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Abstract

In this study, an electrochemical impedance biosensor was developed as a simple and fast method for real-time monitoring of
biofilm binding properties via continuous impedance spectroscopy. To prepare the sensing membrane, cells were immobilized
onto gold electrodes with nitrocellulose membranes. Different cell growth features were measured with the impedance instrument
and analyzed using an equivalent model for data fitting and support vector regression (SVR) for data processing. The collected
impedance spectra revealed that the binding attachment areas of cells differ depending on the cell density. Our results demonstrate
the usefulness and feasibility of training our impedance-based sensor with a small amount of data to predict the effective area of
different biofilms (GE, NGE, and CNGE), with a prediction error of 9.8%.

Keywords Cell-nitrocellulose membrane - Electrochemical impedance spectra - Equivalent circuit models

1 Introduction

Electrochemical biosensors, often referred to as potentiomet-
ric, amperometric, impedimetric, or conductimetric sensors,
are advantageous because they are highly sensitive, rapid,
and inexpensive sensors that are also suitable for designing
integrated microsystems [1]. The parameters obtained with
electrochemical impedance spectroscopy (EIS) can represent
different physical quantities [2—5]; thus, EIS can be used as a
rapid, label-free, and sensitive process that meets the require-
ments of microscopic testing [4, 6]. In electrochemical studies,
qualitatively and even quantitatively measuring the physical
quantities that correspond to the EIS parameters is important
[6-8]. A new type of biological sensor was fabricated from an
electrode, and an electrochemical biosensor membrane was
formed by combining stationary substances with the corre-
sponding detection substances to detect DNA and other bio-
molecules [9-11]. In addition, the relationship between the
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electrodes and the biofilm attachment can be used to study
the active state of a biomembrane on an electrode surface
[10, 12, 13]. Previous studies have shown that the fitted model
of this relationship has good stability and prediction perfor-
mance under different experimental conditions, and the model
can predict the effective area of an electrode and provide a
method for predicting the active surface area of a biomem-
brane electrode, which can reflect characteristics of the cell
growth status, such as cell density [14—-16].

A support vector machine (SVM) is a machine learning
algorithm with a wide range of applications; it is especially
good at building and forecasting two classification models.
Support vector regression (SVR) is a regression method based
on a SVM [17, 18]. SVR has been widely used, always pre-
dicts data with high accuracy and can be used for quantitative
analysis of physical and chemical quantities such as capaci-
tance and resistance [19-21]. However, SVR has not been
applied to the analysis of EIS for biosensors. In the present
study, SVR is shown to have good accuracy and stability for
predicting the active surface area on a biomembrane electrode.

The present work describes the use of EIS for equivalent
circuit modeling and a comparison of electrochemical imped-
ance data obtained with three different electrodes: a bare gold
electrode (GE), a gold electrode with a nitrocellulose mem-
brane (NGE), and a gold electrode with a cell-nitrocellulose
membrane (CNGE). Based on the experimental data, we built
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an impedance model to obtain the required electrochemical
parameters and fit the data with ZView (ZView Version
2.1c, Scribner Associates, Inc.). The main parameter was ex-
tracted as the eigenvector of the SVR by evaluating the im-
pedance parameters using principal component analysis
(PCA), which is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of linearly uncorrelated vari-
ables. Finally, the main parameter was used for data training
and regression prediction.

2 Methods
2.1 Materials

NaCl, KCI, NazHPO4'12H20, KH2PO4, K3[Fe (CN)G], and
K4[Fe (CN)s]-3H,0O were purchased from Sinopharm
Chemical Reagent Co., Ltd.; nitrocellulose filter membranes
were purchased from Biosharp Co., Ltd.; and human breast
cancer cells (MCF-7) were purchased from Life Science
Institute of Zhejiang University. All chemicals used in this
work were analytical grade and used as received. All aqueous
solutions were prepared using ultrapure water (ultrapure water
produced by Aquelix 5).

