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Abstract. There is recent evidence to indicate the existence of 
an inverse association between the incidence of neurological 
disorders and cancer development. Concurrently, the tran-
scriptional pathways responsible for the onset of glioblastoma 
multiforme (GBM) and Alzheimer's disease (AD) have been 
found to be mutually exclusive between the two pathologies. 
Despite advancements being made concerning the knowledge 
of the molecular mechanisms responsible for the development 
of GBM and AD, little is known about the identity of the 
microRNA (miRNAs or miRs) involved in the development 
and progression of these two pathologies and their possible 
inverse expression patterns. On these bases, the aim of the 
present study was to identify a set of miRNAs significantly 
de-regulated in both GBM and AD, and hence to determine 
whether the identified miRNAs exhibit an inverse association 
within the two pathologies. For this purpose, miRNA expres-
sion profiling datasets derived from the Gene Expression 
Omnibus (GEO) DataSets and relative to GBM and AD 
were used. Once the miRNAs significantly de‑regulated in 
both pathologies were identified, DIANA‑mirPath pathway 
prediction and STRING Gene Ontology enrichment analyses 
were performed to establish their functional roles in each 
of the pathologies. The results allowed the identification of 
a set of miRNAs found de-regulated in both GBM and AD, 
whose expression levels were inversely associated in the two 

pathologies. In particular, a strong negative association was 
observed between the expression levels of miRNAs in GBM 
compared to AD, suggesting that although the molecular 
pathways behind the development of these two pathologies are 
the same, they appear to be inversely regulated by miRNAs. 
Despite the identification of this set of miRNAs which may 
be used for diagnostic, prognostic and therapeutic purposes, 
further functional in vitro and in vivo evaluations are warranted 
in order to validate the diagnostic and therapeutic potential 
of the identified miRNAs, as well as their involvement in the 
development of GBM and AD.

Introduction

Over the past century, human life expectancy has increased 
significantly, settling at approximately 76.3 years for males 
and 81.2 for females (1). Such an increment in lifespan has 
been associated with a huge surge in the most diffused 
life-threatening diseases, including cardiovascular, neurode-
generative and oncological pathologies (2).

Although aging represents a common risk factor, the physi-
ological and molecular mechanisms behind the development 
of age-related disorders differ completely, particularly when 
comparing cancer with neurodegenerative disorders (3,4). 
Supporting this evidence, recent epidemiological data have 
demonstrated that there is an inverse association between 
cancer and neurodegeneration (5,6).

Despite this inverse association between the incidence 
of tumors and the rise of neurodegenerative disorders, some 
conditions, such as inflammation (7‑9), the alteration of the 
intestinal microbiota (10‑13), diet‑related diseases (14‑18) 
and risks related to the exposure to environmental pollut-
ants (19-25) are involved in the development of both 
pathologies. Consistently, the association between the develop-
ment of neurodegenerative diseases and the onset of tumors 
may be either direct or indirect. As a direct consequence, it has 
been shown that several benign and malignant types of cancer 
are associated with neurological, as well as neurodegenerative 
disorders (26‑28).
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In particular, it has been demonstrated that although glio-
blastoma multiforme (GBM) and Alzheimer's disease (AD) 
share the same molecular pathways, substantial differences 
exist in their modulation (29,30). In fact, while rapid cell 
proliferation and apoptotic cell arrest are typical features of 
GBM, cellular damage and subsequent cell death are common 
consequences in AD (31,32).

To date, the only available treatments for AD are only palli-
ative, as they are capable of delaying memory and cognitive 
function impairment, without actually blocking neuronal loss. 
The main drugs used in the treatment of AD are cholinesterase 
inhibitors and glutamatergic N-methyl D-aspartate (NMDA) 
receptors antagonists, such as memantine (Namenda), 
respectively able to improve neuropsychiatric symptoms and 
neuronal cell‑to‑cell communication (33). Importantly, the 
benefits of such therapies are not long‑lasting and are coupled 
with adverse impairing effects.

