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Invertebrate Hosts Are a Valuable Tool in
Studying Fungal Pathogens

The use of invertebrate hosts as infection models can greatly

facilitate the study of pathogenesis (Table 1). Among invertebrate

model hosts, the available options to select from include amoebae

(Acanthamoeba castellanii and Dictyostellium discoideum) [1,2], the

nematode Caenorhabditis elegans [3], and insects (including Drosophila

melanogaster, Galleria mellonella, and Bombyx mori) [4–8].

A critical step in addressing a question or hypothesis regarding

host–pathogen interactions is to determine which infection

model(s) best fit into the experimental criteria. For example,

Cryptococcus neoformans and Candida albicans can infect amoebae, C.

elegans, and several insect hosts. However, not all hosts are

amenable to infection by every fungal pathogen, conditions for

infections need to be optimized, and in some cases the host is not

favorable for the study of the particular pathogenesis trait. For

example, Pneumocystis murina cannot infect D. melanogaster or G.

mellonella.

Available model hosts offer different advantages and disadvan-

tages, and before choosing the right model host some basic

questions should be posed: 1) are you interested in the host

immune response to the infecting pathogen and what host-related

tools, such as RNAi, sequenced genome, or mutants, are available

and could be advantageous to such studies, 2) will the host be used

for drug discovery, 3) will host tissue need to be removed and

evaluated, 4) will host phagocytosis of the pathogen be studied, 5)

is fungal hyphal formation of interest, and 6) what temperature

conditions are best suited to address the research questions of

interest or for studying a particular fungal gene (Figure 1).

Are Virulence Traits Equally Important in All
Systems?

The pathogenicity of fungi in mammals has many similarities

with the pathogenicity in non-vertebrate hosts. Throughout their

evolution, fungi have been in continuous contact and interaction

with other soil-dwelling organisms, and it has been suggested that

many virulent factors have evolved in order to protect fungi from

environmental predators. However, all virulence traits are not

equally important for the pathogenesis in different systems. For

example, an intact capsule is critical for C. neoformans pathogenesis

in G. mellonella and amoebae, but this is not the case in the killing of

C. elegans [1,3]. Therefore, the right choice of a model host is

crucial for successful research.

How to Study Temperature-Sensitive Virulence
Traits?

Some, but not all, invertebrate hosts allow the study of

pathogenesis at mammalian temperatures. For example,

D. melanogaster and C. elegans are temperature restricted and cannot

survive at high temperature testing conditions; C. elegans is better

used at a temperature range from 15uC to 25uC, and D. melanogaster

has an optimal temperature range from 18uC to 30uC. Although

some model hosts have temperature ceilings that are lower than

mammalian conditions, there are other more thermotolerant

model hosts, such as some insects, including G. mellonella (which has

a temperature range of 25uC to 37uC), some amoebae, or worms

such as Panagrellus redivivus [9].

The higher thermotolerance presents conditions under which

certain genes expressed at mammalian temperatures can be

studied. However, mammalian temperatures are not always ideal

for the study of a temperature-related trait. For example, multiple

hosts were necessary to study ECA1, a sarcoplasmic/endoplasmic

reticulum Ca2+-ATPase type calcium pump [10]. An eca1 C.

neoformans mutant exhibited reduced growth at 37uC, so association

with virulence was difficult to ascertain with mammalian models

or by using G. mellonella or amoeba at 37uC conditions. A role in

virulence was found using G. mellonella at 30uC and C. elegans at

25uC. This approach is interesting because using an array of

model hosts has the advantage that we can study fungal

pathogenesis at temperatures ranging from mammalian conditions

to those of natural fungal environments. Of note is that a variety of

other traits have been found to play a role in virulence at lower

temperatures (Table 1).

What System Is Better for Studying Phagocytosis?

