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Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging
has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT
and positron emission tomography (PET)/CT. However, in many countries and states and for
specific indications, MR imaging has recently become practicable. In addition, recently developed
pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of
MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been
introduced as being capable of assessing pulmonary function. It should be borne in mind, however,
that these applications have so far been academically and clinically used only for healthy volunteers,
but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the
Fleischner Society published a new report, which provides consensus expert opinions regarding
appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary
diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its
technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2)
promising but requiring further validation or evaluation, and 3) developments warranting research
investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively
visualize lung structural and functional abnormalities without ionizing radiation and thus provide
an alternative to CT. MR imaging is considered as a tool for providing unique information.
Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare
MR imaging with conventional methods to determine whether the former has equal or superior
clinical relevance. The results of these trials together with continued improvements are expected to
update or modify recommendations for the use of MRI in near future.
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Introduction

Since thoracic MR imaging was first used in a clinical set-
ting, it has been suggested that MR imaging has limited
clinical utility for thoracic diseases, especially lung diseases,
in comparison with x-ray CT and positron emission tomo-
graphy (PET)/CT. This is because in 1991, the Radiologic
Diagnostic Oncology Group (RDOG) report concluded the
advantage of MR imaging for lung cancer staging was lim-
ited compared with that of CT.1 However, in a number of
countries and states and for specific indications, MR imaging
has recently become practicable due to advances in MR pulse
sequences, multi-coil parallel imaging and acceleration
methods, utilization of contrast media, and application of
promising post-processing software or analysis methods. In
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addition, recently developed pulmonary MR imaging with
ultra-short TE (UTE) and zero TE (ZTE) has enhanced the
utility of MR imaging for thoracic diseases in routine clinical
practice. It has also been suggested that MR imaging is
capable of assessing pulmonary function. Furthermore, MR
imaging with inhaled gas methods, such as hyperpolarized
noble gas and fluorine gas, has been introduced as another
MR method for assessing pulmonary function. It should be
borne in mind, however, that these applications have so far
been academically and clinically used only for healthy
volunteers, but not for patients with various pulmonary dis-
eases in Japan or other countries.

In 2020, the Fleischner Society published a new report,
which provides consensus expert opinions regarding appro-
priate clinical indications of pulmonary MR imaging for not
only oncologic but also pulmonary diseases.2 In addition,
2021 is the 20th anniversary of the founding of Magnetic
Resonance in Medical Science, which is the official journal
of the Japanese Society of Magnetic Resonance in Medical
Science, publishing scientific reports with advanced MR
information from researchers in Japan, as well as in other
countries. Currently, MR imaging for thoracic diseases is
considered to be one of the most attractive research fields
and represents a new frontier in MR imaging. Consequently,
presentations at numerous annual meetings of various socie-
ties, such as the International Society of Magnetic Resonance
in Medicine, the Radiological Society of North America, and
the European Society of Radiology, have increased because
many investigators are conducting tests in both academic and
clinical settings in many parts of the world. In this review
article, we, therefore, present a brief history of MR imaging
for thoracic diseases regarding its technical aspects and
major clinical indications in Japan 1) in terms of what is
currently available, 2) promising but requiring further vali-
dation or evaluation, and 3) developments warranting
research investigations in preclinical or patient studies.

Clinical indications recommended in this article for current
application are based on strong evidence provided in four or
more publications from multiple institutions conducting clin-
ical studies of more than 100 patients. In addition, these
targets are considered as appropriate indications in many
Western countries including USA and refunded by health
insurances in all over the world. On the other hand, clinical
indications referred to as promising but requiring further
validation or evaluation refer to those introduced in two to
three publications and using less than 100 patients and data
sets. Finally, clinical indications referred to as appropriate for
research investigations in clinical or patient studies do not
meet the above criteria or are limited to preclinical research.
Table 1 summarizes these clinical indications based on our
experience and those published in the Fleischner Society
Position paper.2,3 In addition, clinical indications suggested
as 2) promising but requiring further validation or evaluation
and 3) developments warranting research investigations in
preclinical or patient studies are stated as Supplement
materials.

