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Abstract: Chemical investigation of an Antarctic deep-water octocoral has led to the isolation of four
new compounds, including three illudalane sesquiterpenoids (1–3) related to the alcyopterosins, a
highly oxidized steroid, alcyosterone (5), and five known alcyopterosins (4, 6–9). The structures were
established by extensive 1D and 2D NMR analyses, while 9 was verified by XRD. Alcyopterosins are
unusual for their nitrate ester functionalization and have been characterized with cytotoxicity related
to their DNA binding properties. Alcyopterosins V (3) and E (4) demonstrated single-digit micromolar
activity against Clostridium difficile, an intestinal bacterium capable of causing severe diarrhea that
is increasingly associated with drug resistance. Alcyosterone (5) and several alcyopterosins were
similarly potent against the protist Leishmania donovani, the causative agent of leishmaniasis, a
disfiguring disease that can be fatal if not treated. While the alcyopterosin family of sesquiterpenes is
known for mild cytotoxicity, the observed activity against C. difficile and L. donovani is selective for
the infectious agents.

Keywords: alcyopterosin; Clostridium difficile; illudalane; Leishmania donovani; sesquiterpene

1. Introduction

Corals are encountered from the tropics to the polar seas, found on seamounts or
geological formations up to 6000 m below the ocean’s surface [1,2]. In the south, corals are
separated by the Antarctic Circumpolar Current from the contiguous oceans resulting in
an ecological niche [3,4]. Biochemical knowledge of deep-water corals from Antarctica is
impeded by the remoteness and extreme conditions required for access [5,6], leading to
great interest in coral natural products for ecological and biomedical studies [7–9]. Past
research suggests that deep-water coral species offer potential drug discovery resources
from the terpenoids class, ranging from mono- to triterpenes [10–12]. Various cold-water
terpenoids from deep-sea soft corals include the paesslerins [13], ainigmaptilones [14],
and keikipukalides [6], many of which exhibit moderate cytotoxicity toward either human
cancer cell lines or microbial pathogens [8].
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Originally found in fungi [15], illudalane sesquiterpenes have also been isolated from
deep-sea corals [16,17] and marine sedimentary fungi [18]. Alcyopterosins are illudalane
metabolites reported from the Antarctic soft corals Alcyonium paessleri and A. grandis that
display terminal chlorine, hydroxyl, or nitrate ester moieties at the C-4 position of the
aliphatic side chain [16,17]. Nitrate in seawater is considerably less abundant than, for
example, the halides, so the appearance of a nitrate ester is unexpected and, to date,
found exclusively in this class of marine natural products. We had the opportunity to
study Alcyonium sp. from deep-water communities near Shag Rocks in the Scotia Arc of
Antarctica. Six known alcyopterosins and three new ones (1–3) were obtained, in addition
to a highly oxidized steroid, alcyosterone (5) (Figure 1). The metabolites were screened in
a number of anti-infective assays and several showed promise against Clostridium difficile
and Leishmania donovani.
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Figure 1. Terpenoids isolated from a deep-water Antarctic octocoral Alcyonium sp.

2. Results and Discussion

Coral specimens were collected during a 2013 cruise to the Scotia Arc in the Southern
Ocean near Shag Rocks, at a depth of between 126 and 130 m. Phylogenetic analysis was
conducted on one specimen (WAM Z97931) using the msh1 sequence. The coral clustered
with other known Alcyonium spp. from the Southern Ocean region, but was divergent from
those species (Figure S1), leading to its current identification as Alcyonium sp. indet.

The dichloromethane/methanol (1:1) extract of the freeze-dried coral was partitioned
between ethyl acetate and water, and the lipophilic partition was separated using a gra-
dient normal-phase medium pressure liquid chromatography (MPLC) system, yielding
eight fractions. Several MPLC fractions were chosen for HPLC purification based on the
characteristics of their 1H NMR spectra. In particular, the mid- and late-polar fractions
displayed 1H NMR signals characteristic of the previously reported alcyopterosins [16,17],
in particular the aromatic singlet (H-8) and a midfield oxymethylene (H2-4). Fractions F,
G, and H, eluting roughly between 60–90% ethyl acetate in hexane, were found to harbor
alcyopterosins E (4), C (6), G (7), 4,12-bis(acetyl)alcyopterosin O (8), and alcyopterosin L (9)
(Table S1). Two new alcyopterosins (1, 2) were found in the earlier eluting MPLC fractions,
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D and E, and fraction H was found to contain the previously undescribed hydrolysis
product (3) of alcyopterosin E (4), along with 4.

