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Abstract: A new membrane fouling control technique using ozonated water flushing was evaluated
for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane.
Experiments were conducted at a permeate flux of 44 L/m?h to evaluate the ozonated water flushing
technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants
from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone)
could effectively remove most foulants to restore the membrane permeability. This surface flushing
technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane
pressure increase over five filtration cycles. Results from this study also heighten the need for further
development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal
care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study
showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly
variable. It is expected that the fouling mitigation technique developed here is even more important
for ceramic NF membranes with smaller pore size and thus better PPCP rejection.

Keywords: ceramic membrane; membrane fouling; nanofiltration; ozone; water recycling

1. Introduction

Water recycling is a pragmatic and reliable approach to supplement limited water supplies with
highly treated wastewater effluent. In the urban environment, the reclaimed water can be used
for many non-potable applications such as irrigation, toilet flushing, and landscaping. In recent
years, the nanofiltration (NF) membrane has emerged as an attractive treatment process for water
recycling given its higher energy efficiency and comparable removal efficient of most contaminants
(e.g., colour, multivalent ions, pathogens, and organic chemicals) relevant to non-potable water
recycling applications in comparison to reverse osmosis [1-4].

To prevent membrane fouling, extensive pretreatment often involving multi-media filtration,
microfiltration (MF) or ultrafiltration (UF) is required prior to the NF process [5,6]. Pretreatment incurs
significant capital and operational cost, physical footprint and system complexity [7,8], thus rendering
urban water recycling less economic. An alternative approach to minimise the cost and physical
footprint of water recycling (especially in an urban environment) is to replace the filtration-based
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pretreatment with an ozone-based process. This is particularly attractive since ozone can be generated
onsite and injected directly into the inlet of the NF system without a contact basin. Ozone is a strong
oxidant commonly used to decompose organics as part of a water treatment system [9].

A major challenge for contacting NF membranes with ozone is the stability of polymeric
membranes when exposing to ozone. Polymeric NF membranes are typically made from polyamide
and/or polysulfone composite materials that are susceptible to chemical degradation by strong
oxidants such as ozone and chlorine. Recent progress in materials engineering has resulted in the
introduction of ceramic NF membranes to the municipal water market. These ceramic NF membranes
have a titanium oxide or zirconia on top of an aluminium oxide supporting layer and thus are resilient
against most chemical reagents including ozone [10]. Recent commercial interest in expanding the
role of ceramic membranes toward water recycling applications has led to new membranes with
significantly improved rejection efficiency. Indeed, recent studies have demonstrated the potential
of commercial ceramic NF membranes with molecular weight cut-off (MWCO) of approximately
400 Da for removing a broad range of contaminants while sustaining very harsh chemical cleaning
conditions [10-14]. More recently, a systematic evaluation of prototype ceramic NF membrane with
MWCO of 200 Da capable of removing specific organic chemical contaminants for water recycling
has been reported [15]. While it is still necessary to improve the rejection of these contaminants
including pharmaceuticals and personal care products (PPCPs) that are known to be ubiquitous in
secondary effluent, a simple technique to control fouling is essential for direct application of ceramic
NF membranes to secondary effluent.

To date, ozonation is predominantly integrated with membrane filtration as a pretreatment step.
Pre-ozonation of the feed can reduce the decline in membrane permeability during filtration of ceramic
MF and UF membranes [16-22]. It has been postulated that catalytic reactions between ozone and the
ceramic membrane materials can also improve permeate water quality [23]. Pre-ozonation technique
has been commercialized in membrane-based water purification applications (e.g., Vichem, Simon, SA,
Switzerland). Nevertheless, ozone is unstable, and pre-ozonation of the entire feed volume is energy
intensive. Thus, a more strategic use of ozone for membrane cleaning, which is usually performed
periodically and requires less ozone, appears to be a more economical approach. A potential approach
is backwashing in combination with ozonation. Sartor et al. [24] have recently reported that foulants
underwent ozonation could be readily removed by backwashing. A similar observation has been
reported with ozone air backwashing for mitigating membrane fouling in wastewater treatment [25].
A recent study by Fujioka et al. [26] also demonstrated that backwashing of a ceramic MF membrane
by ozonated water achieved a stable operation in the filtration of a primary wastewater effluent.
Backwashing cannot be applied to NF membranes due to their high resistance and physical damage to
the membrane due to back-flow. Thus, for a ceramic NF application, ozonated water to periodically
flush the membrane surface can instead be used to delay cake formation, thus, reducing the frequency
of chemical cleaning.