Brief History of Thoracic MR Imaging
Techniques

Paul Lauterbur developed the first MRI scanner in 1970s, for
which he and Peter Mansfield received the 2003 Nobel Prize
in Physiology or Medicine. Thoracic MR imaging for the
assessment of lung parenchyma diseases, as well as thoracic
oncologic diseases, was first tested in the 1990s.2–32 As early
as 1991, however, RDOG reports concluded that MR ima-
ging had less utility for TNM staging in lung cancer than CT.
In addition, several investigators reported that MR imaging
was less capable of providing evidence of lung parenchyma
than CT.4–8

Inhomogeneity of magnetic susceptibility resulting from
air and soft tissue interfaces within the lung, combined with

Table 1 Summary of recommended clinical indications of MR imaging for thoracic diseases

Category Clinical Indications

Suggested for currently available application lung cancer staging (TNM stating)

pulmonary nodule characterization

pulmonary nodule detection

pulmonary hypertension

pulmonary thromboembolism

Promising but requiring further validation or evaluation
(see Supplement Materials)

radiological finding evaluation in pulmonary parenchymal diseases

Warranting research investigations
(see Supplement Materials)

chronic obstructive pulmonary disease (COPD)

asthma

interstitial lung disease

COPD, chronic obstructive pulmonary disease.
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motion and low intrinsic proton density, has hindered the
use of MR imaging for lung parenchyma. The large differ-
ence in magnetic susceptibility between air and lung par-
enchyma results in broad frequency distributions and phase
dispersion within voxels, thus causing an incoherent proton
spectrum and noise after image reconstruction as well as
short T2 star (T2*).33–35 Moreover, the discrepancy in sus-
ceptibility to artifacts between lung parenchyma and the
chest wall manifests as a dark line perpendicular to the
frequency encoding direction. In view of these issues,
many investigators have been trying to establish the utility
of MR imaging for thoracic diseases during the last few
decades.

Clinical MR imaging for thoracic diseases was per-
formed by means of spin-echo (SE) sequence in the early
1990s, and attempts were made to use turbo or fast SE and
gradient-recalled-echo (GRE) sequences in the mid-1990s.
Furthermore, fast GRE with short echo time (TE), in- and
opposed phase T1-weighted GRE, T1- and T2-weighted,
and short inversion time (TI) inversion recovery (STIR)
turbo SE with half-Fourier single-shot method with and
without black-blood technique had been used in routine
clinical practice since the early 1990s.2–32,36–40 In addition,
diffusion-weighted imaging (DWI) has been utilized in
combination with single-shot echo-planar imaging (EPI)
sequence and the fat suppression technique for oncologic
patients since 2004.18,20,21,24,30,41,42 Therefore, almost all
sequences for MR imaging for thoracic oncologic diseases
were established between the early 1990s and 2004.

During the same period, the parallel imaging technique, as
well as fast GRE with short TE or ultra-short TE using
contrast media, was proposed for time-resolved (or 4D)
contrast-enhanced (CE) MR angiography or dynamic CE-
perfusion MRI, while investigations were started of velocity-
encoded (or phase-encoded) MR imaging for pulmonary
vascular diseases, as well as thoracic oncology in routine
clinical practice.2,3,18,25,27,28,31

The recently introduced radial acquisition of k-space data
from free induction decay (FID) can reduce TE to less than
200 μs, thus minimizing signal decay caused by short trans-
verse relaxation time (T2/T2*). It has, therefore, been sug-
gested that the development of UTE or ZTE sequences could
be a game changer for pulmonary MR imaging32,43–48

because the UTE sequence allows for better visualization
of the endogenous MR signal of lung parenchyma than can
be obtained with the conventional short echo image
sequence.2,3,32,43 It has also been suggested that MR imaging
with UTE can make it possible to quantitatively assess the
regional T2* values and morphological changes in pulmon-
ary parenchymal diseases.32,43–53