Alcyopterosin T (1) displayed an HRESIMS [M + Na]+ at m/z 344.1460, which agrees
well with C17H23NO5Na (calcd m/z 344.1468), and sharp IR bands at 1640 and 1280 cm−1

were consistent with the presence of a nitrate moiety. The 1H NMR spectrum (Table 1)
displayed nine well-resolved signals, two of which were coupled triplets while the other
seven were singlets. The HSQC spectrum identified the nine protonated carbon signals,
and the additional seven non-protonated carbon signals were evident from the HMBC
spectrum. Six carbon shifts in the olefinic region could be cyclized into an aromatic ring
based on HMBC correlations (Figure 2) of the deshielded methyl group at δH 2.38 (C-13)
to C-6 (δC 131.4), C-7 (δC 135.9) and C-8 (δC 128.0); H-8 (δH 7.06) to C-2 (δC 143.2), and
C-6; H2-10 (δH 2.73) to C-2 and C-8; H2-1 (δH 2.79) to C-9 (δC 143.4); H2-12 (δH 5.16) to
C-2 and C-3 (δC 131.1); and H2-5 (δH 3.15) to C-3 and C-7. Additional HMBC correlations
between both H2-1 and H2-10 to C-11 (δC 40.4) and C-14/15 (δC 29.7) established a fused
five-membered ring on the aromatic ring.

Table 1. 1H and 13C NMR Data for Alcyopterosins T, U, and V (1–3).

Position
Alcyopterosin T (1) Alcyopterosin U (2) Alcyopterosin V (3)

δC, 1 Type δH, 2 Mult. (J) δC, 1 Type δH, 2 Mult. (J) δC, 1 Type δH, 2 Mult. (J)

1 47.1, CH2 2.79, s 42.2, CH2 3.03, s 44.8, CH2 3.04, s
2 143.2, C 151.5, C 146.7, C
3 131.1, C 133.0, C 122.5, C
4 72.5, CH2 4.57, t (7.9) 71.9, CH2 4.60, t (7.6) 63.2, CH2 4.25, dd (2.5, 12.6)

3.81, dd (6.1, 12.6)
5 27.7, CH2 3.15, t (7.9) 28.6, CH2 3.28, t (7.7) 82.2, CH 5.55, br dd (2.0, 5.9)
6 131.4, C 142.2, C 142.4, C
7 135.9, C 138.2, C 130.0, C
8 128.0, CH 7.06, s 127.4, CH 7.64, s 131.8, CH 7.24, s
9 143.4, C 135.4, C 141.1, C
10 48.5, CH2 2.73, s 211.4, C 47.0, CH2 2.74, s
11 40.4, C 46.3, C 40.9, C
12 62.5, CH2 5.16, s 61.0, CH2 5.25, s 170.8, C
13 20.7, CH3 2.38, s 21.0, CH3 2.47, s 18.0, CH3 2.37, s
14 29.7, CH3 1.17, s 26.2, CH3 1.24, s 28.8, CH3 1.16, s
15 29.7, CH3 1.17, s 26.2, CH3 1.24, s 28.8, CH3 1.19, s
1′ 171.1, C 171.2, C
2′ 21.7, CH3 2.09, s 21.8, CH3 2.10, s

1 CDCl3, 200 MHz, shift, and type determined from HSQC and HMBC; 2 CDCl3, 600 MHz, J in Hz.
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Two additional substitutions were found on the aromatic ring of alcyopterosin T
(1). H2-12, besides the HMBC correlations described above in the aromatic ring, further
correlated (Figure 2) to an ester-type carbonyl at δC 171.1 (C-1′), which could be elaborated
into an acetate group based on the HMBC correlation of H3-2′ (δH 2.09) to C-1′. And lastly,
H2-5 had both COSY correlations to H2-4 (δH 4.57) and HMBC correlation to C-4 (δC 63.2),
completing the 1H and 13C assignments of 1. Missing from the molecular formula is NO3,
and the sole open valence on C-4 establishes alcyopterosin T as the acylated alcyopterosin
G [16].