2.2 Preparatory experiments

(1) Preparation ofa 1 mol/L PBS solution: 8 gofNaCl, 0.2 g
of KCI, 3.63 g of Na,HPO,4 12H,0, and 0.24 g of
KH,PO,4 were dissolved in 900 mL of deionized water,
and the pH was adjusted to 7.4 using a hydrochloric acid
solution. The solution was subsequently transferred to a
1-L volumetric flask and brought to its final volume with
deionized water.

(2) Preparation of a 50 mM buffer solution: 0.8231 g of
K3[Fe (CN)g] and 0.9200 g of K4[Fe (CN)g]-3H,O were
dissolved in a prepared PBS solution and brought to
100 mL.

(3) Pre-treatment of electrodes: To ensure that the electrodes
were flat and parallel, they were polished and then rinsed
with deionized water. Subsequently, the electrodes were
examined by cyclic voltammetry. The initial voltage was
set to —0.5 V, the final voltage was set to 0.9 V, and the
scanning rate was set to 0.05 V/s. For subsequent oper-
ations, the difference in the redox peaks had to be less
than 0.100 V.

(4) Production of the cell-NC membrane: After a clean
benchtop was sterilized for 15 min under continuous
ultraviolet radiation, one test tube of MCF-7 cells (hu-
man breast cancer cell line, Life Science Institute of
Zhejiang University) was taken from a liquid nitrogen
box. Subsequently, the test tube was thawed in a 37 °C
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thermostated water bath and then placed on the sterile
benchtop. A 1 mL suspension was pipetted from the test
tube into a centrifuge tube, and 4 mL of RPMI 1640
medium was added to the tube, which was subsequently
placed into a low-speed centrifuge. The sample was cen-
trifuged for 5 min at 800 r/min, and its contents were
then carefully mixed. Prior to the cells being transferred
into a sterilized cell culture flask, the supernatant was
discarded. Then, 4 mL of RPMI 1640 medium was
added to the centrifuge tube and mixed. The flask was
placed in a constant-temperature CO, incubator, and the
cells were cultured for 24 h. Before the cell medium was
exchanged, the cells were checked to ensure that they
were in good condition. Afterwards, the cells were cul-
tured for another 24 h.

The NC membranes (NCEs) were cut into 3 X 3 cm? that
were set aside after moist heat sterilization. Well-grown ad-
herent cells were then selected, and the original culture solu-
tion was discarded. After digestion, a single-cell suspension
was prepared from the original culture solution. Finally, 1 mL
of the single-cell suspension was pipetted into a culture dish
with the already prepared NC membranes, and RPMI 1640
was added to the culture dish. Afterwards, the culture dish was
carefully placed in a CO, incubator at 37 °C for 3 days
(Fig. 1). For subsequent electrochemical experiments, an NC
membrane with a modest growth density was selected (Fig.

1(b)).
2.3 Electrochemical impedance spectroscopy

The EIS experiment consisted of four main steps—an imped-
ance test, data fitting, PCA and SVR—to gradually construct a
biomembrane-electrode system.

Electrochemical measurements were performed using a
CH Instruments 760E electrochemical analyzer (CH
Instruments Inc., USA). One pole of the electrode was con-
nected to the sensing probe on the electrochemical worksta-
tion, and the other pole was connected to both the reference
and counter probes on the electrochemical workstation.

The tested frequency was set in the range from 1 Hz to
100 kHz with a 50 mV AC voltage in the impedance measure-
ment program. Electrodes with cells at different densities were
tested in wells containing 50 mM K4[Fe (CN)s]/K5[Fe (CN)s]
(1:1). For each condition (3 cell conditions x 5 different elec-
trodes), the EIS measurements were recorded 15 times, and
the average value was used. After each measurement, the sen-
sor was rinsed with PBS. All electrochemical measurements
were performed at room temperature (18-25 °C). To form a
three-electrode system for impedance testing, we used a bare
gold electrode, an NC film gold electrode, or a cell-NC film
gold electrode as the working electrode, a platinum wire elec-
trode as the counter electrode, and a silver/silver chloride
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electrode as the reference electrode. As shown in Fig. 2, the
three experimental groups were recorded as GE, NGE, and
CNGE, respectively.

