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The identification of individuals at high risk of developing psychosis is entirely based 
on clinical assessment, associated with limited predictive potential. There is, therefore, 
increasing interest in the development of biological markers that could be used in clinical 
practice for this purpose. We studied 25 individuals with an at-risk mental state for psy-
chosis and 25 healthy controls using structural MRI, and functional MRI in conjunction 
with a verbal memory task. Data were analyzed using a standard univariate analysis, and 
with support vector machine (SVM), a multivariate pattern recognition technique that 
enables statistical inferences to be made at the level of the individual, yielding results 
with high translational potential. The application of SVM to structural MRI data permitted 
the identification of individuals at high risk of psychosis with a sensitivity of 68% and 
a specificity of 76%, resulting in an accuracy of 72% (p < 0.001). Univariate volumetric 
between-group differences did not reach statistical significance. By contrast, the univar-
iate fMRI analysis identified between-group differences (p < 0.05 corrected), while the 
application of SVM to the same data did not. Since SVM is well suited at identifying the 
pattern of abnormality that distinguishes two groups, whereas univariate methods are 
more likely to identify regions that individually are most different between two groups, our 
results suggest the presence of focal functional abnormalities in the context of a diffuse 
pattern of structural abnormalities in individuals at high clinical risk of psychosis.

Keywords: psychosis, risk, support vector machine, Mri and fMri, at-risk mental state, schizophrenia, verbal 
learning, memory

inTrODUcTiOn

At present, it is possible to identify individuals at a greatly increased risk of developing psychosis 
on the basis of clinical features that may include attenuated psychotic symptoms (1), schizotypal 
personality traits (2), a positive family history of psychosis, and a marked decline in overall function 
(3). Individuals presenting with these features are defined as having an at-risk mental state (ARMS) 
(1), which is associated with a risk of subsequent transition to psychosis of 18% after 6  months 
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of follow-up, 22% after 1 year, 29% after 2 years, and 36% after 
3 years (4). However, there is increasing evidence that psychotic 
experiences are quite common among adolescents and young 
adults in the general population (5), and the particular clinical 
criteria that should be used are still being debated (6). This has led 
to interest in neurobiological markers of psychosis risk.

Structural magnetic resonance imaging (sMRI) studies have 
provided robust evidence for structural brain abnormalities in 
high-risk populations, with the most pronounced gray matter 
(GM) differences relative to healthy controls observed in the 
prefrontal, cingulate, lateral, and medial temporal cortices (7, 8). 
These regions are critical for episodic memory performance, 
which is reported to be impaired in the ARMS (9). Verbal episodic 
memory deficits were found to be associated with reductions in 
GM volume (GMV), particularly in the medial temporal cortex, 
not only in the ARMS (10) but also in non-psychotic relatives of 
individuals with schizophrenia (11). A small number of studies 
have investigated the functional correlates of episodic memory 
dysfunction in the ARMS (9), including work from our group 
on a sample partially overlapping with the present one, which 
identified activation abnormalities in brain regions, includ-
ing prefrontal and medial temporal cortices (12, 13). These 
studies were conducted with a univariate analytical approach. 
Multivariate analysis methods, such as support vector machine 
(SVM)(14, 15), offer the advantage of enabling statistical infer-
ences to be made at the level of the individual and, therefore, 
yield results with high translational potential in clinical practice. 
In particular, SVM is a technique for classifying individual 
observations into distinct groups or classes, based on the detec-
tion of regularities in high-dimensional data (16). The use of 
multivariate analysis approaches has previously demonstrated 
the potential of structural MRI data for the discrimination of 
patients with schizophrenia from healthy controls, with 81 and 
86% diagnostic accuracies observed for patients with chronic 
schizophrenia (15) and first-episode patients (17), respectively. 
Considerable interest lays in the potential of these approaches to 
identify individuals at risk of the disorder and to identify which 
individuals will develop psychosis among those that show a 
vulnerability to it. A recent study addressing this issue found that 
the structural neuroanatomy of high-risk individuals provided 
information that permitted their distinction from controls with 
an 86% accuracy, irrespective of clinical outcome, and further 
indicated that structural abnormalities were most pronounced 
in the individuals who went on to develop psychosis (18). The 
first study using a pattern classification approach for the analysis 
of neurocognitive parameters in high-risk individuals obtained 
a 94.2% accuracy in distinguishing vulnerable individuals from 
healthy controls, with discriminatory patterns involving mainly 
verbal learning and memory domains (19). A further analysis 
aiming to discriminate individuals that subsequently developed 
psychosis from the rest of the participants resulted in 90.8% 
accuracy, with transition to psychosis mainly predicted by execu-
tive and verbal learning impairments (19). However to date no 
study has investigated the potential of the functional correlates 
of verbal learning for identifying individuals at high-risk for 
psychosis using a multivariate approach. The aim of the present 
investigation was, therefore, to use a standard univariate analysis 