The spectral data for alcyopterosin U (2) were very similar to those of 1 and again
reminiscent of the alcyopterosin family of metabolites. The HRESIMS ([M + H]+: m/z
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336.1429; calcd for C17H22NO6: 336.1442) found that 2 has one additional oxygen and
two protons fewer than 1. The IR spectrum displayed the same sharp bands at 1640 and
1280 cm−1 supportive of the nitrate ester moiety, along with the absorptions at 1700 and
1750 cm−1 typical of ketone and ester functions, respectively [16]. The most obvious
difference between the 1H NMR spectra of 1 and 2 was the absence of one methylene and
the shift of the aromatic proton H-8, from δH 7.06 in 1 to 7.64 in 2. The HMBC spectrum
demonstrated a correlation between the gem-dimethyl protons (H3-14/15, δH 1.24) and a
carbon signal at δC 211.4, reflecting a departure in 2 from the oxidation state of 1. Taken
with the missing methylene group in 2, the ketone must be at C-1 or C-10. A methylene
signal at δH 3.03 (H2-1) also correlated in the HMBC spectrum to the ketone, as well as δC
151.5 and 135.4. Because H2-12 (δH 5.25) also had an HMBC correlation to δC 151.5, but not
to δC 135.4, then δC 151.5 must be C-2 and δC 135.4 must be C-9. An HMBC correlation
between H2-1 and C-3 secured the position of the carbonyl at C-10. Further 1H and 13C
shifts as well as HMBC correlations (Figure S10) supported the remaining substitution on
the aromatic ring of 2 mirroring that observed for 1.

The 1H NMR spectrum of alcyopterosin V (3) displayed a new pattern relative to those
from 1 and 2, though certain resemblances remained. Lacking an acetoxy signal found in
1 and 2, the molecular formula of 3 was established as C15H18O3 from the HRESIMS, in
conjunction with the 13C NMR spectrum (Table 1), (C15H19O3 [M + H]+: m/z 247.1328). The
aromatic ring was established to be very much like that for 1: from the HMBC, a significantly
deshielded/aromatic proton at δH 7.24 (H-8) correlated with δC 141.1 (C-2 or C-9) and 142.4
(C-6), the latter of which also had HMBC correlation from highly deshielded/aromatic
methyl at δH 2.37 (H3-13). The aromatic methyl showed further HMBC correlations to δC
130.0 (C-7) and 131.8 (C-8). With the observation of HMBC correlation of δH 5.55 (H-5) to
C-6 and δC 122.5 (C-3), only C-2 and C-9 (δC 146.7 and 141.1) remained to secure as part
of the aromatic ring. H-8, H2-1 (δH 3.04), and H2-10 (δH 2.74), the only hydrogen-bearing
carbons near C-2 and C-9, are all 2 or 3 bonds apart and thus cannot assist in the assignment.
Instead, we have assigned C-2 and C-9 based on their shift comparisons to similar carbons
in 1 and 2, but we note that they may be interchanged.

Substitution on the aromatic ring of 3 was completed by considering the HMBC
correlations of the remaining protons and carbons. H2-1 and H2-10 were noted above as
correlated in the HMBC with both C-2 and C-9, locating them on the ring relative to already
established H3-13 and H-8; H2-10 was distinguished from H2-1 by HMBC correlation to C-8,
disambiguating their relative positions. They also both correlated with C-11 (δC 40.9) and
C14/15 (δC 28.8), completing the fused cyclopentane ring found on all the alcyopterosins.
The final feature of alcyopterosin V was established by observation of the HMBC correlation
of H-5 to both an oxymethylene (C-4, δC 63.2) and an ester-type carbonyl at δC 170.8 (C-12).
As the protons of the oxymethylene (H-4a, δH 4.25; H-4b, δH 3.81) were COSY coupled to
H-5, which was already affixed to the aromatic ring at C-6 as described above, the ester
carbonyl must be located at C-3, completing a lactone ring. Insufficient material for optical
spectra prevented comparison of the configuration of C-5 in 3 and alcyopterosin E (4), but
3 represents the nitrate ester hydrolysis product of 4, due to which we suggest the two will
share a common configuration. Additional support for the assigned configuration comes
from an analysis of the coupling constants for the chiral proton H-5 of 3, which match those
of 4 in magnitude (3: 3J4a-5 = 2.5 Hz, 3J4b-5 = 6.1 Hz; 4: 3J4a-5 = 2.3 Hz, 3J4b-5 = 6.6 Hz).