The electrodes in each group were prepared with five dif-
ferent diameters of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm for
the impedance tests. In the NGE electrochemical impedance
experiments, the NC film was attached to gold electrodes with
different diameters to form an NC-membrane-electrode sys-
tem for impedance testing. In the CNGE electrochemical ex-
periment, NC membranes with different concentrations of
MCF-7 cells were attached to gold electrodes with different
diameters to form a cell-NC membrane electrode system for
impedance testing.

An equivalent circuit model of the GE, NGE and CNGE
groups was established based on the acquired EIS data. We
then used the equivalent circuit to fit the data, analyzed the
circuit components, and extracted the key parameters (R,
CPE-T, CPE-P, and R;)) by PCA as the input characteristics
for SVR; the diameter served as the output for data training
and prediction.

3 Results
3.1 Equivalent circuit analysis
From an electrical point of view, the performance of an elec-

trochemical cell can be represented by an equivalent circuit
that has the same behavior and output with an equivalent input

- - i

GE NGE

|

CNGE

’ [ Nitrocellulose membrane 2 MCF-7 cell ’

Fig. 2 Schematic illustration of GE, NGE, and CNGE

Fig. 1 MCF-7 cells of different densities (a) high growth density, (b) modest growth density, and (c) low cell density

[22-24]. To study the equivalent model of the biomembrane
impedance sensor, the equivalent model of the impedance
sensor without a biomembrane (GE) needed to be first ana-
lyzed [25, 26]. According to the principles of electrochemical
theory, the electrochemical reaction of a solution comprises
two processes: the diffusion of ions from the solution to the
interface of the electrode, i.e., the mass transfer process, and
the ion reacting on the electrode, i.e., the activation process [6,
27, 28].

To simplify a complex system, such as electrodes in contact
with different electrolytes, the model of the impedance sensor
can be considered equivalent to the classical Randles model
[25, 29, 30] (Fig. 3). The circuit model comprises four ele-
ments: the ohmic resistance of the electrolyte solution (Ry); the
capacitance at the solution interface near the electrode, also
known as the double-layer capacitance (Cg;); the Warburg
impedance (W); and the charge transfer resistance (R,,).

The Faraday impedance of the equivalent electrolyzer cir-
cuit for charge-transfer control and diffusion control includes
two parts: W and the electrode polarization resistance, R,,.
Because the gold electrode used in this paper is an inert elec-
trode, the Faraday impedance is very large. Thus, in this cir-
cuit, Rg and Cy, are approximated as ideal circuit elements, and
the R, and W impedances are not ideal components; they have
a certain relationship with the measuring frequency.
Additionally, because the electrode surface was rough, we
replaced the ideal capacitor element (Cg4) with a constant

Rs Ca

Rp W

Fig. 3 The Randles equivalent circuit model
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phase element (CPE) [26, 29], which can improve the quality
of the fitting (Fig. 4).

Compared with the GE, the NGE has an NC membrane that
participates in ion exchange; thus, the equivalent circuits of
the GE and NGE differ. The working electrode in this exper-
iment was separated from the other two electrodes with an NC
film, which is equivalent to a shielding layer on the working
electrode; thus, the oxidized and reduced substances were
prevented from exchanging electrons on the electrode [28,
30]. Normally, R, depends on the dielectric and insulating
features at the electrode—electrolyte interface, but under these
conditions, it was affected by the property changes occurring
at the interface. Compared with GE, the immobilization of the
nitrocellulose membrane changed the dielectric features at the
interface, resulting in an increase in R,,. However, the capac-
itance between the metal and the membrane could be regarded
as a CPE; thus, it was still equivalent to the CPE [31, 32]. In
the equivalent circuit model of the NGE, the primary elements
did not change; therefore, the NGE model was still equivalent
to the equivalent model in Fig. 4.