and a SVM classifier to examine structural imaging data and the 
functional correlates of a verbal memory task. We hypothesized 
that SVM applied to structural and functional imaging data, 
respectively, would permit the identification of individuals with 
an ARMS with statistically significant accuracies.

MaTerials anD MeThODs

The protocol of the study was in compliance with the Code of 
Ethics of the World Medical Association, it was approved by the 
research ethics committee of the Institute of Psychiatry, King’s 
College London, and all participants gave written informed 
consent to participate after a complete description of the study.

Participants
Twenty-five individuals meeting criteria for an ARMS were 
recruited from Outreach and Support in South London (20), 
a clinical service for people at risk of developing psychosis. The 
diagnosis was based on the PACE criteria (21), as assessed by 
two expert clinicians using the Comprehensive Assessment for 
At-Risk Mental States (CAARMS) (22) and confirmed at a con-
sensus clinical meeting. All subjects were antipsychotic naïve at 
the time of scanning, and six were receiving antidepressant medi-
cation. Twenty-five control subjects were recruited over the same 
period from the same sociodemographic area. Subjects were aged 
18–30 years and were all native speakers of English. Participants 
were excluded if their IQ was below 70, if they had a history of 
a neurological disorder, a history of severe head injury, or if they 
met DSM-IV criteria for an alcohol or drug dependence disorder. 
An additional exclusion criterion for control subjects was a family 
history of psychosis. The study includes all participants reported 
in a previous manuscript (9) that investigated a subsample of the 
current ARMS and control groups.

All participants, with the exception of one for each group, 
were right handed as evaluated using the Lateral Preferences 
Inventory (23).

clinical Measures
Current symptoms were assessed in all participants at the time 
of scanning using the Positive and Negative Syndrome Scale 
(PANSS) (24). Premorbid IQ was estimated with the Wide Range 
Achievement Test-Revised (WRAT-R) (25).

statistical analyses
Statistical analyses were conducted using SPSS version 16.0 (SPSS 
inc. Chicago, IL, USA). Student’s t-test was used to compare 
ARMS and control participants in terms of demographic and 
clinical variables.

image acquisition
Images were acquired using a 1.5-T GE NV/I Signa LX Horyzon 
system (General Electric, Milwaukee, WI, USA) at the Centre for 
Neuroimaging Sciences, King’s College London.

Structural Images
T1-weighted inversion recovery spoiled gradient struc-
tural images were acquired with the following acquisition 
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parameters: TE = 5200 ms, TR = 15900 ms, flip angle = 20°, field 
of view = 220 mm × 176 mm, slice thickness = 1.5 mm, number 
of slices = 124, image matrix = 256 × 256 × 124.