Furthermore, hyperpolarized noble gas MR imaging with
helium-3 (3He) and xenon-129 (129Xe), oxygen- (O2-)
enhanced MR imaging, and fluorine-19 (19F-) MR imaging
has been recommended since the 1990s for use in pulmonary
functional MR imaging techniques, such as non-CE- and

dynamic CE-perfusion MR imaging.10,12,13,15,17,22,23,25,27,28,31

O2-enhanced MR imaging and non-CE- and dynamic
CE-perfusion MR imaging are now in clinical global use
for various pulmonary diseases, although hyperpolarized
noble gas MR imaging and 19F-MR imaging are still
being tested at a limited number of institutions in a few
countries.9,12,13,15,17,22,23,25,27,28,30 However, other gases
besides oxygen are not currently available for routine clinical
practice because of the following reasons: they have not
received the U.S. Food and Drug Administration (FDA)
approval, the limited clinical availability of such gases due
to their total amounts being limited, and their high cost. In
addition, all gas MR techniques, except for O2-enhanced MR
imaging, require special equipment such as polarizer, trans-
mitter, and receiver coils with multiple nuclear resonance
capability.9,12,13,15,17,22,23,25,27,28,30 Therefore, proton-based
MR imaging, including non-CE- and CE-MR angiography as
well as perfusion MR imaging and O2-enhanced MR imaging,
is the only method that can be currently used in routine clinical
practice anywhere in the world.

In conjunction with dedicated thoracic MR imaging, the
addition, since the middle of this century’s first decade, of
multiple surface coils with parallel imaging capability and a
moving table has made it possible to obtain whole-body MR
imagingwith andwithoutDWI for not only pulmonary vascular
diseases with deep venous thrombosis (DVT) but also various
oncologic diseases, including lung cancer, thymic epithelial
tumor, malignant lymphoma, andmesotheliomas.18,20,21,24,28,30

In addition, recently developed positron emission tomogra-
phy using fluorine-18-fluorodeoxyglucose (FDG) fused with
MR imaging (FDG-PET/MRI or FDG-MR/PET) has been
tested to ascertain its clinical utility for TNM staging and
recurrence evaluation in the above-mentioned diseases, and
attempts have been made to evaluate not only MR-based but
also glucose metabolism-based information with the same
examination.16,18,20,21,24,30,54–64 These new techniques may,
therefore, be put to better use for one-stop shopping exam-
inations and should be considered promising tools for the
assessment of thoracic oncologic patients.

The above-mentioned advancements have resulted in a
wider clinical utilization of MR imaging for thoracic dis-
eases while its use for many thoracic diseases are covered
by health insurance in Europe, Korea, and USA, although
it is still limited in Japan. The principal reasons for this
delay in Japan are the speed, availability, familiarity, ease
of access, superb natural contrast, and high resolution of
the lung parenchyma provided by thin-section CT. Other
reasons for the delayed clinical use of MR imaging for
thoracic diseases include its longer acquisition time,
respiratory motion, and the lung’s lower proton density
and the aforementioned effects on magnetic susceptibility
resulting from air–soft tissue interfaces. Nevertheless, MR
imaging appears to be poised to become the primary clin-
ical imaging modality for specific indications as detailed
below.
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Clinical Indications Suggested for
Currently Available Techniques
Pulmonary nodule detection and characterization
Lung cancer detection and pulmonary nodule characterization
are major challenges for chest radiologists. While chest radio-
graphy or CT is utilized for lung cancer or nodule detection,
MR imaging can contribute to specific clinical scenarios.
Detection rates of some MR techniques, such as SE and turbo

SE sequences including STIR and GRE sequences, studied and
applied during the last few decades, reportedly ranged from
26% to 96%.44–46,65–71 Since 2016, for 3D GRE sequencing
with UTE of less than 200 μs, a detection rate of > 90% has
been reported for non-solid, part-solid, and solid nodules ran-
ging from 4 to 29 mm in diameter, thus challenging standard-
and reduced-dose thin-section CT for nodule detection (Figs. 1–
3).45 In addition, evaluation of radiological findings also sug-
gests that there is no significant difference in capability between

Fig. 1 64-year-old male with a solid nodule with 13-mm-long axis diameter and diagnosed as invasive adenocarcinoma (From left to right:
standard-dose CT, low-dose CT, and pulmonary MR imaging with UTE). Standard- and low-dose CTs and pulmonary MR imaging with UTE
clearly show a solid nodule with a 13-mm-long axis diameter in the right upper lobe. (Reproduced, with permission, from reference No. 45)
UTE, ultra-short TE.

Fig. 3 48-year-old malewith ground-glass nodule, 5-mm-long axis diameter, and followed up for over 1 year (From left to right: standard-dose
CT, low-dose CT, and pulmonary MR imaging with UTE). Standard- and low-dose CTs and pulmonary MR imaging with UTE clearly show a
ground-glass nodule with a 5-mm-long diameter in the right middle lobe. (Reproduced, with permission, from reference No. 45) UTE, ultra-
short TE.