GBM is a widely diffused brain malignancy, as well as the 
most aggressive tumor of the central nervous system (34,35). 
Currently, GBM treatment options are limited, typically repre-
sented by surgical resection of the tumor mass (when the lesion 
does not involve vascular and nerve structures), followed by 
radiotherapy and chemotherapy (36). Despite advancements 
being made in anticancer treatments (37), the therapeutic 
approaches available for GBM are often ineffective, given the 
high rate of GBM relapse and drug resistance (36). Recently, 
in vitro studies have demonstrated that treatment with nitric 
oxide‑releasing HIV protease inhibitors previously adopted 
for other tumors (38,39), is effective in reducing the prolifera-
tion of GBM cancer cells (40,41).

Notably, the diagnostic and therapeutic approaches that 
are normally used to recognize and to treat cognitive deficits 
and dementia symptoms, appear to be slightly effective in the 
early detection and treatment of brain precancerous lesions. 
Although they need to be further validated in a larger cohort 
of patients, transcranial magnetic stimulation (TMS) and 
transcranial Doppler ultrasonography, normally used for 
vascular cognitive impairments (42‑47), AD (48), restless leg 
syndrome (49‑52), and other neurological syndromes (53‑56), 
appear to be promising approaches suitable for the diagnosis 
and cure of precancerous brain lesions.

A concern about GBM management is relative to the lack 
of effective biomarkers. In particular, a number of biomarkers 
have been proposed to solve this issue. Several studies have 
highlighted the possible application of extracellular protein 
biomarkers, such as extracellular matrix proteins, vascular 
endothelial growth factor (VEGF), angiogenesis-associated 
proteins, matrix metalloproteinases (MMPs; MMP‑2, MMP‑9) 
and astrocyte elevated gene-1 (AEG-1), macrophage migration 
inhibitory factor (MIF) and functionally‑related genes (DD‑T; 
CD74, CD44, CXCR2 and CXCR4) (57‑59). Other proteins 
can be also used for the treatment or prognostic evaluation of 
tumor development (60,61).

Given the lack of effective diagnostic strategies, as well as 
treatments able to effectively cure both GBM and AD, there 
is an urgent need for the identification of novel diagnostic 
biomarkers and therapeutic targets for the effective treat-
ment of such pathologies. Moreover, the understanding of the 
expression patterns of such biomarkers may prove to be useful 
in order to further demonstrate the existence of an inverse 

association between GBM and AD. In this context, several 
studies have demonstrated that the evaluation of microRNA 
(miRNA or miR) expression levels in patients compared 
with their healthy controls, may provide information on the 
development of several diseases, including cancer and neuro-
degenerative disorders (62‑65). Indeed, miRNAs are involved 
in both physiological and pathological processes; therefore 
studying their alterations in GBM and AD may prove to be 
helpful in detecting early the onset of such pathologies.

On this ground, the aim of this study was to analyze miRNA 
expression profiling datasets of GBM and AD obtained from 
the Gene Expression Omnibus (GEO) DataSets portal in order 
to identify specific miRNAs de‑regulated in both diseases. 
Once the presence of altered miRNAs shared between GBM 
and AD would be established, the second aim of this study 
was to determine whether their expression levels are inversely 
associated.

Materials and methods

Selection and analysis of GBM and AD miRNA profiling 
datasets. The selection of both GBM and AD miRNA 
expression profiling datasets was performed using the 
publicly available GEO DataSets database, as previously 
reported (66,67). Briefly, for the selection of GBM miRNA 
datasets the following search terms were used: ‘{[‘non coding 
rna profiling by array’(DataSet Type)] AND glioblastoma} 
AND ‘Homo sapiens’[porgn:__txid9606]’; while for the selec-
tion of AD datasets the search terms used were as follows: 
‘{[‘non coding rna profiling by array’(DataSet Type)] AND 
Alzheimer} AND ‘Homo sapiens’[porgn:__txid9606]’. These 
search criteria allowed the identification of different miRNA 
expression datasets of which only those with >10 samples 
(total of normal and pathological samples) were selected for 
the further computational analyses. Given the low number 
of AD miRNA microarray platforms, datasets containing 
<10 samples were considered. Datasets including the expres-
sion data of GBM or AD within in vitro models were not 
considered for the analyses.