Functional Images
T2-weighted images were acquired using gradient-echo echop-
lanar magnetic resonance imaging (EPI) during the Encoding 
and the Recognition condition of an episodic verbal memory 
paradigm previously described (12). The data reported here refer 
to the encoding condition, in which 160 words were visually 
presented in blocks of 10 words each, back projected with an LCD 
projector on to a screen viewed through a prism positioned over 
the head coil. Participants were asked to read words aloud and try 
to remember them. Stimuli were presented with stimulus onset 
asynchrony of 4 s. Between each encoding block, there was a word 
repetition condition in which subjects were required to repeat-
edly view and say the word “wait” in blocks of four presentations 
each. Participants were aware that the encoding task would be 
followed by a test of recognition of the presented material. During 
the encoding condition, 228 image volumes were acquired in 
a single functional run using a compressed acquisition sequence 
(TR = 4000 ms, silent period 2500 ms) to allow verbal articula-
tion of the stimuli in the absence of acoustic scanner noise and 
to minimize motion artifacts related to overt articulation. 
Images were acquired in 16 non-contiguous axial planes parallel 
to the intercommissural plane with the following parameters: 
TE = 40 ms, slice thickness = 7 mm, slice skip = 0.7 mm, in plane 
resolution 3 mm × 3 mm.

Univariate analysis
Structural Imaging Analysis
Group-related differences in GMV were analyzed using voxel-
based morphometry (VBM), implemented in SPM8 software1 
running under Matlab 7.4 (MathWorks, Natick, MA, USA). 
Prior to the VBM analysis T1-weighted volumetric images were 
preprocessed using the Diffeomorphic Anatomical Registration 
Through Exponentiated Lie algebra (DARTEL) (26) SPM8 
toolbox, aimed at maximizing analysis accuracy and sensitivity 
through the creation of a sample-specific template that is used for 
the segmentation of each individual image (27). After the image 
origin was set manually to the anterior commissure, T1-weighted 
images were segmented into GM, white matter (WM), and cer-
ebrospinal fluid (CSF). GM segments were iteratively registered 
by non-linear warping to a template generated using DARTEL 
to obtain a high-dimensional normalization (26). A homogene-
ity check across the sample was followed by smoothing with an 
8 mm full width at half maximum (FWHM) Gaussian kernel. The 
normalization protocol included a “modulatory step” in order to 
preserve information about the absolute GM values (28). After 
preprocessing, normalized modulated smoothed data were used 
for the statistical analysis. This was performed using SPM8 to 
compare GM images from ARMS participants and controls with 
a two-sample t-test. Age, gender, and medication were modeled 
in the analysis to reduce the potential impact of these variables on 

1 http://www.fil.ion.ucl.ac.uk/spm

the findings. In order to identify specific changes not confounded 
by global volumetric differences, the proportional scaling option 
was used. Statistical inferences for the standard univariate 
analysis were made whole brain voxel-wise at p  <  0.05 family 
wise error (FWE).

Functional Imaging Analysis
Functional images were realigned to the first volume in the series 
to correct for movement during acquisition, transformed into a 
standard space (SPM EPI template) and smoothed using a 6-mm 
isotropic Gaussian filter using SPM5 (Wellcome Department of 
Imaging Neuroscience, London, UK, see text footnote 1) running 
in matlab 7.4 (MathWorks, Natick, MA, USA). A standard random 
effects statistical analysis of regional responses was performed to 
identify regional activations in each subject independently. To 
remove low-frequency drifts, the data were high-pass filtered 
using a set of discrete cosine basis functions with a cut off period 
of 128 s.

Each stimulus was modeled independently by convolving the 
onset times with the hemodynamic response function (HRF). 
First, the parameter estimates for encoding and repetition were 
calculated using the general linear model in each individual sub-
ject. Second a group analysis was performed using a 2 × 2 facto-
rial model of variance (ANOVA), with group (ARMS, controls) 
and condition (encoding, repetition) as factors. Age, gender, and 
medication were modeled as covariates to minimize the impact of 
these potentially confounding variables on the results. The whole 
brain voxel-wise threshold was set at p < 0.05 FWE corrected.