This study aimed to evaluate the effectiveness of surface flushing with ozonated water on fouling
mitigation of a ceramic NF membrane. Surface flushing with ozone-free or ozonated water was
performed intermittently during a cross-flow filtration of a secondary wastewater effluent, and their
fouling mitigation levels over multiple filtration cycles were compared. Water quality of NF permeate
was also evaluated by measuring the rejection of basic water quality parameters and 48 PPCPs.

2. Materials and Methods

2.1. Chemicals

In this study, 48 PPCPs (Table 1) were obtained from Wako Pure Chemical Industries (Osaka,
Japan), LKT Laboratories (St. Paul, MN, USA); Alfa Aesar (Ward Hill, MA, USA), ICN Biomedicals
(Irvine, CA, USA), and MP Biomedicals (Santa Ana, CA, USA). A stock solution with the concentration
of 10 mg/L of each PPCP was prepared in pure methanol. The stock solution was kept in the dark
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at —18 °C. Depending on their dissociation in water at the pH value of the secondary wastewater
(pH 6.5), PPCPs can be categorised as neutral (ionised by 50% or less than) and charged (ionised
by more than 50%) (Table 1). Based on their Log D at pH 6.5 (D = the logarithm of the apparent
water-octanol distribution coefficients), these neutral compounds are also classified into neutral
hydrophilic (HL, log D < 2) and neutral hydrophobic (HP, log D > 2) compounds [27,28]. In addition,
charged compounds can be further classified into positively charged and negatively charged species.
Secondary wastewater effluent samples were collected from a municipal wastewater treatment
plant, Japan.

Table 1. Physicochemical characteristics of the selected pharmaceuticals and personal care products
(PPCPs) (data from ChemAxon (https://www.chemaxon.com/)).

Compound MW [Da] L:I%I Ig Sa t rKa I(;?_;SZ. ';(E(l;/lo? t Suppliers
Acetaminophen 151.17 0.91 9.46 0 Wako
Theophylline 180.17 —0.79 7.82,—-0.78 5 Wako
Antipyrine 188.23 1.22 0.49 0 Wako
Caffeine 194.19 —0.55 —1.16 0 Wako
Primidone 218.26 1.12 11.5 0 Wako
Cyclophosphamide 261.08 0.10 13.43, 0.08 0 Wako
Hydrophilic Sulfathiazole 255.31 0.86 6.93,2.04 27 Wako
Sulfamerazine 264.30 0.41 6.99, 2 24 Wako
Neutral Sulfadimidine 278.33 0.54 6.99,2 24 Wako
Sulfamonomethoxine 280.30 0.66 7.15,2.63 18 Wako
Sulfadimethoxine 310.33 1.14 6.91,1.95 28 Wako
Thiamphenicol 356.21 —0.22 8.75 1 Wako
Dipyridamole 504.64 0.03 3.54,14.97 0 Wako
Isopropylantipyrine 230.31 2.35 0.87 0 Wako
Hydrophobic ~ Carbamazepine 236.27 2.77 15.96 0 Wako
Griseofulvin 352.77 2.17 - 0 MP
Ethenzamide 165.19 1.53 6.2,79 51 Wako
Salbutamol 239.32 —2.01 9.4,10.12 100 Wako
Propranolol 259.35 —0.32 9.67,14.09 100 Wako
Atenolol 266.34 —2.48 9.68, 14.07 100 Wako
Trimethoprim 290.32 0.60 7.16 82 Wako
Disopyramide 339.48 0.11 10.42 100 Wako
+ Sulpiride 341.43 —1.55 8.39,10.24 99 Wako
Pirenzepine 351.41 0.19 7.2,14.78 82 Wako
Diltiazem 414.52 1.05 8.18. 12.86 98 Wako
Tiamulin 493.75 1.61 9.51,14.43 100 Wako
Clarithromycin 747.97 1.36 8.38,12.46 9 Wako
Azithromycin 749.00 —2.89 9.57,12.43 100 LKT
Roxithromycin 837.06 0.47 9.08,12.45 100 Wako
Tylosin 916.11 1.54 7.2,12.45 83 Wako
Clofibric acid 214.65 —0.08 3.37 100 Alfa A.
Charged Naproxen 230.26 0.70 4.19 100 Wako
Nalidixic acid 232.24 0.33 4.66,5.77 84 Wako
Mefenamic acid 241.29 2.83 3.89, —1.58 100 Wako
Fenoprofen 242.27 1.15 3.96 100 LKT
Sulfapyridine 249.29 0.64 6.24,2.13 65 Wako
— Sulfamethoxazole 253.28 0.38 6.16,1.97 69 Wako
Ketoprofen 254.29 1.05 3.88 100 Wako
Diclofenac 296.15 1.79 4.00 100 Wako
Furosemide 330.74 —0.48 4.25, —1.52 9 Wako
Indometacin 357.79 0.88 3.79 100 Wako
Levofloxacin 361.37 0.27 5.29,6.16 67 LKT
Bezafibrate 361.82 1.37 3.83, —0.84 100 LKT
Norfloxacin 319.34 —0.98 5.58, 8.68 89 Wako
Ciprofloxacin 331.35 —0.87 5.56, 8.68 89 LKT
+/— Enrofloxacin 359.40 0.96 5.52, 6.66 96 ICN
Tetracycline 444.44 —3.50 8.19,2.92 97 Wako