The structure of the CNGE is similar to that of NGE; the
difference between the CNGE and NGE is that MCF-7 cells
are growing on the NC membrane in the CNGE. The NC
membrane with cells can be regarded as a biofilm structure
due to the adherence of cells. Thus, the equivalent circuit
model of the CNGE can also be equivalent to the model in
Fig. 4, but the resistance and the capacitance have changed.
When the system applied a voltage to the cell-NC +membrane
electrode, the current flowed through the electrode-NC mem-
brane-cell system to reach the electrolyte. Thus, the resistance
of the electrode-NC membrane cell could be considered to be
in series with the resistance of the electrolyte, which can be
described as resistance (Rp) [28]. The capacitance between the
metal and the cell-NC membrane can also be regarded as a
constant (CPE) [30, 32]. According to the electrical character-
istics, R, will increase, and the change in the constant will be
more rapid.

To obtain the values of the parameters in the equivalent
model, the impedance data were fitted with the equivalent
model in ZView (Fig. 5), as previously discussed. The com-
parison between the raw data and the fitting data demonstrates
the practical application of this method.

As shown in Fig. 4, the equivalent model we used was
composed of 4 elements, and 7 electrical parameters (R,
CPE-T, CPE-P, R,, W-T, W-P, and W-R) were generated. If
the 7 parameters were all taken as inputs, the EIS analysis

Rs CPE

N\
v

Rp w

Fig. 4 Practical equivalent circuit model of the GE
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Fig. 5 Comparison between the raw data and the fitting data

would be a very complicated 7-dimensional problem. To sim-
plify this complex problem, we first used PCA to address the 7
parameters, and then, we only analyzed the 4 parameters most
related to the output. In this way, the 7-dimensional problem
was simplified to a 4-dimensional problem, greatly reducing
the workload while only slightly affecting the accuracy. The
specific PCA is discussed in detail in Section 3.2.

3.2 Analysis of the characteristic parameters

The impedance spectra (Nyquist plots) of GEs with different
diameters (1 mm, 2 mm, 3 mm, 4 mm, and 5 mm) are shown
in Fig. 6(a). With increasing electrode diameter, the imped-
ance semicircle decreases in magnitude and diameter. The
impedance spectra (Nyquist plots) of the GE, NGE, and
CNGE are shown in Fig. 6(b). The impedance spectra are
characterized by a semicircle portion at high frequencies, cor-
responding to the electron transfer-limiting process [6, 29]; the
diameter of the semicircle is equal to the charge transfer resis-
tance. When different substances are adsorbed onto an elec-
trode surface, they disturb the charge-transfer process between
the electrode and the electrolyte solution, resulting in changes
in the charge transfer resistance. As shown in the figure, the
diameter of the semicircle increased when the nitrocellulose
membrane and MCF-7 cells were immobilized on the
electrodes.

After fitting the Randles model, we obtained 7 parameters
(R, CPE-T, CPE-P, Ry,, W-T, W-P, and W-R) [29, 30]. If all 7
parameters were used for regression prediction by SVR, the
amount of data would be too large, and the operation speed
would be too slow; such a large number of parameters would
result in redundancy and a cumbersome analysis of the param-
eters. Therefore, PCA was used to analyze the correlation
among the 7 parameters [31, 32], and the most relevant pa-
rameters were considered the main components. The informa-
tion for the 7 parameters, obtained by the princomp function in
MATLAB, is shown in Table 1.
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Fig. 6 (a) The impedance spectra of GEs with different diameters (2 mm,
3 mm, 4 mm, and 5 mm) (b) The impedance spectra (Nyquist plots) of the
GE, NGE, and CNGE with a gold electrode (2 mm)

The four parameters with the highest relevance values of
48.75%, 19.03%, 13.71%, and 10.50% were R,, CPE-T,
CPE-, and R,, respectively. These results are consistent with
the aforementioned equivalent circuit and verify the practical
significance of the equivalent circuit.

The amount of information contained in the four parameters
was 91.99%, covering more than 80% of the circuit informa-
tion. Thus, Ry, CPE-T, CPE-P, and R;, can be selected as eigen-
vectors and used as input for SVR training and prediction.