Regression coefficients (“beta values”), which provide infor-
mation about the fit of the regressor to the data at each voxel, were 
obtained for each subject, masked to include only intracerebral 
tissue, then used for the multivariate analysis of the Encoding 
condition.

Multivariate analysis
A linear SVM was used to classify ARMS participants and 
controls on the basis of their brain structure. A separate analysis 
was performed on the basis of their brain activation during the 
Encoding phase of a verbal episodic memory task. The SVM 
classifier was implemented using the PROBID software2 (Institute 
of Psychiatry, London, UK) running in matlab 7.4. (MatWorks, 
Natick, MA, USA).

Classification and Support Vector Machine
Support vector machine is a supervised multivariate classifica-
tion method where “supervised” refers to a training step in 
which the algorithm learns the differences between pre-specified 
groups to be classified (29). SVM treats each image as a point 
in a high-dimensional space, where the number of dimensions 
equals the number of intracerebral voxels. Participants were 
allocated to one of two classes (ARMS or controls) and a linear 
classification function was learnt from the imaging data in order 
to discriminate between the two groups. To linearly classify the 
data, a decision boundary or hyperplane (a generalization of 

2 www.brainmap.co.uk/probid.htm
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TaBle 1 | Demographic and clinical variables by group.

group group comparison

arMs  
(N = 25)

controls  
(N = 25)

Age (years) 23.84 (5.52) 25.12 (3.21) t = −1.003, p = 0.322
N, Male/
Female

18/7 14/11 χ2 = 1.389, df = 1,  
p = 0.239

Premorbid IQ 101.48 (13.20) 104.12 (8.80) t = −0.832, p = 0.410
PANSS 46.40 (9.51) 30.44 (0.96) t = 8.35, p < 0.001
PANSS 
positive

12.48 (3.19) 7.2 (0.50) t = 8.18, p < 0.001

PANSS 
negative

10.16 (4.06) 7.00 (0.00) t = 3.89, p < 0.001

PANSS 
general

23.80 (5.45) 16.24 (0.66) t = 6.88, p < 0.001

Data reflect mean (and SD). Df (degrees of freedom) = 48; N = number; PANSS, 
Positive and Negative Syndrome Scale.
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a plane of n − 1 dimensions that splits an n-dimensional space) 
must be defined in order to separate the data based on class 
membership. However, for a linearly separable problem, there are 
infinitely many hyperlanes that correctly classify the data. The 
SVM algorithm (30) finds the optimal one in the sense that it is 
characterized by the largest margin between classes. The margin 
is defined as the distance of the closest training data-points to 
the hyperplane. These points are the most difficult to classify and 
are called support vectors. The hyperplane is defined by a weight 
vector, which is a linear combination of the support vectors and 
specifies both a direction and an offset that together define the 
maximum margin classifier. The SVM regularization parameter 
(conventionally denoted “C”) was fixed to its default value (1), 
following common practice in neuroimaging studies.

Discrimination Maps
The weight vector is normal to the hyperplane and can be con-
ceptualized as a spatial representation of the decision boundary. 
It has the same dimension as the training data (in this case voxel 
space) and can, therefore, provide a map of the most discrimina-
tory regions (discrimination map). If the two groups are attrib-
uted labels of +1 and −1, higher positive values indicate regions 
making a positive contribution toward identifying the first group 
relative to the second and vice  versa, indicating which regions 
are most important for defining class membership for the first 
and the second group, respectively [for a description see Ref. 
(31)]. In the present study, positive values were associated with 
the ARMS group and coded in red/yellow color scale, while the 
control group was associated with a negative weight and coded 
in blue/cyan color scale. The multivariate nature of the classifier 
provides a spatial pattern of regions that discriminate between 
the two groups.