Fig. 2 60-year-old male with part-solid nodule with 15-mm-long axis diameter and diagnosed as invasive adenocarcinoma (From left to
right: standard-dose CT, low-dose CT, and pulmonary MR imaging with UTE). Standard- and low-dose CTs and pulmonary MR imaging
with UTE clearly show a part-solid nodule with a 15-mm-long axis diameter in the right upper lobe. (Reproduced, with permission, from
reference No. 45) UTE, ultra-short TE.
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thin-section CT and thin-section pulmonary MR imaging with
UTE.44–46 Finally, nodule detection with MR imaging as a
screening tool was recently compared with that of low-dose
CT.45,48 Therefore, pulmonary MR imaging with UTE is con-
sidered as a promising sequencing technique in this setting and
can play a complementary role in the management of pulmon-
ary nodules in routine clinical practice. Table 2 shows major
results for previously reported nodule detection capability by
MR imaging.

When a nodule or mass is detected on a chest radiograph,
CT, or MR imaging, clinical interest is shifted to further
examination for pulmonary nodule characterization, and
numerous MR sequences have been evaluated for this
purpose.19 Currently, DWI is considered the most useful,
with a meta-analysis pooled sensitivity and specificity of
83% and 80%, respectively.72 When DWI and FDG-PET/CT
were compared in a meta-analysis for diagnosis of the same
nodule, DWI yielded an AUC of 0.93 versus 0.86 for
FDG-PET/CT (P < 0.001). This meta-analysis also showed
that the diagnostic odds ratio for DWI was significantly super-
ior to that for FDG-PET/CT (P = 0.001).73 Furthermore, it has
been suggested that DWI has the potential to differentiate
between malignant and benign nodules by means of different
DWI indexes, such as apparent diffusion coefficient (ADC),
lesion-to-spinal cord ratio (LSR) at different b value or e
intravoxel incoherent motion (IVIM)-based information.74–76

Therefore, currently available data show that DWI can be
considered at least as valuable as FDG-PET/CT for pulmonary
nodule or mass characterizations in routine clinical practice.

As a result of advances in MR systems and pulse
sequences, there are now three major methods available for
dynamic MR imaging of the lung. Many investigators have
proposed that dynamic MR imaging be used for 2D SE or
turbo SE sequences or for various types of 2D or 3D GRE
sequences and that enhancement patterns within nodules and/
or parameters determined from signal intensity–time course
curves be assessed visually. These curves represent the first
transit and/or recirculation and washout of contrast media
under breath holding or repeated breath holding during a
period of less than 10 min.11,14,16,18–21,25,29,30,77–86 In addition,
there are various dynamic MR techniques for distinguishing
malignant from benign nodules with reported sensitivities
ranging from 52% to 100%, specificities from 17% to 100%,
and accuracies from 58% to 96%,11,14,16,18–21,25,29,30,77–86

while a meta-analysis reported that there were no signifi-
cant differences in diagnostic performance among dynamic
CE-CT, dynamic CE-MR imaging, FDG-PET, and single
photon emission computed tomography (SPECT).87 However,
dynamic MR imaging with the 3D GRE sequence and
ultra-short TE, which requires less than 30-sec breath hold-
ing for acquisition of all data, has demonstrated its superior
diagnostic performance in a direct and prospective compar-
ison study of dynamic CE-CT and FDG-PET/CT or other
modalities (Fig. 4).82,85,86 It was also found that completion
of FDG-PETor PET/CT takes almost 2 hours after injection

of FDG. Dynamic MR imaging may thus be able to play a
complementary or substitutional role in the characterization
of solitary pulmonary nodules (SPNs) assessed with
dynamic CE-CT, FDG-PET, and/or PET/CT. Table 3
shows major study results for diagnosis of pulmonary
nodules by means of dynamic CE-MR imaging.

