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Introduction

Colorectal cancer (CRC) is the third most common cancer and 
the third leading cause of cancer-related death. Approximately 
140,250 new cases of large-bowel cancer are diagnosed each 
year and account for approximately 8% of all cancer deaths.1 
It should also be stressed that the prevalence of CRC is rapidly 
increasing in the developing world. The colonic bacterial 
community impacts on various host functions which include 
the digestion and absorption of nutritients, modulation of host 
metabolism, interactions with the immune system, neuroendo-
crine activity and motility as well as gut barrier and epithelial 
integrity; processes that, if disrupted, could contribute to car-
cinogenesis in CRC. Of these, the development of inflamma-
tion and alterations in the colonic microbiota are the two 
factors most closely associated with progression to CRC.2–4

Literature review

Bifidobacteria and gut microbiota

The gut microbiota contains a diverse community of commen-
sal, symbiotic and potentially harmful micro-organisms.5,6 

The gut microbiota exerts anti-inflammatory, antioxidant, 
anti-oncogenic effects and contributes to the immunological, 
hormonal and metabolic homeostasis of the host.7,8 The genus 
Bifidobacterium belongs to the phylum actinobacteria and 
comprises Gram-positive, non-motile, often branched anaero-
bic bacteria.9 Bifidobacteria are one of the major species in the 
human colon microbiota, and members of this species are fre-
quently used as probiotics.10 Bifidobacterium species have 
immune modulatory, metabolic and anti-inflammatoryef-
fects.9,11–13 Bifidobacterium species have the highest level of 
intrinsic hydrogen peroxide resistance causing antioxidant 
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activity.14 Several studies have shown that Bifidobacteria dif-
fer from other bacteria in their role in oligosaccharide metabo-
lism and the capacity to perform fermentation.9,15 
Bifidobacteria use the fructose-6-phosphate phosphoketolase 
pathway to ferment carbohydrates; through this pathway, indi-
gestible fructans are converted into short-chain fatty acids 
(SCFAs), such as butyrate, propionate and acetate which have 
beneficial effect on intestinal immunity and metabolism.16 
Bifidobacteria are the main sources of butyric acid produc-
tion, and they are used as probiotic ingredients in many 
foods.17,18 Bifidobacterium animalis subsp. lactis is a catalase-
negative, rod-shaped bacterium which was first isolated in 
1983. At the time of isolation, B. animalis subsp. lactis was 
considered as belonging to the species of Bifidobacterium 
bifidum.19

Mycosporin-like amino acids and gut microbiota

Mycosporin-like amino acids (MAAs) are low molecular 
weight (<400 Da) amino acids. MAAs act as absorbers of 
ultraviolet (UV) light and as photo protectants.20–22 MAAs 
also play a role in protecting against sunlight damage by act-
ing as antioxidant molecules scavenging toxic oxygen radi-
cals.22 MAAs are unique components of red seaweeds, and 
seaweed products are used as nutrional supplements in the 
management of bowel diseases.23–26 MAAs have been 
described to affect the intestinal mucosa, enhancing villus 
height and surface area, as well as the intestinal microbiota, 
increasing the abundance of Bifidobacterium and, impor-
tantly, reducing the prevalence of Clostridium species in ani-
mal models.27 MAAs have been shown to regulate intestinal 
epithelial cell differentiation and cytokine (interleukin (IL)-
1β and IL-6) production.28 Cell differentiation and modula-
tion of cytokine production have a beneficial effect on 
intestinal epithelial cells.29–33 In in vivo experiments, the 
anti-inflammatory effects of MAAs were demonstrated. 
They can also reinforce intestinal barrier function.34,35 In 
addition, MAAs exhibit potent antioxidant activity by mop-
ping up reactive oxygen species (ROS).36 The MAAs Myc-
Gly and Myc-Tau inhibit the adverse effects of ROS in 
biological systems via lipid peroxidation, inactivation of 
mitochondrial electron transport and hemolysis of erythro-
cytes.37 Tryptophan is an essential amino acid for the synthe-
sis of the neurotransmitter serotonin (5-hydroxytryptamine 
(5-HT)). Impaired tryptophan metabolism has been impli-
cated in the pathophysiology of conditions such as acquired 
immunodeficiency syndrome–related dementia, 
Huntington’s disease and Alzheimer’s disease.38 Furthermore, 
impaired tryptophan metabolism could contribute to the 
development or exacerbation of inflammatory bowel dis-
ease.39 MAAs induce the activity of the tryptophan by 
degrading enzyme indoleamine 2,3-dioxygenase. 
Indoleamine 2,3-dioxygenase is the rate-limiting enzyme in 
the breakdown of the essential amino acid tryptophan into 
kynurenine, which represents an anti-proliferative strategy 

by reducing the growth of invading pathogens and malignant 
cells.40 It seems that modulation of tryptophan metabolism 
via MAAs has a beneficial effect on gut microbiota.