3.3 Analysis of data training and prediction

Ry, CPE-T, CPE-P, and R,, were used as inputs in the SVR
model, and the electrode diameter was used as the output to

Table 1 Parameter information for the electrochemistry experiments

Parameter R CPE-T CPE-P R, W-T W-P W-R

Proportion (%) 48.75 19.03 13.71 10.50 5.52 2.01 0.39

establish the SVR model of the electrode. For each of the three
groups (GE, NGE, and CNGE), 100 data points were collect-
ed, corresponding to 20 data points for each diameter (1 mm,
2 mm, 3 mm, 4 mm, and 5 mm) in each group. A total of 35%
of the data points were randomly selected as the training data
(Fig. 7), with 15% used as the prediction data (Fig. 8). The
results obtained from each test were compared with the actual
results to determine the mean squared error (MSE), training
error rate, and prediction error rate (Table 2). To ensure the
best results in the training process, the best result was auto-
matically adjusted by the program. Moreover, random extrac-
tion, training, and prediction of the training data ensured that
the differences among the data obtained for each group had
little effect on the overall results.

To randomly select 10 sets of data from each group, the
three groups of impendence models were tested 50 times. On
the basis of these selected data, 10 sets of data were tabulated.
The three data sets contained the results for SVR implemen-
tation of impedance parameters for the GE, NGE, and CNGE.
For the GE, the average MSE was 1.99E—03, the average
training error was 4.96%, and the average prediction error
was 4.90%. For the NGE, the average MSE was 2.24E—03,
the average training error was 8.11%, and the average predic-
tion error was 11.20%. For the CNGE, the average MSE was
1.29E-02, the average training error was 12.19%, and the
average prediction error was 13.31%. As shown in the table,
the average MSE of the GE was 1.99E—03, and its average
training error and average prediction error were both less than
5%; thus, we inferred that its accuracy reached 95%. The
average MSE values of the other two groups were approxi-
mately 2.24E—03 and 1.29E-02, and both the average training
error and average prediction error were approximately 10%,
which demonstrate that these four electrochemical parameters
are reasonable and effective for setting up SVR models. We
also concluded that the fitted model has good stability and
prediction performance under different experimental condi-
tions. As such, it can predict the repetition rate difference of
the effective area on the electrode array or alternatively pro-
vide a method for predicting the active surface area of elec-
trodes with different shapes but the same area or the effective
cell-attached active surface area in cell attachment experi-
ments with different densities.

4 Discussion

In this paper, SVR was adopted to train and predict an evalu-
ation model of a biomembrane electrode. The impedances
with five effective electrode areas were tested under three
different conditions (GE, NGE, and CNGE), and the electro-
chemical impedance spectra were fitted by modeling the cor-
responding equivalent circuits to determine the correlation
between the effective electrode area and various
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Fig. 7 (a) Training of the GE, (b) training results for the GE, (¢) training of the NGE, (d) training results for the NGE, (e) training of the CNGE, and (f)

training results for the CNGE

electrochemical parameters. Based on PCA, key parameters
(R, CPE-T, CPE-P, and R;,) were extracted as the input char-
acteristics for SVR, and the effective electrode area was used
as the output to train and predict the data. The average error of
the three groups was 9.8%, that of the GE group was 4.9%,
and the average MSE was 5.71E—3, which shows that the
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developed SVR model is accurate and widely applicable.
We also expect that this model can be used to address both
the problem of cell growth density on high-flux electrode
arrays and the issue of determining the repetition rate of cell
attachment on electrode arrays through a simple impedance
test and SVR model. These problems are usually addressed
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Table 2

Training results and analysis from 10 tests of the three
electrical impedance models