Lung cancer staging (TNM Staging)
When a nodule or mass is diagnosed as malignant, clinicians
focus on TNM (i.e. Tumor, Node, and Metastasis) staging by
using CT and FDG-PET/CT, while MR imaging is also used
for answering some clinical questions not only in Europe,
China, Japan, Korea, and Taiwan but also in the United
States, where it was recently decided that the cost of MR
imaging can be covered by health insurance. MR imaging
was originally proposed for T factor evaluations,1,88–90 and
STIR turbo SE imaging and DWI were subsequently proposed
to perform a complementary function for N factor assessment
of non-small cell lung cancer (NSCLC) more effectively in
comparison with CT and FDG-PET/CT.91–103 In addition,
STIR turbo SE imaging was also introduced as more sensitive
and accurate than DWI and FDG-PET/CT (Figs. 5 and 6).99,100

When both MR imaging and FDG-PET/CT data are available,
the inclusive criteria of MRI or FDG-PET/CT help signifi-
cantly improve the sensitivity for detecting nodal metastasis
compared with that of FDG-PET/CT alone and may reduce
unnecessary open thoracotomy.99 Furthermore, a meta-analy-
sis disclosed better diagnostic performance for MR imaging
than for FDG-PET/CT on a per-node and per-patient basis.103

These findings, therefore, support the clinical relevance of MR
imaging for N factor evaluation of NSCLC patients. Tables 4
and 5 show reported results for diagnostic performances of
dedicated MR imaging for T and N factor assessments of
NSCLC patients. These results indicate that the purpose of
MR imaging may be shifting from T factor evaluation only to
include N factor assessment in routine clinical practice.

Whole-body MR imaging, which can be performed with
multiple array coils with parallel imaging capability and a
moving table system, also provides accuracy and efficacy
for NSCLC staging and recurrence evaluation comparable
with that of FDG-PET/CT.54–64,104–106 In addition, it has
been suggested whole-body DWI can be useful for improv-
ing M stage evaluation capability for NSCLC patients.56,57

It has also been reported that, while whole-body MR ima-
ging is more useful for detecting brain and hepatic metas-
tasis, FDG-PET/CT is more useful for detecting lymph
node and soft-tissue metastasis.54,55,58,104 In addition,
whole-body MR imaging combined with PET (PET/MRI)
has been found to be more useful for TNM staging of
NSCLC and postoperative lung cancer recurrence than
PET/CT or conventional radiological examinations
(Table 6). This combination can thus be considered at
least as effective as whole-body MR imaging when clini-
cians need to evaluate not only glucose metabolism-based
information but also relaxation time-based information
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provided by PET/MRI.60,61,64,65,105,106 However, when clin-
icians need to evaluate only glucose metabolism information
based on FDG uptake, findings indicate that the diagnostic
performance of PET/MRI as almost equal to that of PET/CT
for TNM staging and recurrence evaluation of lung cancer

patients in routine clinical practice.60,61,64,65,105,106 Therefore,
whole-body MR imaging, as well as FDG-PET/MRI, may
function as a substitute for FDG-PET/CT and deserves to be
more frequently used for the management of lung cancer
patients in routine clinical practice.

Table 2 Capability of MR sequence for pulmonary nodule and mass detection determined in previous studies

Year
Field

strength
(T)

Gold standard
Nodule
size
(mm)

Applied sequences SE
(%)

