats when available (namely Acropora and Pocilloporidae). While the reasons behind
the tight association between some hawkfishes and coral identity remains unresolved, it is likely
that healthy branching live coral habitat provides important shelter from larger predators (e.g.,
[61]) as well as supporting the abundance and diversity of prey within their territories [49].
Investigating the specific habitat use and selection of reef fishes enables us to better appreciate
how disturbances will impact fish communities and understand the flow on consequences for
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reef ecosystems. For some hawkfish species, their apparent preference for highly susceptible
coral species may not be a successful strategy given the decline in coral cover at many locations
(e.g., [27,29,62]) but their flexibility in habitat use may assist them following partial coral loss.
For species that appear not to associate or select live coral habitats, the loss of live coral may
have indirect effects, although further work on the effects of habitat disturbance on cryptic spe-
cies is still required [15]. Additionally, it appears that for all these species, processes other than
coral cover and composition also contribute to differences in abundances and distribution and
drive patterns across geographic regions.

Supporting Information
S1 Fig. Fish size and habitat association.Mean size (total length ± SE) of each hawkfish spe-
cies found associating with Pocilloporidae and Acropora species, and other hard coral species.
(EPS)

S2 Fig. Relationship between fish length and coral size. Linear regression of fish length (total
length cm) and coral size (max dia. cm) for three species of hawkfish.
(EPS)
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