Model MSE Training error % Prediction error %
GE 3.68E-04 5.19 3.70
3.08E-04 443 7.71
4.03E-03 5.24 4.06
3.10E-03 542 3.01
3.06E-03 5.06 5.76
4.81E-03 5.35 3.61
5.45E-04 4.74 4.81
2.54E-03 4.09 7.29
4.70E-04 5.09 3.72
6.37E-04 4.97 5.34
Average 1.99E-03 4.96 4.90
NGE 7.92E-04 8.60 12.27
9.26E-04 6.36 9.44
1.05E-03 8.68 11.57
5.34E-03 7.55 7.67
4.07E-03 7.94 14.60
3.44E-03 7.48 16.81
9.32E-04 8.89 12.64
2.91E-03 8.89 8.02
7.11E-04 8.57 7.82
7.92E-04 8.60 12.27
Average 2.24E-03 8.11 11.20
CNGE 6.12E-03 10.25 13.55
1.18E-02 13.66 7.82
2.01E-02 13.01 13.39
1.76E-02 12.94 14.01
2.16E-02 12.61 13.99
9.48E-03 12.53 16.44
7.58E-03 10.78 14.13
1.37E-02 13.17 12.01
7.57E-03 11.17 16.88
1.35E-02 11.80 10.85
Average 1.29E-02 12.19 13.31

through microscopic observations. This model can also aid in
the quantitative analysis and evaluation of the exact cell at-
tachment rate of electrodes with different shapes but the same
area (such as interdigital electrodes, disc electrodes, and dia-

mond electrode arrays).

5 Conclusion

In conclusion, in this work, an electrochemical impedance
biosensor based on SVR was developed to detect the effective
area of a biomembrane. Under three different conditions (GE,
NGE, and CNGE), the average prediction error of our
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biosensor was 4.9%. This result indicates that the biosensor in
this paper can provide a sensing platform to selectively and
quantitatively detect the effective areas of different types of
biomembranes. These results might help further work on the
rapid detection of cell growth status and could even be used
for detection and analysis in multidirectional microorganism-
related fields.
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Glossary

CNGE Gold electrode with a cell-nitrocellulose mem-
brane

EIS Electrochemical impedance spectroscopy

GE Bare gold electrode

NC- Nitrocellulose membrane

membrane

NGE Gold electrode with a nitrocellulose membrane

PCA Principal component analysis is a statistical
procedure that uses an orthogonal
transformation to convert a set of observations
of possibly correlated variables into a set of
values of linearly uncorrelated variables called
principal components.

SVM A support vector machine (SVM) is a machine
learning algorithm with a wide range of appli-
cations; it is especially good at building and
forecasting binary classification models.
Support vector regression (SVR) is a regression
method based on an SVM.

SVR Support vector regression

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. LiuB, LuoZ, Zhang W, Tu Q, Jin X (2016) Carbon nanotube-based
self-adhesive polymer electrodes for wireless long-term recording
of electrocardiogram signals. J Biomater Sci Polym Ed 27(18):
1899-1908

2. Show PK, Sant S, Shukla A (2010) EIS studies on electro-
electrodialysis cell for concentration of hydriodic acid. Int J
Hydrog Energy 35(17):8868-8875

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Zhang SS, Xu K, Jow TR (2006) EIS study on the formation of
solid electrolyte interface in Li-ion battery. Electrochim Acta 51(8):
1636-1640

Pietrantonio FD, Benetti M, Dinca Vet al (2014) Tailoring odorant-
binding protein coatings characteristics for surface acoustic wave
biosensor development. Appl Surf Sci 302(5):250-255

Shkrob A, Zhu Y, Marin TW et al (2016) Reduction of carbonate
electrolytes and the formation of solid-electrolyte Interface (SEI) in
lithium-ion batteries. 1. Spectroscopic observations of radical inter-
mediates generated in one-Electron reduction of carbonates. J Phys
Chem C 117(38):19255-19269

Osorio WR, Freitas ES, Garcia A (2013) EIS and potentiodynamic
polarization studies on immiscible monotectic Al-in alloys.
Electrochim Acta 102(21):436-445

Badalyan A, Dierich M, Stiba K, Schwuchow V, Leimkiihler S,
Wollenberger U (2014) Lectrical wiring of the aldehyde oxidore-
ductase PaoABC with a polymer containing osmium redox centers:
biosensors for benzaldehyde and GABA. Biosensors 4(4):403-421
Jiang J, Wang X, Chao R, Ren Y, Hu C, Xu Z, Liu GL (2014)
Cellphone based portable bacteria pre-concentrating microfluidic
sensor, and impedance sensing system. Sensors Actuators B
Chem 193(3):653-659