Further work was done to bring forward additional alcyopterosins, and a subsequent
extraction was conducted and similarly fractionated. Alcyosterone (5) eluted late in the
silica gradient (hexanes to ethyl acetate), suggesting a moderately polar metabolite. Upon
analysis, it was determined to have the molecular formula C33H50O8 based on HRESIMS
data that was corroborated by proton and carbon counts from their NMR spectra (Table 2).
From the HRESIMS, the [M + H]+ was observed at m/z 575.3555, and [M − HOAc]+ was
observed at m/z 515.3364. Analysis of the 13C NMR spectrum supported the 33 carbons
accounted for by the MS and further indicated a ketone (C-1, δC 203.9), three ester-type
carbons (C-1′, δC 169.4; C-3′, δC 170.4; C-5′, δC 169.9), two olefinic carbons (C-2, δC 128.4; C-
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3, δC 142.5), and four carbon signals in the oxygen-bearing region (C-6, δC 69.7; C-11, δC 70.4;
C-15, δC 70.5; C-16, δC 73.0). The HSQC established the two olefinic carbons and all four
of the oxygen-bearing carbons as methines and further indicated five aliphatic methines,
six aliphatic methylenes, and eight methyl carbons. The 1H NMR spectrum provided few
additional insights into this overview of alcyosterone other than to suggest that three of the
methyl carbons were associated with acetate esters, based on their chemical shifts (H3-2′, δH
1.93; H3-4′, δH 2.06; H3-6′, δH 2.02) and HMBC correlation to their respective ester carbonyl.

Table 2. 1H and 13C NMR Spectroscopic Data for Alcyosterone (5).

Position δC
1, Type δH, 2 Integ., Mult., J

1 203.9, C
2 128.4, CH 5.83, 1H, dd, 2.2, 9.9
3 142.5, CH 6.58, 1H, ddd, 2.1, 4.8, 9.6
4 28.4, CH2 2.79, 1H, dddd, 0.7, 2.4, 11.4, 19.8

2.11, 1H, ddd, 0.8, 4.8, 19.5
5 46.6, CH 1.86, 1H, ddd, 0.7, 2.9, 10.8
6 69.7, CH 3.87, 1H, q, 2.4
7 36.8, CH2 1.74, 1H, ov 3

1.21, 1H, ov
8 24.9, CH 2.23, 1H, ov
9 47.8, CH 2.07, 1H, ov
10 47.7, C
11 70.4 *, C 5.02, 1H, dt, 3.9, 11
12 46.7, CH2 2.20, 1H, ov

1.48, 1H, ov
13 43.7, CH
14 56.6, CH 1.31, 1H, dd, 5.8, 11.2
15 70.5 *, CH 5.34, 1H, dd, 6.3, 6.6
16 73.0, CH 5.51, 1H, dd, 6.9, 7.0
17 59.9, CH 1.34, 1H, ov
18 15.8, CH3 1.22, 3H, s
19 13.2, CH3 1.28, 3H, s
20 30.0, CH 1.76, 1H, ov
21 18.2, CH3 0.95, 3H, d, 6.6
22 35.6, CH2 1.20, 1H, ov

0.90, 1H, ov
23 24.4, CH2 1.36, 1H, ov

1.11, 1H, ov
24 39.1, CH2 1.09, 1H, ov

1.05, 1H, d, 6.6
25 27.9, CH 1.48, 1H, ov
26 22.6, CH3 0.85, 3H, d, 6.5
27 22.4, CH3 0.85, 3H, d, 6.5
1′ 170.4, C
2′ 21.5, CH3 1.93, 3H, s
3′ 169.9, C
4′ 20.7, CH3 2.06, 3H, s
5′ 169.4, C
6′ 20.5, CH3 2.02, 3H, s