Discussion

Bifidobacteria and colon cancer

Epithelial inflammation constitutes an important initiating 
factor in the development of colitis-associated CRC. 
Inflammation may arise after mucosal invasion by intestinal 
bacteria.41 Later, inflammation can induce persistent immune 
dysregulation and then neoplastic changes of the mucosa. 
Chung et al. demonstrated that Bacteroides fragilis triggers a 
pro-carcinogenic, multi-step inflammatory cascade that 
requires IL-17R and involves nuclear factor (NF)-κB signal-
ing in colonic epithelial cells in the context of intestinal dys-
biosis.42 When pathogenic bacteria invade the protective 
mucus layer of the colon, the equilibrium is disturbed and 
DNA damage begins with tumor formation along with 
chronic inflammation.43

Abnormal patterns of DNA methylation in the intestinal 
tract can lead to the formation of aberrant crypt foci which 
are thought to later progress into adenoma and cancer and 
damage the intact barrier and intestinal epithelium.43 
Aberrant DNA methylation and dysregulation of intestinal 
cell proliferation may precede the activation of oncogenesis, 
through ROS and p53, which are needed for neoplastic pro-
gression.44 DNA methylation is associated with CpG island 
(CGI)-associated promoters in both intestinal epithelial stem 
cells and differentiated cells. Global hypomethylation leads 
to increased gene expression, heterozygosity and global loss 
of chromosomal stability.44,45 In addition, hypermethyla-
tion46 leads to inactivation of important tumor-suppressor 
genes.

These epigenetic changes play an important role in the 
formation of colorectal adenomas and carcinomas. Ghadimi 
et al.47 reported that Bifidobacterium restores epigenetically 
mediated changes in the human intestinal mucosal immune 
system via reducing histone acetylation and enhancing DNA 
hypermethylation. Disrupted methylation patterns can occur 
during inflammation in colonic disorders. They also showed 
that Bifidobacterium diminishes the expression of IL-17 and 
IL-23, which play an important role in inflammatory bowel 
disease. Schroeder et al.48 showed that Bifidobacterium 
strains promote mucus layer integrity and reverse abnormali-
ties in the altered colonic microbiota. Colonic permeability 
is decreased, and the growth rate of the inner mucus layer 
increased in an intact colonic microbiota.

Bifidobacteria are the main source of butyrate produc-
tion, and butyrate has potent anti-inflammatory and anti-
tumor effects. A higher abundance of butyrate-producing 
bacteria was found in stools of native Africans with low 
CRC risk as compared to Afro-Americans with a higher 
risk.49 Clarke et al.50 reported that butyrate inhibits 
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proliferation and induces differentiation and apoptosis of 
CRC cells. Increased levels of butyrate reduce the incidence 
of carcinogen-induced colon tumors. Free fatty acid receptor 
2 (Ffar2) is a receptor for SCFAs (acetate, propionate and 
butyrate), and Sivaprakasam et al. showed that Ffar2 is 
downregulated in human colon cancers. They also reported 
that the administrationof bifidobacterium alleviated intesti-
nal inflammation and carcinogenesis in Ffar2−/−mice.51 
Butyrate may play a role in mediating key processes in onco-
genesis including genomic instability, inflammation and cell 
energy metabolism.

Krüppel-like factors (Klfs) are zinc-containing transcrip-
tion factors that modulate proliferation, differentiation, 
growth and apoptosis. A total of 17 Klfs have been identi-
fied, and their biological structure and contribution to human 
diseases have been described by Bialkowska et al.52 Klf5 is 
highly expressed in crypt epithelial cells of the intestine and 
plays a critical role in regulating the proliferation of both 
normal intestinal epithelial cells and CRC cells.52 Klf4 is an 
inhibitor of cell growth and exerts contrasting effects on 
Klf5.53 Klf4 and Klf5 bind to similar DNA sequences. Klf5 
inhibits the activating effect of Klf4 on the Klf4 promoter, 
and Klf4 abrogates the inhibitory effect of Klf5 on the same 
promoter.54 Engevik et al.55 reported that Bifidobacterium-
associated mice have a 20-fold increase in the goblet cell 
differentiation marker Klf4 at the level of mRNA compared 
with germ-free controls. Bifidobacterium may play a role in 
mediating key processes in the modulation of Klf4 and Klf5 
expression.