Following dataset selection, the data matrices were down-
loaded and differential analyses were performed between 
normal and pathological samples using the GEO2R tool avail-
able on GEO DataSets. Since different miRNA microarray 
platforms were adopted, the differentially expressed miRNAs 
of each dataset were annotated using the last version of 
miRBase (miRBase version 22) (68). The miRNA expression 
fold change (FC) was expressed as base-2 logarithm of FC 
(log2FC) to normalize the miRNA expression values obtained 
from different microarray platforms.

All the miRNAs with a value of P≤0.01 were considered 
for the merging analyses and the following identification of 
miRNAs involved in GBM and AD.

Identification of miRNAs potentially involved in GBM and 
AD. The lists of differentially expressed miRNAs obtained 
from the GBM and AD datasets were merged through a 
Venn diagram calculating tool, in order to obtain miRNAs 
shared with >1 dataset (http://bioinformatics.psb.ugent.be/
webtools/Venn/). In particular, only the miRNAs contained 
at least in the 50% of GBM and AD datasets were considered. 
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The log2FC levels of each miRNA are reported in a graphic 
table indicating the level of upregulation and downregulation, 
using red boxes and blue boxes, respectively with different 
gradient.

Schemes of de-regulated miRNAs were generated for the 
GBM datasets, AD datasets and for the GBM and AD datasets 
together, in order to establish the existence of an inverse asso-
ciation between the expression levels of GBM- and AD-related 
miRNAs.

Involvement of GBM‑ and AD‑related miRNAs in the modu‑
lation of glioma‑ and AD‑related pathways. To establish the 
involvement of the identified miRNAs in the modulation of 
glioma- and AD-related pathways and their relative target 
genes, a pathway prediction analysis was performed using 
the prediction tool DIANA‑mirPath version 3 (69), as previ-
ously described (70). The DIANA‑mirPath analysis was 
performed comparing the identified miRNAs with the panel of 
miRNAs involved in both glioma- (hsa05214) and AD-related 
(hsa05010) pathways.

Gene Ontology (GO) and roles of GBM and AD miRNA‑target 
genes. The GO analysis and the functional roles of the 
miRNAs-targeted genes related to GBM and AD were evalu-
ated using the enrichment software ‘STRING: Functional 
protein association networks’ (https://string‑db.org/) (71). In 
particular, for the genes related to GBM and AD the ‘Biological 
process’, ‘Molecular function’ and ‘Cellular component’ were 
determined. Furthermore, the interaction network between 
genes was determined for both GBM and AD. The STRING 
analyses were performed for the 13 selected miRNAs resulting 
from the comparison of GBM and AD miRNA expression 
profiling datasets.

Statistical analyses. The GEO2R software already normal-
ized the miRNA expression data derived from GEO DataSets. 
Only miRNAs with a value of P≤0.01 were considered for 
further analyses. Furthermore, the GEO2R software automati-
cally calculated the GEO DataSets data P-values. The P-values 
obtained from the prediction pathway analysis were already 
calculated using DIANA‑mirPath software (V.3.0).

Results

miRNA profiling dataset selection for GBM and AD. The 
research of miRNA expression profiling datasets performed 
with GEO2R using specific search terms allowed for the iden-
tification of 51 and 9 miRNA profiling datasets for GBM and 
AD, respectively. The datasets either relative to in vitro studies 
or built with less than 8 samples, including normal and patho-
logical specimens, were excluded from the analysis. Following 
this filtering, five datasets for GBM and two datasets for AD, 
were selected for the study. The information of all selected 
datasets is reported in Table I.

In particular, for GBM, two datasets were developed by 
Affymetrix (Affymetrix miRNA Array), two developed by 
Illumina (Illumina Human MicroRNA expression beadchip) 
and one developed by Exiqon (Exiqon miRCURY LNA 
microRNA array, 7th generation). For the AD datasets, one was 
developed by 3D‑Gene (3D‑Gene Human miRNA V21_1.0.0) 

and the other one was a custom platform (USC/XJZ Human 
0.9 K miRNA‑940‑v1.0) (Table I).