1 CDCl3, 125 MHz, type determined from HSQC; 2 CDCl3, 500 MHz, J in Hz. 3 ov = overlapping signal.
* Interchangeable.

The chemical shift of H-3 (δH 6.58) and its associated carbon (C-3, δC 142.5) supported
the presence of a conjugated system, which must be an α,β-unsaturated ketone. The HMBC
strengthened that assignment as both H-2 (δH 5.83) and H-3 correlated with C-1 (δC 203.9)
(Figure 3). H-3 was further correlated in the HMBC with methine C-5 (δC 46.6), while
H-2 correlates to the quaternary C-10 (δC 47.7) and the methylene C-4 (δC 28.4). With
correlations of H-4a (δH 2.79) and H-4b (δH 2.11) to C-2, C-3, C-5, and C-10, a six-membered
ring was established bearing the aforementioned α,β-unsaturated ketone.
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Extending the cyclohexenone, H2-4 further coupled in the HMBC spectrum to an
oxymethine, C-6, and displayed a COSY correlation to H-5 (δH 1.86), the latter of which
has an HMBC correlation with C-9 (δC 47.8). H-6 (δH 3.87) shows a COSY correlation to
H2-7 (a: δH 1.74; b: δH 1.21), and HMBC correlation with quaternary C-10 and the methine
C-8 (δC 24.9). H-8 (δH 2.23) correlates in the HMBC with C-10, establishing a decalin ring
system with the new cyclohexane ring fused to the cyclohexenone ring. A pendant methyl
group (H3-19, δH 1.28) with HMBC correlations to C-1 and C-10 must be placed at the
ring junction. H-8 further correlates in the HMBC with C-14 (δC 56.6) and C-11. COSY
correlations between H-9 (δH 2.07) and H-11 (δH 5.02), then H-11 and H2-12 (a: δH 2.20;
b: δH 1.48) support an extended branch from the decalin system that, taken with HMBC
correlations for H2-12 to C-11, C-18 (δC 15.8)m and C-13 (δC 43.7), and H3-18 (δH 1.22)
to C-13 and C-14 (δC 56.6), establishes a third ring fused to the previously established
decalin. A fourth ring, the five-membered ring of a steroid ring system, was established
by observation of a COSY correlation between H-14 (δH 1.31) and H-15 (δH 5.34), between
H-15 and H-16 (δH 5.51), and between H-16 and H-17 (δH 1.34), all of which were HMBC
correlated with C-13.

Left to assign were the steroid side chain and the acetate groups. The two ends of the
steroid side chain were readily determined by HMBC correlations among the protons and
carbons of positions 17, 20, 21, and 22, as well as 24, 25, and 26/27. Very weak correlations
could be discerned between C-23 (δC 24.4) and H-22b (δH 0.90) and H-20 (δH 1.76), as well
as H-23a (δH 1.36) and C-24 (δC 39.1), but overlapping and otherwise weak signals made
assignments of C-23 to the rest of the well-established side chain challenging. The positions
of the acetate groups were readily established by HMBC correlation of the oxymethine
protons to the attached ester carbonyl; similarly, the acetate methyl groups could be
positioned on their respective carbonyls (Figure 3).

The stereochemical features of alcyosterone (5) were studied by ROESY and X-ray
diffraction (XRD) analysis. Many of the relative relationships could be discerned in the
ROESY spectrum (Figure 4), including methyl group H3-19 (δH 1.28), H-4β, H-8, and H-11
co-locating on the same face of the ring system and defining the A/B rings as a trans-decalin.
Additional relationships were evident between H3-18, H-20, and H-8; H-12α and H3-21;
H-9 and H-14; H-9 and H-12α; H-16 and H-17; H-15 and H-7β; and H-6 and H-4β (see
Figure S22). These relationships were confirmed by XRD, which also provided the absolute
stereochemistry (Figure 5).
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Alcyopterosins are known to be mildly cytotoxic toward human tumor cell lines [16,19]
but little attention has been focused on their infectious disease (ID) activity. Metabolites
from Alcyonium sp. indet. isolated in this study in sufficient quantity were therefore
screened in three ID assays. Alcyopterosins V (3), E (4), and alcyosterone (5) were inactive
against the ESKAPE panel of bacterial pathogens, but both 3 and 4 demonstrated potent
activity against Clostridium difficile, a difficult-to-treat intestinal bacterium which afflicts up
to half a million people annually and caused 30,000 deaths in 2015 [20]. Alcyopterosin E
(MIC 6.9 µM) was slightly more active against C. difficile than alcyopterosin V (MIC 8.1 µM).
Cytotoxicity against host cell lines HEK293T and HepG2 also found 4 less toxic (CC50 570
and 331 µM, respectively) than 3 (CC50 220 and 288 µM, respectively). Vancomycin as a
control displays an MIC of 0.34 µM against C. difficile and was non-toxic to the host cells at
the same concentrations alcyopterosins were assayed.