Chlortetracycline 478.88 —2.96 2.65, 8.55 98 Wako
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2.2. Ceramic NF Membrane and Bench-Scale NF Filtration System

A tubular ceramic NF membrane element (Fraunhofer Institute for Ceramic Technologies and
Systems, Hermsdorf, Germany) used in this study has a nominal molecular weight cut-off of 200
Dalton and effective membrane surface area of 55 cm? (Figure 1a). This NF membrane element with
the flow direction of inside-out had an effective length, outer and inner diameters of 250, 10, and 7 mm,
respectively. The NF membrane element comprised of a separation layer of TiO, placed on the top
of aluminium oxide (x-Al,O3) bottom layer. The membrane element was installed in a stainless steel
housing. A bench-scale cross-flow NF filtration system used in this study is described in Figure 1b.
The NF filtration system comprised of the NF membrane module, 2 L glass feed reservoir, pressure
gauge, flow indicators, and pump (CDP8800, Aquatec, CA, USA). The feed solution temperature was
controlled in the reservoir via a stainless-steel heat exchanging coil connected to a temperature control
unit (NCB-500, Tokyo Rikakikai, Tokyo, Japan).

Flow
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E—ht

Pressure
p regulating
Bypass valve

valve
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Solution Pump Membrane
reservoir module
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Figure 1. (a) Photo of the nanofiltration (NF) ceramic membrane and (b) schematic diagram of the
cross-flow NF filtration system.

2.3. Ozonated Water

Ozone-free water was prepared by purifying tap water using an RO water generation system
(RTA-200W, AS ONE, Osaka, Japan). Ozonated water was prepared at the dissolved ozone
concentration of 3.6-4.0 mg/L by dissolving ozone gas into ozone-free water. Ozone gas was generated
using an ozone generator (OZSD-1000D, Ebara Jitsugyo Co. Ltd., Tokyo, Japan), to which compressed
air was fed from an air cylinder. The ozone concentration in the ozonated water was monitored by a
dissolved ozone monitor (OM-1000, Biotek ozone, Taiwan).

2.4. Experimental Protocols

Membrane flushing was performed by circulating either ozone-free or ozonated water in the
feed channel, and the fouling mitigation capability was evaluated by tracking the transmembrane
pressure (TMP) over multiple filtration cycles. Each filtration cycle comprised of three sequential
steps: (a) membrane permeability test using ozone-free water, (b) membrane filtration of a secondary
wastewater effluent, and (c) membrane flushing with either ozone-free or ozonated water.

Membrane filtration experiments were conducted with a cross-flow configuration at a
constant permeate flux of 11 or 44 L/m?h. The cross-flow rate was controlled at 0.5 L/min
(cross-flow velocity = 0.43 m/s). Temperature of the feed water was controlled at 20 °C. In each
filtration cycle, membrane permeability test was first performed using ozone-free water, and TMP
during the membrane permeability test (TMP ) was determined. Thereafter, the ozone-free water
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in the reservoir was replaced with a secondary wastewater effluent, and its filtration was performed.
The record of TMP at t min (TMP;) during the filtration was initiated at 1 min, by which the system
operation became stable. Because the initial TMP in each filtration cycle of secondary wastewater
effluent cannot be accurately measured due to the immediate occurrence of membrane fouling,
this study used normalised TMP (TMP;/ TMPt:O,pw)/ which was defined as the ratio between TMP at
t min and TMP attained during membrane permeability test in the first filtration cycle.