Caviglia C, Zor K, Canepa S, Carminati M, Larsen LB, Raiteri R,
Andresen TL, Heiskanen A, Emnéus J (2015) Interdependence of
initial cell density, drug concentration and exposure time revealed
by real-time impedance spectroscopic cytotoxicity assay. Analyst
140(10):3623-3629

Primiceri E, ChiriacoMS AED et al (2010) Real-time monitoring of
copper ions-induced cytotoxicity by EIS cell chips. Biosens
Bioelectron 25(12):2711-2716

Alfinito E, Millithaler JF, Pennetta C, Reggiani L (2010) A single
protein based nanobiosensor for odorant recognition. Microelectron
J41(11):718-722

Lu Y, Zhang D, Zhang Q, Huang Y, Luo S, Yao Y, Li S, Liu Q
(2016) Impedance spectroscopy analysis of human odorant binding
proteins immobilized on nanopore arrays for biochemical detection.
Biosens Bioelectron 79:251-257

Capone S, Francioso L, Siciliano P et al (2009) 138 electrical im-
pedance spectroscopy of a pig odorant binding protein immobilized
onto gold interdigited microelectrodes: an ab-initio study. AIP
Conference Proceedings

Badalyan A, Neumann-Schaal M, Leimkiihler S, Wollenberger U
(2013) A biosensor for aromatic aldehydes comprising the mediator
dependent PaoABC-aldehyde oxidoreductase. Electroanalysis
25(1):101-108

Robles CIG, Vazquez-Zapién GJ, Mata-Miranda MM et al (2017)
Electrical bioimpedance spectroscopy as biosensor technique to
identify cells lineages and cell differentiation process. Conf Proc
IEEE Eng Med Biol Soc 3568-3571

Zou L, Wu C, Wang Q, Zhou J, Su K, Li H, Hu N, Wang P (2015)
An improved sensitive assay for the detection of psp toxins with
neuroblastoma cell-based impedance biosensor. Biosens
Bioelectron 67:458-464

Hong WC (2009) Hybrid evolutionary algorithms in a SVR-based
electric load forecasting model. Int J Electr Power Energy Syst
31(7-8):409-417

Fan G, Shan Q, Wang H et al (2014) Study on apparent kinetic
prediction model of the smelting reduction based on the time-series.
Math Probl Eng 2012(1024-123X):115-123

Hu Z, Bao Y, Xiong T (2013) Electricity load forecasting using
support vector regression with memetic algorithms. Sci World J
2013(1):292575

Hu Z, Bao Y, Chiong R, Xiong T (2015) Mid-term interval load
forecasting using multi-output support vector regression with a
memetic algorithm for feature selection. Energy 84:419-431



Med Biol Eng Comput (2019) 57:1515-1524

1523

21. Nekkaa M, Boughaci D (2015) A memetic algorithm with support
vector machine for feature selection and classification. Memet
Comput 7(1):59-73

22.  Suehiro J, Zhou G, Hara M (2003) Rapid communication: fabrica-
tion of a carbon nanotube-based gas sensor using dielectrophoresis
and its application for ammonia detection by impedance spectros-
copy. J Phys D Appl Phys 36(21):L109-L114

23. Shervedani RK, Mehrjardi AH, Zamiri N (2006) A novel method
for glucose determination based on electrochemical impedance
spectroscopy using glucose oxidase self-assembled biosensor.
Bioelectrochemistry 69(2):201-208

24. Chen H, Heng CK, Puiu PD, Zhou XD, Lee AC, Lim TM,
Tan SN (2005) Detection of Saccharomyces cerevisiae
immobilized on self-assembled monolayer (SAM) of
alkanethiolate using electrochemical impedance spectroscopy.
Anal Chim Acta 554(1-2):52-59

25. LuY, Yao Y, Li S, Zhang Q, Liu Q (2017) Olfactory biosensor
based on odorant-binding proteins of Bactrocera dorsalis with elec-
trochemical impedance sensing for pest management. Sens Rev
37(4):396-403

26. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y
(2008) Desolvation of ions in subnanometer pores and its
effect on capacitance and double-layer theory. Angew
Chem 120(18):3440-3443