Alcyopterosin C, E (4), L, 4,12-bis(acetyl)alcyopterosin O, V (3), and alcyosterone (5)
were screened against Leishmania donovani and found with roughly equal, single digit µM,
activity [21]. Leishmania, the disease caused by L. donovani, is often disfiguring and can
lead to death if not properly treated, though current treatment regimes can be expensive
and toxic, and are considered ineffective [22]. The highest potency was displayed by
4,12-Bis(acetyl)alcyopterosin O (IC50 1.2 µM), though alcyosterone (IC50 1.5 µM), alcy-
opterosin L (IC50 2.4 µM), and alcyopterosin E (IC50 3.1 µM) were largely indistinguishable.
Alcyopterosin V (IC50 7.0 µM) and alcyopterosin C (IC50 13 µM) were only slightly less
potent than the control, miltefosine (IC50 6.2 µM). Only 3 and 4 were available in sufficient
quantity to assay against the Leishmania host cell line, J774.A1 macrophages, which showed
alcyopterosin E, though low in toxicity, was twice as toxic (IC50 62 µM) as alcyopterosin V
(IC50 110 µM) to the mammalian cells.
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3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were measured on a Rudolph Research Analytical AUTOPOL IV dig-
ital polarimeter at 589 nm. UV absorptions were acquired with an Agilent Cary 60 UV-vis
spectrophotometer. IR spectra were recorded with an Agilent Cary FTIR 630 spectrometer
and PerkinElmer Spectrum Two equipped with a UATR (single reflection diamond) sample
introduction system. NMR spectra were recorded on Varian Direct Drive 500 MHz and
Varian Inova 500 MHz spectrometers. Chemical shifts are reported with the use of the
residual CDCl3 signals (δH 7.27 ppm; δC 77.0 ppm) as internal standards for 1H and 13C
NMR spectra, respectively. COSY, HSQC, HMBC, and ROESY experiments corroborated
the 1H and 13C NMR assignments. Analytical LC/MS with a Phenomenex Kinetex C18
column (50× 2.1 mm, 2.6 µm) on an Agilent 6230 LC/TOF-MS with electrospray ionization
detection provided the high-resolution masses. Semi-preparative and analytical HPLC
separations were performed on a Shimadzu LC-20 AT system equipped with an ultraviolet
(UV) detector using a Luna silica column (5 µm, 250 × 10 mm), and a YMC C-18 column
(10 µm, 150 × 4 mm). MPLC was performed on a Teledyne Isco CombiFlash Rf 200i
equipped with an evaporative light-scattering detector (ELSD) and a multiwavelength UV
detector using a RediSep Rf silica 80 g flash column, and silica gel 230–400 mesh was used
to load samples.

3.2. Biological Material

The soft coral was collected via trawling on the R/V Nathaniel B. Palmer vessel during
the austral autumn in late April 2013. The specimens were collected between 126 and 130 m
depth, frozen immediately upon collection, and maintained at −80 ◦C until extraction. The
tissue of the frozen specimens was subsampled and preserved in 96% ethanol. Subsequent
extraction was performed using a DNeasy blood and tissue kit (Qiagen) following manufac-
turer’s protocols. Using primers ND42599F/mut3458R [23,24], a piece of the mitochondrial
genome was amplified (msh1, a homolog of mutS). Cycling conditions included an initial
5× cycles at 45 ◦C annealing, followed by 39× cycles at 58 ◦C. Amplicons were sent to the
Australian Genome Research Facility, Perth for purification and Sangar sequencing. The
resulting bi-directional sequence was assembled and edited, primers removed, deposited
in GenBank (OP429120), and aligned with other soft coral sequences from GenBank. A
Maximum-Likelihood analysis using IQ-tree [25], implementing the evolutionary model
VM+F+G4 selected with ModelFinder [26], was carried out. The nodes were tested with
1000 ultrafast bootstrap replicates.