After the filtration of secondary wastewater effluent, the feed solution in the reservoir was
replaced with a flushing solution of either ozone-free or ozonated water. Flushing the NF membrane
with a flushing solution was performed at a 1.2 L/min cross-flow rate (cross-flow velocity = 1.0 m/s)
at the solution temperature of 20 °C for 5 min. Although the NF membrane was not intended to be
pressurised during the membrane flushing step, the feed pressure of the membrane was 0.08 MPa,
which was necessary to overcome the head loss of the pipe, valve, and flow meter located downstream
of the NF membrane. Thereafter, the next filtration cycle was started with the permeability test.

After each experiment, the NF membrane element was chemically cleaned to fully recover the
permeability by immersing into a solution of 1000 ppm NaOCl and 2 w/w% NaOH for 24 h. The NF
membrane was then rinsed with copious amounts of ozone-free water. The membrane permeability
was measured using ozone-free water to verify that the permeability has been fully recovered.

A separate filtration test was performed for evaluating the removal of PPCPs by the NF membrane.
The stock solution of PPCP was added into the feed to obtain approximately 10 ug/L of each PPCP in
the secondary wastewater effluent.

2.5. Analytical Technigues

Total organic carbon (TOC) concentration of the feed and permeate was analysed using a TOC
analyser (Shimadzu, Kyoto, Japan). Conductivity and pH were measured using an Orion Start A325
pH/conductivity meter (Thermo Fisher Scientific, Tokyo, Japan). Concentrations of PPCPs were
determined using an ultra-performance liquid chromatography (UPLC) equipped with an atmospheric
pressure ionization (API) tandem mass spectrometer. The analytical system comprised ACQUNITY
UPLC system and Quattro micro API mass spectrometer (Nihon Waters K.K., Osaka, Japan). Further
details of the technique used in this study are available elsewhere [29].

3. Results
3.1. Filtration and Separation Performance

3.1.1. Fouling Development

Fouling development during direct NF filtration of a secondary wastewater effluent was evaluated
at two constant permeate flux (11 and 44 L/m?h) (Figure 2). Filtration at the low permeate flux
(11 L/m?h) led to a slight increase in TMP over 180 min, suggesting a sustainable condition without
frequent membrane cleaning. In contrast, filtration at the high permeate flux of 44 L/m?h caused
rapid membrane fouling development, and the TMP was doubled after only 60 min. The development
of membrane fouling slowed down over time, reaching 600 kPa TMP at 180 min. To avoid rapid
membrane fouling and frequent chemical cleaning, typical operating conditions including permeate
flux value are conservatively determined. However, this study selected the high permeate flux
(i-e., 44 L/m?h) to evaluate the effectiveness of ozonated water flushing through multiple filtration
cycles (i.e., filtration and surface flushing) within a short period.
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Figure 2. Transmembrane pressure (TMP) during NF filtration of the secondary wastewater effluent at
permeate flux of 11 and 44 L/m?h (feed water temperature = 20 °C, cross-flow velocity = 0.43 m/s).

3.1.2. Water Quality

TOC concentrations in the feed and permeate were 7.2 £ 0.1 mg/L (n = 3) and 4.4 + 0.3 mg/L
(n = 3), respectively, which corresponds to TOC removal of about 40%. Similar TOC removal has been
reported by Kramer et al. [30], who evaluated filtration of municipal wastewater using a ceramic NF
membrane (MWCO = 450 Da). The TOC removal capability of the NF membrane was higher than
typical UF membranes (e.g., MWCO of approximately 100 kDa), which are not expected to show any
TOC removal capability [31]. However, the rejection value reported here was considerably lower than
that from a typical polymeric NF membrane (MWCO = 200-400 Da) [32-34]. Thus, further development
of current ceramic NF membrane may be necessary to enhance contaminant rejection efficiency for
applications providing high-quality recycled water. Conductivity in the feed and permeate were 1333
and 1304 pS/cm, respectively. In other words, conductivity rejection was negligible. A very low
rejection of conductivity (i.e., <10%) by ceramic NF membrane has also been reported previously [30].
This low conductivity rejection can be an advantage of ceramic NF membranes when salt rejection is
not required since the impact of osmotic concentration polarisation is insignificant.