Identification of miRNAs involved in the development of GBM 
and AD. Merging the lists of differentially expressed miRNAs 
in GBM datasets allowed the identification of a set of miRNAs 
strictly involved in the development and progression of GBM. 
In particular, among all miRNAs, 35 were found to be de‑regu-
lated with concordant expression levels in at least 3 out of 5 
GBM miRNA expression datasets (downregulated or upregu-
lated in all datasets) (Fig. 1A). In particular, 14 miRNAs were 
upregulated and 21 downregulated. Of these miRNAs, the 
most upregulated miRNAs were the following: hsa-miR-21, 
hsa‑miR‑18a, hsa‑miR‑19a, hsa‑miR‑25, hsa‑miR‑16‑1, 
hsa‑miR‑106a and hsa‑miR‑106b; and the most downregulated 
miRNAs were the following: hsa-miR-128, hsa-miR-129, 
hsa‑miR‑7, hsa‑miR‑873, hsa‑miR‑218, hsa‑miR‑139 and 
hsa‑miR‑770.

Similarly, following the merging of the 2 AD miRNA 
lists, 7 miRNAs were uncovered. All of them were related 
to the development of AD. Among these, 5 were upregulated 
(hsa‑miR‑134, hsa‑miR‑185, hsa‑miR‑198, hsa‑miR‑659 
and hsa‑miR‑671) and 2 downregulated (hsa‑miR‑29c and 
hsa-miR-494) (Fig. 1B).

By comparing the de-regulated miRNAs in both the GBM 
and AD datasets, it was observed that the expression levels 
of 12 miRNAs were inversely associated between GBM and 
AD. Of these, 3 were upregulated in GBM and downregu-
lated in AD (hsa‑miR‑106a, hsa‑miR‑20b and hsa‑miR‑424) 
and 9 were downregulated in GBM and upregulated in AD 
(hsa‑miR‑1224, hsa‑miR‑129, hsa‑miR‑139, hsa‑miR‑330, 
hsa‑miR‑433, hsa‑miR‑485, hsa‑miR‑487b, hsa‑miR‑584 and 
hsa-miR-885). Additionally, hsa-miR-29c was downregulated 
in both the GBM and AD datasets, suggesting its involvement 
in both pathologies (Fig. 2).

Pathway prediction analysis of selected miRNAs. To elucidate 
the role of the de-regulated miRNAs shared between the GBM 
and AD datasets, DIANA‑mirPath analysis was performed. 
The analysis revealed that all the 13 selected miRNAs, apart 
from hsa‑miR‑433, were involved in the regulation of GBM by 
modulating the expression levels of 34 different genes (Fig. 3). 
As regards AD, the pathway prediction analysis revealed 
that, with the exclusion of hsa‑miR‑433, hsa‑miR‑485 and 
hsa‑miR‑487b, all the remaining identified miRNAs were able 
to interact with the AD pathway and to target 51 different genes. 
Notably, the analysis revealed that the miRNAs, hsa‑miR‑106a, 
hsa‑miR‑424 and hsa‑miR‑330, were able to modulate the 
expression levels of MAPK1 in both GBM and AD. In partic-
ular, hsa‑miR‑106a and hsa‑miR‑424 were able to induce the 
downregulation and upregulation of MAPK1 in GBM and AD, 
respectively. This could be explained by the inverse associa-
tion of miR‑106a expression levels in GBM and AD. Similarly, 
hsa‑miR‑330 was able to induce the upregulation of MAPK1 
in GBM, while in AD, this gene was downregulated. In the 
same manner, the miRNAs, hsa-miR-424, hsa-miR-885 and 
hsa-miR-29c, were involved in the regulation of several genes 
belonging to the family of calmodulins (CALM family). In 
detail, hsa-miR-424 and hsa-miR-885 exhibited an inverse 
association in modulating the expression of CALM genes, 
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while hsa-miR-29c was downregulated in both the GBM and 
AD datasets, thus determining the upregulation of CALM3 in 
both pathologies (Fig. 3).