3.3. Extraction and Isolation of Coral Metabolites

The frozen soft coral was freeze-dried, and 420 g of dry weight material was extracted
using a 1:1 ratio of dichloromethane/methanol, three times over 3 days. The extract was
dried, and the yielded 25.0 g were resolubilized in ethyl acetate and partitioned against
H2O. The concentrated EtOAc partition fraction (11.4 g) was resuspended in EtOAc and
dried onto silica gel for fractionation by MPLC on a Teledyne CombiFlash fitted with UV
and ELS detection. Fractions A through I eluted from MPLC using ethyl acetate/n-hexanes
(0:100) to ethyl acetate/n-hexanes (100:0) over 25 min. Fractions D through H displayed
NMR signature signals of marine illudalane compounds, in particular the aromatic singlet
(H-8) and a midfield oxymethylene (H2-4), and were selected for purification using normal-
phase and reversed-phase HPLC with UV detection. Semi-preparative NP HPLC using
n-hexane to EtOAc/n-hexanes (1:1) over 25 min gradient, yielded the known alcyopterosins
C (6), G (7), and 4,12-bis(acetyl)alcyopterosin O (8) from MPLC fraction F. Alcyopterosin L
(9) and newly isolated as natural product alcyopterosin V (3) (4.0 mg) came from MPLC
fraction H. Alcyopterosin E (4) was derived from fraction G. New alcyopterosins T (1)
(0.5 mg) and U (2) (0.5 mg) came from fraction E, along with 4,12-bis(acetyl)alcyopterosin
O (1.6 mg) and alcyopterosins C (2.0 mg), E (7.5 mg), G (0.6 mg), and L (1.4 mg).
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Soxhlet extraction of an additional specimen in dichloromethane followed by a similar
chromatographic profile described above resulted in seven fractions. Further purification of
fraction E, via normal phase HPLC with a hexane–ethyl acetate (1:1) gradient, followed by
reversed-phase HPLC using a water–acetonitrile (70% to 100%) gradient, led to alcyosterone
(5) (1.2 mg).

Alcyopterosin T (1): colorless oil; UV (CH2Cl2) λmax (log ε): 225 (1.52), 245 (1.45), 340
(1.24) nm; IR νmax: 3000, 2900, 2850, 1720, 1640, 1600, 1280 cm−1; for 1H and 13C NMR data
see Table 1; HRESIMS [M + Na]+: m/z 344.1460 (calcd for C17H23NO5Na, m/z 344.1468).

Alcyopterosin U (2): colorless oil; UV (CH2Cl2) λmax (log ε): 225 (1.76), 230 (1.59), 250
(1.55), 264 (1.54), 305 (1.52), 330 (1.47), 365 (1.44) nm; IR νmax: 3000, 2900, 2850, 1750, 1700,
1640, 1600, 1280 cm−1; for 1H and 13C NMR data see Table 1; HRESIMS [M + H]+: m/z
336.1429 (calcd for C17H22NO6, m/z 336.1442).

Alcyopterosin V (3): for 1H and 13C NMR data see Table 1. HRESIMS [M + H]+: m/z
247.1328 (Calcd for C15H19O3, 247.1329).

Alcyosterone (5): translucent solid; [α]24.6
365 -125◦ (c 2 × 10−3 g/mL, ACN); UV (ACN)

λmax (log ε): 215 (2.60), 235 (2.68) nm; IR υmax: 1250, 1690, 1700, 1750, 2850, 2900, 2950
cm−1; for 1H and 13C NMR data see Table 2; HRESIMS [M + H]+: m/z 575.3555 (calcd for
C33H50O8H, m/z 575.3578); [M − OAc]+ m/z 515.3364 (calcd for C31H47O6, m/z 515.3367).

3.4. Leishmania donovani Infected Macrophage Assay

The Leishmania donovani infected macrophage assay and cytotoxicity screen were
conducted as previously described [27].