Overall, the rejection of neutral PPCPs increased with higher molecular weight (MW), indicating
that size exclusion is an important rejection mechanism for the ceramic NF membranes (Figure 3). There
was no discernible difference in rejection between hydrophilic (HL) and hydrophobic (HP) chemicals
(Figure 4a). Based on the rejection data with neutral PPCPs, MWCO of the ceramic NF membrane
can be estimated to be 400450 Da. It is noted that the nominal MWCO of the ceramic NF membrane
specified by the manufacturer was determined at a different set of operating conditions applied in
the present study. Thus, differences in operating condition can explain for the difference in MWCO
value determined from our results and the nominal MWCO value reported by the manufacturer.
As compared to the neutral PPCPs, most of the negatively charged PPCPs exhibited higher rejections
for PPCPs with a MW of 200400 Da (Figure 4b). The rejection of these negatively charged chemicals
may be enhanced with electrostatic repulsion with negatively charged membrane surface. In contrast,
most positively charged PPCPs exhibited rejections lower than neutral and negatively charged PPCPs
over the MW range. This may have occurred due to “charge concentration polarisation”, which is
induced by electrostatic attraction force between positively charged chemicals and negatively charged
membrane surface [35]. Charge concentration polarisation can lead to an increase in concentration of
positively charged PPCPs at the membrane surface and thus their concentrations in the permeate. This
“charge concentration polarisation” appears to be more prevalent with ceramic NF membrane than
polymeric NF membranes [15].
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Figure 3. Rejection of PPCPs by the ceramic NF membrane during NF filtration of the secondary
wastewater effluent. Values and error bars are the average and standard deviation of two replicate samples.
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Figure 4. Rejection of (a) neutral and (b) charged PPCPs by the ceramic NF membrane as a function of
their molecular weight.

3.2. Surface Flushing with Ozonated Water

The effectiveness of ozonated water on fouling mitigation was evaluated by performing surface
flushing with ozone-free or ozonated water every 60 min during a cross-flow filtration of a secondary
wastewater effluent over multiple filtration cycles. As a result, surface flushing with ozone-free water
can only restore the permeability by 10-20% (Figure 5a). The results indicate that some foulants were
removed by ozone-free water flushing. Nevertheless, the insufficient removal of foulants ultimately
caused a steady development of membrane fouling over multiple filtration cycles. The filtration
time until reaching the normalised TMP of 2.4 was 300 min, which was only 120 min longer than
the continuous filtration test without flushing (Figure 2). As a result, the normalised TMP at the
beginning of the sixth filtration cycle (f = 301 min) was as high as 2.2. The results here indicate that
surface flushing with ozone-free water is not an effective approach for mitigating membrane fouling.
In contrast to surface flushing with ozone-free water, surface flushing with ozonated water effectively
reduced the development of membrane fouling (Figure 5b). The effectiveness of permeability recovery
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by surface flushing with ozonated water can be observed at the beginning of each filtration cycle.
However, TMP increase was very fast at the beginning of the following filtration cycles.

3 T T T T T T T 3 T T T T
(a) ozone-free water (b) ozonated water

= ﬁ =
o 2L 4 o i
a2 g 2 /
= =
© ©
E 17 . E1
o o
P4 Z2

0 L | L | L | L | L | 0 L | L | L | L | L |

0 60 120 180 240 300 0 60 120 180 240 300
Time [min] Time [min]

Figure 5. Normalised TMP (TMP;/TMPt-q ) during NF filtration of the secondary wastewater
effluent and surface flushing with (a) ozone-free and (b) ozonated water (permeate flux =44 L/ m?h,
feed and flushing water temperature = 20 °C, cross-flow velocity = 0.43 m/s, flushing time = 5 min).

The difference in mechanisms of membrane fouling development and permeability recovery
can also be evaluated using differential TMP expressed in dP/dt [kPa/min]. Within the first 5 min of
filtration time, differential TMP rapidly dropped from 20 to 5 kPa/min, thereafter dP/dt gradually
decreased from 5 to 1 kPa/min (Figure 6a). The rapid development of membrane fouling observed
at the beginning of the filtration is likely due to the pore blocking mechanism, in which foulants
could penetrate into the membrane pores and promote fast fouling development at the early stage
of filtration. In contrast, differential TMP (dP/dt) from 30 to 60 min was low, which suggests that the
cake filtration mechanism occurs following the pore blocking mechanism [36]. For ozone-free water
surface flushing (Figure 6a), differential TMP (dP/dt) recovered by from 1-2 to 5-10 kPa/min after each
surface flushing. In contrast, almost full recovery in differential TMP to dP/dt = 15-20 was observed
after surface flushing with ozonated water (Figure 6b). This is likely due to the removal of foulants
deposited both in membrane pores and on membrane surface.