It seems that Bifidobacterium strains have protective and 
preventive effects on colonic microbiota composition and 
may have an impact on the epigenetic regulation of CRC

MAAs and colon cancer

Harmful irradiation directly damages biomolecules, including 
lipids, proteins and DNA and induces oxidative stress through 
mutagenic free radicals. MAAs act as UV absorbers. In this 
way, MAAs play an additional role in the antioxidant system. 
In addition, MAAs modulate intestinal epithelial cell differen-
tiation and cytokine production.26 NF-κB is aberrantly acti-
vated in tumor cells, contributing to their advantage in survival 
and proliferation. The modulation of NF-κB signaling in 
response to stress can also be a strategy for cytoprotection, as 
several survival pathways can be activated.32 It seems that 
modulation of NF-κB and tryptophan metabolism via MAAs 
has a beneficial effect on the immune system. Besides these 
properties, MAAs also inhibit thiobarbituric acid reactive oxy-
gen species (TBAR),36 which are elevated in colon cancer.56

Recommendation

Combination of Bifidobacteria and MAAs

There are two biosynthetic pathways of MAAs. The first 
pathway57 is the shikimate pathway, also known as the 

synthesis pathway from aromatic amino acids. The second 
pathway is the pentose phosphate pathway.58 In both path-
ways, 4-deoxygadusol is the common precursor. Trans-
aldolase is an enzyme in the non-oxidative phase of the 
pentose phosphate pathway; Bifidobacterium strains contain 
transaldolase. Cyanobacteria are a phylum of bacteria that 
obtain their energy through photosynthesis and are the only 
photosynthetic prokaryotes able to produce oxygen. MAAs 
are an essantial class of secondary metabolites of 
Cyanobacteria known for their protection against UV radia-
tion and other stress factors.

A biosynthetic gene cluster for MAAs has been demon-
started in Cyanobacteria.59 Anabaena variabilis PCC 7937 
(Cyanobacterium) is able to synthesize MAAs.59 A. variabi-
lis PCC 7937 is not a component of commensal gut micro-
biota. It is a component of aquatic and terrestrial ecosystems. 
Genome studies identified a combination of genes, 
YP_324358 (predicted DHQ synthase) and YP_324357 
(O-methyl transferase), which were present only in A. vari-
abilis PCC 7937 and missing in other Cyanobacteria. 
Anabaena sp. PCC 7120 has been induced to produce MAAs 
using ORF after genomic transfer (YP_324358 and 
YP_324357 genes) from A. variabilis PCC 7937.60 It seems 
that Cyanobacterium is the source of MAAs, and we hypoth-
esize that the genes of Cyanobacterium involved in MAAs 
biosynthesis could be transferred to the strain B. animalis 
subsp. lactis BB-12.61,62 Genetically modified Bifidobacteria 
can modulate the immune system to further reduce chronic 
inflammation and increase colonic mucosal stability. A 
greater degree of suppression of inflammation and increased 
mucosal stability might arrest colorectal tumorigenesis at 
different stages including tumor initiation, promotion, pro-
gression and metastasis.63 In addition, experimental data 
reveal the important role of NF-κB in colon tumor cells, as 
well as in the surrounding cancerous and reactive microenvi-
ronment.64,65 It can be predicted that this combination may 
be more effective in preventing CRC through the NF-κB 
pathway. In addition, elevated levels of TBARs are associ-
ated with colon cancer initiation and progression,58 and this 
combination can prevent cancer formation by lowering 
TBAR levels.

Conclusion

Significant progress has been made in recent years in recog-
nizing the importance of the gut microbiota to CRC. Key 
findings include the discovery of oncogenetic mechanisms 
that link the gut microbiome to CRC, including reduced 
SCFA production, chronic inflammation, alterated transcrip-
tion factors and the immune response. Creating MAA-
producing Bifidobacteria species via genetic engineering 
could result in a bacterium that is more potent in the preven-
tion of CRC. MAAs produced via genetic engineering might 
be used not only as a probiotic but also as a pharmacological 
agent in CRC.
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