Classifier Performance
The performance of the classifier was assessed using a leave-one-
out cross-validation procedure (16). This approach consists of 
training the classifier with all participants except from one pair 
and subsequently testing the group membership assigned to the 
excluded subjects. This test was repeated 25 times, each time 
excluding a different pair of participants, one from the ARMS 
group and one from the control group. This procedure permitted 
the measurement of the accuracy of the classifier, defined as the 
proportion of correctly classified participants. It also permitted 
the quantification of the sensitivity and specificity of the classifier, 
defined as follows:

 – Sensitivity = TP/(TP+FN)
 – Specificity = TN/(TN+FP)

TP refers to true positives, which is the number of individuals 
from the ARMS group correctly classified. TN, or true negatives, 
is the number of individuals from the control group correctly 
classified. FP, or false positives, refers to the number of control 
participants misclassified as belonging to the ARMS group, 
while FN, or false negatives, is the number of ARMS participants 
misclassified as belonging to the control group.

Permutation Testing
The significance of the SVM classification was assessed at 
whole-brain level using a non-parametric permutation test. This 
evaluates the probability of obtaining by chance sensitivity and 
specificity values higher than those obtained during the leave-
one-out cross-validation procedure. This method randomly 
assigns participants to one of the classes before training the SVM. 
In the present study, 1000 permutations were conducted and the 
null hypothesis of the observed classification being observed by 
chance was rejected for p = 0.05. The discrimination maps show 
the most important regions contributing to an overall accuracy 
significant at the p < 0.05 level.

resUlTs

Demographic and clinical Variables
The two groups were matched in terms of age and estimated pre-
morbid IQ. There was a larger proportion of male participants in 
the ARMS group (72%) than in the control group (56%), though 
not statistically significant.

As expected, the two groups differed in terms of symptom 
severity as assessed using the PANSS total score and each of the 
subscales (Table 1).

imaging results
Univariate Structural Analysis
When VBM was used, volumetric between-group differences 
were observed only at uncorrected level but none reached a 
trend for significance with correction for multiple comparisons 
(p < 0.05, FWE corrected).

Univariate Functional Analysis
During the encoding condition, controls showed greater activa-
tion than ARMS subjects in the left middle frontal and precentral 
gyri, supramarginal gyrus, and insula as well as the right medial 
frontal gyrus (Table 2, Figure 1).

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


FigUre 1 | Main effect of encoding (FWe corrected).

TaBle 2 | Main effect of encoding.

Brain region x y z z-score

L insula −32 −24 4 5.46
L precentral gyrus −32 6 42 5.34
R medial frontal gyrus 22 44 20 5.11
L middle frontal gyrus −52 34 20 4.74
L supramarginal gyrus −46 −52 24 4.56
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Multivariate Structural Analysis
The structural neuroanatomy of individuals at risk of psychosis 
permitted their discrimination from healthy controls at a statisti-
cally significant level (p < 0.001) with 68% sensitivity and 76% 
specificity, resulting in 72% accuracy.

The neuroanatomical pattern distinctive of the ARMS 
group (i.e., having high magnitude positive weights) showed 
high weights bilaterally in the hippocampus, parahippocampal 
gyrus, putamen, superior and middle frontal gyri, middle 
temporal gyrus, fusiform gyrus, and inferior parietal lobule. 
In addition, lateralized findings distinctive of ARMS group 
membership included the left inferior temporal gyrus, right 
superior temporal gyrus, left precuneus, and left cerebellum 
(Figure 2).

The pattern distinctive of the control group (i.e., having high 
magnitude negative weights) showed high weights bilaterally 
in the medial and inferior frontal gyri, the inferior and middle 
temporal gyri, the insula, the cuneus, the cerebellum, anterior, 
and posterior cingulate. Lateralized findings distinctive of con-
trol group membership included the left superior and middle 
frontal gyri, the left middle occipital gyrus and right precuneus 
(Figure 2).