If we want to reveal the phagocytosis process, unicellular

organisms like amoeba or slime molds such as D. discoideum are

amenable for such studies. For example, amoebae such as A.

castellanii phagocytose fungi like C. neoformans, Saccharomyces cerevisiae,

and C. albicans. These amoebae envelope the fungal cell into a

vacuole [1]. Interestingly, during the interaction between A.

castellanii or insect hemocytes and fungi, fungal structures such as

capsule and phospholipase activity provide protection, as they

would in mammalian macrophages [1].

Also, model hosts like G. mellonella and D. melanogaster utilize

phagocytic cells as part of their host defense. For example, an

indicator of the active response of G. mellonella to fungal infections
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is the number of hemocytes, the phagocytic cells for G. mellonella,

present after pathogen infection. There is an inverse relationship

between the virulence of the invading fungi and the number of

hemocytes. Introduction of pathogenic strains does not garner an

increase in hemocytes. However, infecting larvae with non-

pathogenic strains of fungi causes a release of hemocytes and

therefore an increase in the number of hemocytes in the

hemolymph [11]. Interestingly, C. albicans evade and escape

hemocytes utilizing hyphae, similar to the action taken against

mammalian phagocytes. On the contrary, phagocytosis is not part

of C. elegans response to infection. Also, although D. discoideum

might be too small to phagocytose some of the larger fungi, this

host has contributed to understanding phagocytic processes

through the study of actin cytoskeleton, an integral part of the

phagocytotic process [12].

Which System Is More Appropriate for Studying
Antimicrobial Compounds?

The use of model hosts can facilitate the study of existing and

discovery of new compounds. The model systems that have been

used most frequently in the field of drug discovery are C. elegans

and the insects D. melanogaster and G. mellonella. The nematode C.

elegans has been the most amenable to the screening process in

search of new antifungal compounds due to its small size and use

in liquid assay format, making it ideal for implementing high-

throughput assays utilizing automation [13]. During the applica-

tion of this method, liquid infection assays are set up in 96- or 384-

well plate formats. Automated systems can supply the plates with

the liquid media, nematodes, and specific quantities of compounds

[14]. Thus, the testing of thousands of candidate compounds is

accelerated. The process can identify not only antifungal

compounds, but also those with immunomodulatory effects that

bolster the immune response, effectively inhibiting the fungal

infection.

Insects can be used for the study of smaller compound libraries.

An insect model host system used for the discovery of new

antifungal drugs is G. mellonella. The substance astemizole, which is

an antihistamine drug, found to be active in combination with

fluconazole, against C. neoformans. Even combination of a few (2–3)

compounds can be studied in the survival of infected larvae [15].

In addition, the compound lovastatin was evaluated using D.

melanogaster as a model for infection from zygomycetes. Lovastatin

was active against the fungi Rhizopus homothallicus, Rhizopus oryzae,

Mucor circinelloides, and Cunninghamella bertholletiae [16]. When D.

melogaster is utilized as an infection model, a candidate antifungal

compound is ingested by the host. However, the exact quantity of

the consumed compound is unknown. In the case of G. mellonella, a

standardized concentration of the compound is delivered via

injection. Although more accurate in quantification, the process is

time consuming.

Conclusion

There are several hosts used to model infections ranging from

single cell protozoa to insects. For the best interrogation into

host–pathogen interactions, researchers can select from a variety

of invertebrate model hosts. However, no single model host can

answer all scientific questions. The selection of the appropriate

host should be based on the virulence trait or the host response

under study and the financial, space, and time commitment

required (for example, D. melanogaster requires incubators and a

‘‘fly room’’, C. elegans requires incubators and microscopes

however G. mellonella can be used in almost any laboratory).

Importantly, scientists can also use the ‘‘multi host’’ approach

and implement multiple complementary infection models as

they try to understand the various mechanisms in the fungal

arsenal to establish an infection, evade or cope with host

defenses, and grow and reproduce within the confines of

another organism.

Table 1. Summary of findings generated by using the invertebrate infection models.