In addition, the pathway prediction analysis identified the 
most targeted genes in GBM as IGF1R (targeted by 6 miRNAs), 
CCND1, CDKN1A, MDM2 (targeted by 5 miRNAs), AKT3, 
CDK6, E2F1, MAPK1, PIK3R1, PIK3R3 (targeted by 
4 miRNAs). Notably, the mostly targeted gene families were 
PI3K (targeted by 11 miRNAs), CDK (targeted by 10 miRNAs) 
and E2F (targeted by 5 miRNAs) (data not shown). As regards 
the AD pathway, the 13 selected miRNAs were able to 
target mainly the MAPK1 (targeted by 4 miRNAs), APH1A, 
APP, GSK3B (targeted by 3 miRNAs), ADAM17, ATP2A2, 
CALM2 and CALM3 (targeted by 2 miRNAs). Of note, the 
most altered gene families were the ATP (9 miRNAs), NDUF 
(8 miRNAs), CALM (5 miRNAs) and ADAM (3 miRNAs) 
families, strictly involved in the development of AD (data not 
shown).

GO enrichment analysis of selected miRNAs and target 
genes. The GO analysis performed by STRING allowed to 

determine the functional roles of the genes related to GBM 
and AD and targeted by the selected miRNAs. The STRING 
analysis performed on GBM miRNA-targeted genes revealed 
that of the 34 genes, 33 were recognized as proteins. Among 
these 33 proteins, 30 were directly involved in the glioma 
pathway (Fig. 4D). The clustering of proteins according to 
the ‘Biological process’, ‘Molecular function’ and ‘Cellular 
component’ categories revealed that the majority of proteins 
were involved in the regulation of cellular processes and meta-
bolic processes (Fig. 4A), in the binding of molecules and in 
catalytic activities (Fig. 4B). Moreover they belong to intracel-
lular organelle and cytoplasm (Fig. 4C).

Similarly, the STRING analysis performed on the list 
of miRNA-targeted genes obtained for the AD highlighted 
that 47 of the 51 identified genes were involved in AD 
pathway (Fig. 5D). As described for GBM, regarding the 
‘Biological process’ category, the identified genes were involved 
in the cellular and metabolic processes (metabolism of different 
compounds), but also in the response to stimuli (Fig. 5A). The 
AD proteins were also significantly involved in the binding of 
several molecules and less in the catalytic activity, in contrast 

 Table I. Information pertaining to the selected datasets for glioblastoma and Alzheimer's disease.

Series accession n. normal  n. cancer  Samples Platform Author/(Ref.) Total samples

Glioblastoma datasets
GSE90604 7 16 Fresh frozen brain GPL21572 Gulluoglu et al,  25
   tissues and GBM [miRNA‑4]  2017 (No Ref.)
   tumor tissues affymetrix multispecies
    miRNA-4 array
GSE25632 5 82 Normal brain GPL8179 (112,113) 87
   tissues and GBM Illumina Human v2
   tumor samples MicroRNA expression
    beadchip
GSE103229 5 5 Normal brain GPL18058 Chun et al,  10
   tissues and GBM Exiqon miRCURY 2018 (No Ref.)
   tumor samples LNA microRNA
    array, 7th generation
GSE63319 4 11 Normal brain tissues GPL16384 Sarkar et al,  18
   (epileptic) and GBM [miRNA‑3]  2016 (No Ref.)
   tumor samples affymetrix multispecies
    miRNA‑3 array
GSE42657 7 5 Normal brain GPL8179 (114) 61
   tissues and GBM Illumina Human v2
   tumor samples MicroRNA
    expression beadchip

Alzheimer's disease datasets
GSE120584 288 1021 Serum samples GPL21263 (115) 1601
    3D‑Gene Human
    miRNA V21_1.0.0
GSE16759 4 4 Normal brain GPL8757 (116) 8
   tissues and AD USC/XJZ Human
   tissue samples 0.9 K miRNA-940-v1.0

GBM, glioblastoma multiforme; AD, Alzheimer's disease.
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to what it was observed for the GBM proteins clustered in the 
‘Molecular function’ category (Fig. 5B). Finally, the analyzed 
proteins were part of the intracellular organelle, as well as the 
cell membrane, therefore playing a fundamental role in the 
regulation of cellular homeostasis (Fig. 5C).