Multivariate Functional Analysis
Based on the functional imaging data, no significant discrimina-
tion of ARMS subjects relative to controls was obtained, with 
between-group discrimination no greater than chance (p = 0.34), 
sensitivity of 48%, specificity of 60%, and overall accuracy of 
54% when the leave-one-out cross-validation procedure was 
employed.

DiscUssiOn

Identification of psychosis prone individuals still uses a method 
available 100  years ago  –  a clinical interview. In the rest of 
medicine, investigations often involve the use of biological tests, 
which can help to identify conditions of risk, and allow earlier 
detection of the disorder. In the absence of diagnostic biomarkers 
for psychosis, methods that permit the distinction of vulnerable 
individuals from healthy controls have important implications 
for the early detection and diagnosis of the disorder.

Structural and functional MRI data were used to assess their 
potential to reliably distinguish control and ARMS individuals 
using multivariate analysis techniques.

The results indicated that the multivariate approach enabled 
the identification of structural differences that distinguished the 
two groups. By contrast, the univariate analysis of the functional 
MRI data identified significant group differences, while the 
SVM method did not. In the present study, the sample size may 
have limited the power to identify group differences, but their 
detection with one analytical method rather than the other may 
alternatively reflect a different distribution of structural and func-
tional abnormalities. Univariate analytical approaches consider 
each voxel independently and are well suited to detecting effects 
that are localized and robust; by contrast, multivariate methods 
take into account between-voxel correlations and are ideal for 
detecting subtle and spatially distributed patterns of abnormality 
(32). If SVM is well suited at finding the set of areas that jointly 
distinguish two groups, whereas univariate methods are more 
likely to identify regions that individually are most different 
between two groups, our results suggest the presence of focal 
functional abnormalities in the context of a diffuse pattern of 
structural abnormalities.

Based on previous SVM findings, both in schizophrenia (15, 
17) and in the ARMS (32), it was predicted that structural MRI 
data would allow a robust between-group discrimination. In the 
present sample, using a leave-one-out procedure, the whole-brain 
structural correlates of the ARMS identified individuals belong-
ing to this group relative to healthy controls with 72% accuracy. 
This is lower relative to accuracy levels previously reported for 
schizophrenia (15, 17), and in a previous MRI study in the ARMS 
(18). Nevertheless, the classification was highly significant under 
permutation (p < 0.001). The results, therefore, replicate previous 
findings, albeit with a relatively lower accuracy, and suggest that 
the high risk of psychosis seen in people with an ARMS is associ-
ated with significant alterations in brain anatomy.

Some of the regions identified as most important for dis-
criminating between ARMS and controls feature within circuits 
connecting the medial temporal region to the lateral temporal 
and prefrontal cortices (33), networks that normally play an 
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FigUre 2 | structural discrimination map. Areas shown in red were those most distinctive of ARMS group membership. Those in blue were most distinctive of 
control group membership. Images were thresholded to show the top 30% of voxel weight vector values (positive and negative).
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important role in episodic memory (34). However, the SVM 
analysis of the functional MRI data acquired during an episodic 
memory task failed to reliably distinguish the ARMS participants 
from healthy controls. These data, thus, suggest that activation 
during the encoding phase of an episodic memory task may not 
have potential for the identification of group membership in this 
context. Nevertheless, we cannot exclude the possibility that a 
significant difference might have emerged had the sample size 
been larger. A previous investigation, which used fMRI in con-
junction with an n-back working memory task to discriminate 
between ARMS individuals and healthy controls (35), reported a 
statistically significant accuracy of 76.2%. However, we note that 
this investigation was also carried out in a small sample of 19 
ARMS and 19 healthy controls. In order to address the apparent 
inconsistency between the results of this previous investigation 
and those of our study, replication with a larger sample size and 
multiple memory tasks (e.g., working vs. episodic memory) would 
be required, especially considering the clinical heterogeneity of 
the population under investigation.