3.5. Clostridium difficile Susceptibility Screening

The screening against C. difficile was performed in two steps. In step 1, overnight
culture of a hyper-virulent clinical strain C. difficile UK6 was inoculated into a fresh BHIS
medium at a volume ratio of 1:1000. After pre-incubation at 37 ◦C under an anaerobic
atmosphere for 2 h, the bacterial culture was divided into a sterile 96-well plate and each
well contained 192 µL of bacterial culture. Then, 8 µL of each extract was added to each well
of the plate, mixed thoroughly, and incubated at 37 ◦C in an anaerobic chamber for 48 h.
Control groups of 200 µL of BHIS medium only, 200 µL of bacterial culture only, and 192 µL
of bacterial culture in 8 µL of DMSO were also included in separate columns within each
plate. Extracts that displayed initial antibacterial activity were further evaluated for their
minimum inhibitory concentration (MIC) against C. difficile. Serial dilutions of each extract
(400 µg/mL, 200 µg/mL, 100 µg/mL, 50 µg/mL, 20 µg/mL, 10 µg/mL, 5 µg/mL, and
2 µg/mL) were prepared in a fresh BHIS medium. Then, 100 µL of each extract dilution was
added to 100 µL of bacterial culture (pretreated as described), mixed well, and incubated at
37 ◦C in an anaerobic chamber for 48 h. Control groups including wells containing fresh
medium only and bacterial culture only were also included as described. Activity was
determined as +/− (clear or turbid (OD600) culture). The MICs of the three recommended
antibiotics metronidazole, vancomycin, and fidaxomicin against C. difficile UK6 were also
determined using broth microdilution methodology.

3.6. Determination of the Half Maximal Inhibitory Concentration (IC50) toward Human Liver
Cells and Kidney Cells

The cytotoxicity of the metabolites to human liver cells and kidney cells was deter-
mined using an MTT based-In Vitro Toxicology Assay Kit (Sigma–Aldrich, St. Louis, MO,
USA) following the manufacturing instructions. The human kidney HEK293T cells and
the human liver HEPGZ cells were used for the evaluation in this study. Both cell samples
were maintained and suspended in Dulbecco’s Modified Eagle Medium (DMEM with
4.5 g/L glucose, L-glutamine and sodium pyruvate, Corning, Manassas, VA, USA) contain-
ing 10% fetal bovine serum (Thermo Scientific) and 1% penicillin/streptomycin at 37 ◦C
under 5% CO2 atmosphere. The cells were plated on a 96-well plate with approximately
5 × 103–1 × 104 cells in each well, and incubated at 37 ◦C overnight. After that, each
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of the selected extracts from the antimicrobial susceptibility test was added to the wells
and incubated with the cells at a series of 2-fold diluted concentrations ranging from
128 µg/mL to 0.125 µg/mL. Following a 24 h of incubation, 10 µL of 1-(4,5-dimethylthiazol-
2-yl)-3,5-diphenylformazan (MTT) stock solution (5 mg/mL) was added to each well of
the cells, mixed well, and incubated at 37 ◦C for another 4 h. After that, the liquid in
each well of the plate was removed carefully and thoroughly, then the cells in the wells
were treated with 100 µL of DMSO, and incubated at 37 ◦C for 15 m. Optical density
(OD) values were measured at a wavelength of 540 nm (OD540) using a microplate reader
(Synergy HTX; Bio Tek Instruments, Inc. Winooski VT). Cells treated with vancomycin, a
common option for treating CDI in clinical settings, were also included in the MTT tests
as a control. Cell survival and the IC50 were calculated according to the method used in a
previous publication [26]: Survival of cells (%) = Drug-treated group OD540/control group
OD540 × 100. The IC50 value was calculated as follows: lgIC50 = Xm − I [P − (3 − Pm −
Pn)/4], where Xm was the log maximum dose, I was the log (maximum dose/adjacent
dose), P was the sum of the positive response rate, Pm was the maximum positive response
rate, and Pn was the minimum positive response rate.

3.7. X-ray Diffraction of Alcyosterone (5)

XRD methodology was conducted as we have previously done [28]. Data and refine-
ment conditions are shown in Table S2. CCDC Deposition Number 2205919.

4. Patents

US patent 10,898,460, Leishmania Inhibitors, based on portions of this work was
awarded 26 January 2021.
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//www.mdpi.com/article/10.3390/md20090576/s1, Figure S1. Maximum Likelihood tree topology
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