27. Shervedani RK, Mozaffari SA (2006) Impedimetric sensing
of uranyl ion based on phosphate functionalized cysteamine
self-assembled monolayers. Anal Chim Acta 562(2):223—
228

28. Creager SE, Wooster TT (1998) A new way of using ac voltamm-
etry to study redox kinetics in electroactive monolayers. Anal Chem
70(20):4257-4263

29. Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O,
Bhatt S, Aldissi M (2009) Challenges of electrochemical imped-
ance spectroscopy in protein biosensing. Anal Chem 81(10):3944—
3949

30. Farace G, Lillie G, Hianik T, Payne P, Vadgama P (2002)
Reagentless biosensing using electrochemical impedance spectros-
copy. Bioelectrochemistry 55:1-2):1-3

31. Mejri MB, Baccar H, Baldrich E, del Campo FJ, Helali S, Ktari T,
Simonian A, Aouni M, Abdelghani A (2010) Impedance biosens-
ing using phages for bacteria detection: generation of dual signals as
the clue for in-chip assay confirmation. Biosens Bioelectron 26(4):
1261-1267

32. Lisdat F, SchaFer D (2008) The use of electrochemical impedance
spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555—
1567

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Ying Xu , who received a doctoral
degree from Zhejiang University
in 2007, is now a master’s degree
tutor at Hangzhou Dianzi
University and deputy director of
the Department of Instrumental
Science and Technology. Her
main research directions include
sensor microchip simulations, de-
sign and overall hardware plat-
form construction, and later signal
analysis work. Other research in-
terests include organically com-
bining the electrical performance
of'a specific sensor and the detect-

ed biological tissue unit. In 2009, she hosted the National Natural Science
Foundation of China Youth Fund. In recent years, Ying Xu has published
more than 20 papers and developed 3 patents.

Chao Liis enrolled in the graduate
division of the Department of
Biomedical Engineering at
Hangzhou Dianzi University.
She has presided over two
National Innovation and
Entrepreneurship Training
Programs of Undergraduates and
participated in the development of
two patents.

Mei Wanxin , a graduate student
at Hangzhou Dianzi University
from 2015 to 2018, majored in
Instrumental Science and
Technology. In the past, she de-
voted her time to data analysis,
especially of electrophysiological
signals. In 2016, she published an
article titled “Recognition and
Classification of EEG Signals in
Reading Mode Based on Hilbert-
Huang Transformation.” She has
also studied the relationship
among electrophysiological sig-
nals, cell impedance, and cell state

to quantify cell activity. Recently, she has extensively researched subjects
covering data analysis methods and their application to biomedical engi-
neering, human engineering and cell engineering.

@ Springer



1524

Med Biol Eng Comput (2019) 57:1515-1524

@ Springer

Miao Guo , who received a doc-
toral degree from Zhejiang
University in 2006, is now a mas-
ter’s degree tutor at Hangzhou
Dianzi University and deputy di-
rector of the Department of
Biomedical Engineering. Her
main research areas are biological
monitoring and signal analysis.
Miao Guo has published more
than 10 papers in recent years.

Yong Yang is a professor and
doctoral supervisor at Hangzhou
Dianzi University. He is mainly
engaged in the research areas of
medical instruments and image
processing. He has hosted and
participated in more than ten pro-
jects, such as the National Science
and Technology Support
Program, the National Natural
Science Foundation, the National
863 Project subproject, and the
Provincial Major Scientific and
Technological Project. He has
published more than ten articles
in famous journals in China and abroad. He also participated in the pub-
lication of two monographs, one in a foreign language. He is a member of
the Chinese Society of Biomedical Engineering and a deputy secretary-
general of the Zhejiang Provincial Union of Innovative Medical Devices.



	Equivalent...
	Abstract
	Introduction
	Methods
	Materials
	Preparatory experiments
	Electrochemical impedance spectroscopy

	Results
	Equivalent circuit analysis
	Analysis of the characteristic parameters
	Analysis of data training and prediction

	Discussion
	Conclusion
	References