Model Host A. castellanii C. elegans D. discoideum D. melanogaster G. mellonella

Types of fungi
studied

Blastomyces dermatitidis,
Cryptococcus neoformans
[1], Histoplasma
capsulatum, Sporothrix
schenckii

Saccharomyces cerevisiae, Candida albicans
[17], Cryptococcus neoformans [3],
Drechmeria coniospora

Cryptococcus
neoformans [2]

Candida albicans
[4], Cryptococcus
neoformans [18],
Aspergillus
fumigatus,
Beauveria bassiana

Candida albicans
[5], Cryptococcus
neoformans, Fusarium
oxysporum, Aspergillus
flavus, Aspergillus
fumigatus

Representative
virulence factors
studied on the
model

CAP67 (capsule related,
C. neoformans) [1],
melanin genes, (melanin
related, C. neoformans)
[1], PLB (phospholipase
related, C. neoformans)
[1]

CAP59 (capsule related, C. neoformans) [3],
GPA1 (G protein alpha subunit related, C.
neoformans) [3], PKA1 (cAMP- dependent
protein kinase subunit, C. neoformans) [3],
RAS1 (high temperature growth related, C.
neoformans) [3], LAC1 (related to melanin
production, C. neoformans) [3], ADE2
(phosphoribosylaminoimidazole related,
C. neoformans) [3], KIN1 (protein kinase
related, C. neoformans), ROM2 (Rho1
guanyl nucleotide exchange factor related,
C. neoformans) [19], RIM101 (hyphal
formation related, C. albicans) [17], NRG1
(hyphal formation related, C. albicans) [17],
CAS5 (hyphal formation related, zinc finger
protein related, C. albicans) [17], ADA2/CAS3
(hyphal formation related, C. albicans) [17]

CAP67 (capsule
related,
C. neoformans) [2]

CDC35 (adenylyl
cyclase related, C.
albicans) [4], CLA4
(activated kinase
related, C. albicans)
[4], SAP4-6 (aspartyl
protease related, C.
albicans) [4], PKA1
(cAMP-dependent
protein kinase
subunit,
C. neoformans) [18]

CDC35 (adenylyl
cyclase related, C.
albicans) [5], CLA4
(activated kinase
related, C. albicans)
[5], CAP59 (capsule
related, C. neoformans),
BCR1 (filamentation
related, C. albicans)
[20], FLO8
(filamentation related,
C. albicans) [20], KEM1
(filamentation related,
C. albicans) [20], SUV3
(filamentation related,
C. albicans) [20], TEC1
(filamentation related,
C. albicans) [20]

doi:10.1371/journal.ppat.1002451.t001
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Figure 1. The basic characteristics of the more frequently used model hosts. The blue color indicates that this feature is found in the
specific model host. Utilizing the features of the chart can aid in determining which host(s) are most amenable to a particular study. Host genetic
tools aiding in understanding host–pathogen interaction include sequenced genomes, available mutant strains, or RNAi. Once infected, some hosts
can be used to identify compounds with antifungal activity. Also, while infected, some hosts are large enough that individual portions or tissues from
the hosts can be removed and further analyzed either for host responses or to evaluate tissue invasion by the pathogen. As part of the host response,
some hosts have phagocytic cells that engulf the foreign fungi and can be studied to elucidate information about host–pathogen interactions. When
some fungi are engulfed by phagocytes, or establish an infection within the hosts, they produce hyphae. Because of the transparency or ability to
recover tissue from some of the hosts, fungal hyphae formation can be further evaluated. For all of the infecting pathogens, temperature conditions
are a consideration. The various hosts have conditions that are ideal for meeting their own survival needs, and the fungi will react differently in terms
of gene expression and growth rate based on the temperatures in which the hosts are maintained. Temperature features marked in grey on the chart
indicate hosts that can survive at temperature ranges as high as 37uC. Other invertebrate model hosts including Bombyx mori, Culex quinquefasciatus,
Blattella germanica, and even a plant model of Arabidopsis thaliana have been developed. They are not as widely used and not mentioned here in
detail because of space limitations.
doi:10.1371/journal.ppat.1002451.g001
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