25 — T : : 25 L e
(a) ozone-free water | (b) ozonated water
20 R 20
= =
% 15 . % 15
o o
X, X,
B 10 - S0
o | o L
© ©
5 R 5
0 0
0 120 180 240 300 0 120 180 240 300
Time [min] Time [min]

Figure 6. Differential TMP (dP/dt) during NF filtration of the secondary wastewater effluent and
surface flushing with (a) ozone-free and (b) ozonated water.

The results in Figure 5 were further analysed by measuring the water permeability at the beginning
of each filtration cycle (Figure 7). A system using surface flushing with ozone-free water revealed
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a gradual increase in TMPyy, confirming that fouling mitigation by ozone-free water flushing was
insufficient. For example, TMP, at the second filtration cycle (TMPj=¢p y,y) was 70% higher than
TMP at the first filtration cycle (TMPt=g ;). Residual foulants remained on the membrane pores and
surface are likely to be the sources that caused a notable increase in TMP over multiple filtration
cycles. In contrast, a system using surface flushing with ozonated water revealed a minor increase in
TMP);,. For example, TMP at the second filtration cycle (TMPt=¢0 yy) was as low as TMP at the first
filtration cycle (TMPj=( ). Although multiple filtration cycles caused a steady increase in TMP due
to an increase in the amount of residual foulants on the NF membrane, TMP at the sixth filtration
cycle (TMP;=300 pw) was only 350 kPa, which was considerably lower than the surface flushing with
ozone-free water (570 kPa). Potential techniques to reduce residual foulants even after surface flushing
using ozonated water include optimising operating conditions (e.g., permeate flux, filtration period,
and flushing period) and increasing ozone concentrations. Complete or near-complete removal of
foulants by ozonated water flushing to achieve a stable operation is the scope of our future study.

800 Flushing with
| [ —®@— ozone-free water every 60 min |
. | —@— ozonated water every 60 min ]
__O._. H
- 600 ozonated water at 180 min |
o
=, 4
g
o 400 .
=
|_ 4
200 - —
0 | | | | | |
0 60 120 180 240 300

Time [min]

Figure 7. TMPyy, at the beginning of each filtration cycle (permeate flux = 44 L/ mZh, feed water
temperature = 20 °C, cross-flow velocity = 0.43 m/s).

Surface flushing with ozonated water was also applied to the ceramic NF membrane that was
fouled with a 180 min continuous filtration of the secondary wastewater effluent. The extended
filtration period simulated severer membrane fouling. As a result, surface flushing with ozonated
water after 180 min filtration was able to restore membrane permeability until the same level as
periodical ozonated water flushing conducted every 60 min (Figure 7). The results suggest that less
frequent surface flushing with ozonated water can still be effective for fouling mitigation. Frequency
in surface flushing is an important factor in the system feasibility, as it is directly linked to the
consumption of ozone and filtered water, and the production of recycled water. Overall, the results
reported here showed that surface flushing with ozonated water can effectively mitigate membrane
fouling of the ceramic NF membrane filtration by restoring the membrane permeability.

Despite of the successful application of surface flushing with ozonated water, membrane foulants
remained after ozonated water flushing caused a gradual increase in TMP over multiple filtration
cycles. Optimisation on operating and flushing conditions for complete or near-complete foulant
removal by ozonated water is still necessary in a future study to achieve cost-effective water recycling.
In addition, further evaluation with different wastewaters in pilot scale is necessary before full
scale implementation.
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4. Conclusions

Membrane fouling was observed in direct nanofiltration of a secondary wastewater effluent,
particularly at a high permeate flux. Surface flushing with ozone-free water only restored the
permeability by 10-20%. In contrast, surface flushing with ozonated water (about 4 mg/L dissolved
ozone concentrations) effectively removed foulants and restored membrane permeability considerably,
thus allowing for direct nanofiltration of secondary wastewater effluent without any pretreatment.
Results from this study also highlight the need for further development of ceramic NF membrane to
ensure adequate removal of PPCPs for water recycling applications. While the ceramic NF membrane
used in this study showed approximately 40% TOC rejection in the secondary wastewater effluent,
the rejection of PPCPs was generally low and highly variable.
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