Discussion

Despite tremendous advancements being made in the charac-
terization of the clinicopathological features typical of tumors 
and neurodegenerative diseases, little is known about the 
association between the molecular mechanisms responsible 
for the development and progression of brain cancer and 
neurodegeneration (72‑74). In detail, an indirect association in 
the incidence rates of GBM and AD has been widely reported, 
thus suggesting that this inverse association may be coupled 
with an inverse regulation of the same molecular mechanisms 
involved in the development of GBM and AD (29,30).

To shed light on the molecular mechanisms potentially 
responsible for the rise of these pathologies, and to demonstrate 
the existence of an inverse association between the molecular 

alterations in GBM and AD, the present study identified the 
miRNAs found altered in GBM and AD. In particular, in this 
study, we analyzed the potential involvement of these miRNAs 
in the onset of both diseases although oppositely expressed. 
For the first time, at least to the best of our knowledge, the 
existence of a strong inverse association was demonstrated in 
human samples between selected miRNA expression levels in 
GBM and AD through the comparison of altered miRNAs.

The choice of analyzing the expression levels of miRNAs 
in both pathologies depends on the numerous profiling data 
collected during the years for GBM and AD, and the increasing 
number of studies coupling the analysis of miRNAs in cancer 
and neurodegenerative disorders (75‑78).

The independent analysis of GBM miRNA expression 
datasets revealed that 35 miRNAs were de‑regulated in 
tumor samples compared to the normal controls. Almost all 
of these de-regulated miRNAs have been widely associated 
with the development and progression of GBM. In particular, 
several studies have already described the role of hsa-miR-21 
and hsa-miR-155 overexpression in the promotion of the 
development of glioblastoma (79‑81). Other studies have 

Figure 1. (A) Differentially expressed miRNAs between GBM samples and normal brain tissues; (B) Differentially expressed miRNAs between samples of 
AD and normal controls. log2FC values relative to upregulated miRNAs were reported with a gradient of red boxes while a gradient of blue boxes were used 
for downregulated miRNAs. GBM, glioblastoma multiforme; AD, Alzheimer’s disease.
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demonstrated the therapeutic potential of the overexpression 
of several miRNAs normally downregulated in glioblastoma, 
such as hsa‑miR‑7, hsa‑miR‑93 and hsa‑miR‑139 (82‑84). 
As regards the most downregulated miRNAs, hsa-miR-128 
and hsa-miR-129, found in the GBM dataset analysis, some 
studies have highlighted their possible use in the context of 
novel therapeutic strategies aimed at inhibiting the molecular 
pathways involved in GBM aggressive phenotypes (85‑87).

Concerning the analysis performed on the 2 AD miRNA data-
sets, the results revealed significant data for the downregulated 
miRNA, hsa-miR-29c. Several studies have demonstrated that the 
downregulation of this miRNA may play a potential role either 
as biomarker or as therapeutic agent in AD in vitro models and 
in patients (88-91). Of note, the downregulation of hsa-miR-29c 
has also been observed in GBM where it was observed that its 
induced overexpression led to the suppression of glioma (92).

Figure 2. Comparison of the expression levels of miRNAs in GBM and AD datasets. In total, 12 out of 13 miRNAs exhibited inverse expression patterns in 
GBM and AD, while hsa‑miR‑29c was found to be downregulated in both GBM and AD. GBM, glioblastoma multiforme; AD, Alzheimer’s disease.