When structural imaging data are considered using machine 
learning methods, the findings cannot be interpreted simply 
in terms of greater or lower GMV in one group relative to the 
other. The set of areas identified in each group represent the brain 
regions that are the most important for predicting membership of 

each group. Regions in the predictive pattern can be assigned high 
weight vector scores either because of a large difference in GMV, 
or because the region adds predictive value by virtue of its cor-
relation with other brain regions [e.g., to cancel out noise (36)]. In 
previous studies of schizophrenia, the predictive pattern from the 
multivariate analysis mostly implicated regions similar to those 
where volumetric reductions had been identified using univariate 
analyses (15, 37), with differences mainly in frontal, temporal, 
parietal, and cingulate cortices, the medial temporal lobe and the 
thalamus (38, 39). Similarly, the recent application of machine 
learning techniques to MRI data in the ARMS characterized the 
high-risk population by a distributed pattern comprising frontal, 
temporal, limbic, and cerebellar regions (18, 32). The present SVM 
results derived from structural data were consistent with those 
from previous studies, with the classification pattern containing 
clusters in the prefrontal and temporal cortices, and a large bilat-
eral cluster, including the hippocampus and parahippocampal 
gyrus. These are areas where volumetric abnormalities have been 
indentified using univariate analyses in ARMS and genetic high-
risk individuals relative to controls (40–42). While data from 
univariate MRI studies indicate that vulnerability to psychosis is 
associated with GM abnormalities regardless of clinical outcome 
(7, 41), there is also evidence that later transition to psychosis is 
associated with more marked abnormalities at baseline (7, 41) 
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and with progressive volumetric reductions between baseline and 
the onset of psychosis (40, 43). These findings are not mutually 
exclusive: it is likely that the former are correlates of increased risk 
(independent of subsequent clinical outcome), while the latter are 
specific correlates of later illness. The first studies to address the 
issue of abnormalities specific to those subjects who will develop 
psychosis have provided promising results, with machine learn-
ing classifiers appearing able to distinguish subjects that would 
subsequently develop psychosis from those who would not, 
based on structural abnormalities present before psychosis onset 
(18). However, the clinical follow-up of the ARMS participants 
is still ongoing and no direct comparison was performed based 
on outcome; therefore, no inferences can be made relative to 
abnormalities specific to later transition to psychosis.

The present study had further limitations. First, the sample 
sizes were relatively small, which may have limited its power to 
detect true group differences. As discussed above, this means 
that the negative findings in the structural and functional 
analyses must be interpreted with caution, and future studies 
using larger samples are needed to address this issue as well as 
that of specificity relative to other psychiatric disorders. There 
was a higher proportion of male participants in the ARMS than 
that of the control group. The gender difference did not reach 
significance; however, it represents a possible confounder because 
of the sexual dimorphism of brain structure and development 
(44, 45) and the gender differences reported in brain morphology 
in schizophrenia (46). Finally, even though all the ARMS partici-
pants were antipsychotic naïve, six of them had been exposed to 
antidepressant medication. It is, therefore, not possible to rule 
out whether this variable may have contributed to the differences 
observed (47).

In conclusion, we found that a multivariate analysis of neu-
roanatomical images enabled the identification of individuals 
at high risk of psychosis with statistically significant accuracy. 

By contrast, the functional correlates of episodic memory did 
not show classification potential in this clinical population. 
Mass-univariate analyses are optimal for identifying focal group 
differences, and are more sensitive than multivariate methods if 
the effects are localized to particular brain regions. Multivariate 
methods, on the other hand, are sensitive to spatially distributed 
patterns of activity, and are more sensitive if the differential effects 
are distributed across widespread brain regions. The two analyses 
are, therefore, complementary and address different questions 
when used in combination. These results expand the current 
understanding of structural and functional brain abnormalities 
in individuals at high risk of psychosis. Future work could exam-
ine possible strategies to improve the diagnostic and prognostic 
classification of this clinical population, for example, through the 
integration of multiple modalities within a multivariate machine 
learning framework.
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