Figure 3. Diana‑mirPath pathway prediction analysis showing the genes modulated by the selected miRNAs in glioma (hsa05214) and Alzheimer’s disease 
(hsa05010) pathways. In red are reported the miRNAs upregulated, while in blue those downregulated. The genes shared in both glioma and Alzheimers’ 
disease pathways are presented in bold.
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However, the most robust and interesting data derived from 
the comparison between miRNAs de-regulated in both the GBM 
AD datasets, was that all miRNAs identified, with the excep-
tion of hsa-miR-29c, exhibited inverse patterns of expression in 
GBM compared with AD. This result is in accordance with the 
hypothesis of the existence of an inverse regulation of molecular 
pathways in GBM and AD, as postulated by Liu et al (30) and 
Sánchez-Valle et al (29). In line with this theory, miRNAs were 
found inversely regulated in the two pathologies by our analyses. 
Noteworthy, the inverse regulation of miRNAs in GBM and 
AD is coupled with the inverse regulation of targeted genes by 
selected miRNAs. Such inverse miRNAs and genes regulatory 
patterns may explain the inverse comorbidity existing between 
neurological disorders and cancers (6).

The preliminary data obtained comparing miRNA 
expression levels in GBM and AD were further confirmed 

by the pathway prediction and gene ontology enrichment 
analyses. In particular, the DIANA‑mirPath analysis revealed 
that the 13 selected miRNAs were in common between GBM 
and AD and they were able to modulate several genes within 
the glioma pathway (hsa05214). In particular, the miRNAs 
were involved in the regulation of genes, such as MAPK1, 
IGF1R, and genes belonging to the PIK3 and RAS families, 
known to be involved in the development of GBM and other 
tumors (93‑97).

Conversely, the same miRNAs were shown to also target 
fundamental genes involved in AD, such as APP, responsible 
for the β‑amyloid plaque formation (98); GSK3B, hyperacti-
vated in Alzheimer's neurons (99); NDUF family, responsible 
for mitochondrial alterations in AD (100); LRP1 able to regu-
late the metabolism of amyloid-β peptides thus maintaining 
brain homeostasis (101) and other genes.

Figure 4. Gene Ontology enrichment analysis by STRING of miRNAs‑targeted genes in GBM. (A) Genes clustered according to molecular function; (B) Genes 
clustered according to biological process; (C) Genes clustered according to cellular component; (D) Interaction network between genes targeted by the selected 
miRNAs in GBM. In red the genes involved in glioma pathway (hsa05214). GBM, glioblastoma multiforme.
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Therefore, it is clear how miRNA de-regulation and other 
epigenetic mechanisms may lead to the modulation of these 
genes and, in turn, to the acquisition of a more aggressive 
tumor phenotype or neurodegenerative disorder suscepti-
bility (102,103).

In addition, STRING analysis revealed that the selected 
miRNAs were able to modulate genes involved in both GBM 
and AD and those genes performed, in general, the same 
function and processes within the two pathologies. Therefore, 
differential expression levels of miRNAs in GBM and AD 
may be responsible for the onset of GBM rather than the AD, 
and vice versa.

Overall, the identification of altered miRNAs in both GBM 
and AD, as well as the definition of the inverse patterns of 
expression, may pave the way for new studies to better eluci-
date the involvement of these miRNAs in GBM and AD. In 

particular, further studies are required to examine the thera-
peutic potential of such identified miRNAs at the early stages 
of disease, since several treatments for AD are administered 
only when the pathology is at an advanced stage (104‑106). On 
this matter, the results of the present study and the potential 
applications of this research methodology also to other brain 
diseases, may improve the diagnostic and therapeutic strate-
gies mainly based on the analysis of low‑specific biomarkers 
and on the use of low‑sensitive and low‑efficacy instrumental 
procedures (107‑111).

In conclusion, in the present study, at least to the best of 
our knowledge, for the first time a set of de‑regulated miRNAs 
in both GBM and AD was identified, demonstrating the exis-
tence of an inverse association between the expression levels 
of miRNAs in GBM and AD. The findings of the present study 
may pave the way for other functional in vitro and in vivo 

Figure 5. Gene Ontology enrichment analysis by STRING of miRNAs‑targeted genes in AD. (A) Genes clustered according to molecular function; (B) Genes 
clustered according to biological process; (C) Genes clustered according to cellular component; (D) Interaction network between genes targeted by the selected 
miRNAs in AD. In red the genes involved in the AD pathway (hsa05010). AD, Alzheimer’s disease.
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studies to validate the diagnostic or prognostic significance of 
the identified miRNAs, as well as to depict their possible use 
as novel therapeutic approaches for GBM and AD.
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