Vogt FM,
et al.65 2004 1.5 4-detector row CT 5 ≤

ECG-triggered, breath-hold proton
density-weighted black blood-prepared
HASTE

95.6

Bruegel M,
et al.66 2007 1.5 64-detector row CT 1–31

Breath-hold T2W HASTE 47.7

Breath-hold T2W IR-HASTE 45.5

Breath-hold T2W TSE 69.0

Breath-hold STIR 63.4

Precontrast 3D VIBE 54.1

Postcontrast 3D VIBE 51

Respiratory- and pulse-triggered STIR 72.0

Yi CA, et al.67 2007 3 4-detector row CT 13–80

ECG-gated T1W 3D TSE 57.0

ECG-gated T2W triple inversion black
blood TSE

56.0

Koyama H,
et al.68 2008 1.5 4-detector row CT 1–30

ECG-gated and respiratory-triggered T1W
TSE

96.1

ECG-gated and respiratory-triggered T2W
TSE

96.1

ECG-gated and respiratory-triggered STIR 96.1

Frericks BB,
et al.69 2008 1.5 16-detector row CT 1–61

Multi-breath-hold STIR 92.5

Respiratory-triggered T2W TSE 90.8

Postcontrast 3D VIBE 87.3

Cieszanowski
A, et al.70 2016 1.5 64-detector row CT 2–28

Breath-hold T1W VIBE 69.0

Breath-hold T1W opposed-phase GRE 48.7

Breath-hold T2W TSE 48.7

Breath-hold T2W TSE with SPAIR 54.9

Breath-hold T2W STIR 45.1

Breath-hold T2W HASTE 25.7

Burris NS,
et al.71 2016 3 (PET/

MRI)
PET/CT with 16- or
64-detector row CTs 3–17

3D GRE with UTE 73.2

3D dual-echo GRE with a two-point Dixon
method

30.5

Ohno Y,
et al.45

2017 3 64-detector row CT 4-29 Respiratory-gated 3D GRE with UTE 93.0 No significant
difference with
standard- and
reduced dose
CTs

ECG, electrocardiogram; GRE, gradient-echo; HASTE, half-fourier-acquisition single-shot turbo spin-echo; IR, inversion recovery; SE, sensitivity;
SPAIR, spectral attenuated inversion recovery; STIR, short inversion time (TI) inversion recovery; T1W, T1-weighted; T2W, T2-weighted; TSE, turbo
spin-echo; UTE, ultra-short TE; VIBE, volumetric interpolated breath-hold.
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Mediastinal tumor characterization and TNM staging
For mediastinal tumor evaluations, CT is the first and
most widely used modality for detection and diagnosis.
However, as has been reported in the past literature, MR
imaging provides important findings for disease diagnosis
and facilitates accurate assessment of location, pattern of
extension, and anatomical relationship with adjacent
structures for various types of mediastinal tumors such
as thymic epithelial tumor, mediastinal malignant lym-
phoma, germ cell tumor, teratoma, and cystic tumors,
including bronchogenic cyst, thymic cyst, pericardial
cyst, and neurogenic tumors.18,107

Since 2003, chemical shift MR imaging has been
introduced as useful for differentiation of thymic hyper-
plasia from other thymic tumors. This MR technique can
depict intravoxel fat and water within the tissue and has
been frequently used for the adrenal gland and liver.

Overall, chemical shift MR imaging can depict physiolo-
gical fatty replacement of the normal thymus in nearly
50% of subjects age 11–15 years, and in nearly 100% of
those over 15 years.108 True thymic hyperplasia is defined
as an increase in the size of thymus with the usual gross
and histological appearance, and commonly occurs as a
rebound phenomenon secondary to atrophy caused by
chemotherapy.109 On CT and MRI, thymic hyperplasia
appears as an enlargement of the thymus, and its attenua-
tion seen on CT and signal intensity on MRI are similar
to those of the normal thymus.107 In patients with
enlarged thymus more than 15 years old, chemical shift
MR imaging can diagnose thymic hyperplasia by detect-
ing fatty infiltration within the thymus and has been
recommended as useful for differentiation of thymic
hyperplasia from other neoplastic processes.110,111

Moreover, DWI has recently been used for mediastinal

a

b

Fig. 4 Images in 82-year-old man with invasive adenocarcinoma in right upper lobe. a: Thin-section CT scan with 1-mm-thick sections
(left), pulmonary MRI scan with ultrashort echo time at 110 msec and 1-mm-thick sections (middle), and fluorine 18 FDG PET/CT scan
with 2.5-mm-thick sections (right). CT and MRI scans show solid nodule with notch. This nodule demonstrates high FDG uptake on PET/
CT scan. CT and MRI scans also show bullae and emphysematous lung surrounding tumor. b: Dynamic first-pass contrast material-
enhanced perfusion gradient-echo MRI scans obtained with a 3-T system demonstrate well-enhanced nodule (arrows) in right upper
lobe. This nodule shows enhancement from lung parenchymal phase and is well enhanced at systemic circulation phase. t is the time
after injection of gadolinium-based contrast agent followed by saline chaser. (Reproduced, with permission, from reference No. 2) FDG,
fluorodeoxyglucose.
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Table 3 Diagnostic performance of dynamic contrast-enhanced MR imaging for distinguishing malignant from benign pulmonary
nodules

Year Modality
Field

strength
(T)

MR sequence Parameters
No. of
nodule

SE
(%)

SP
(%)

AC
(%)

Hittmair K,
et al.77

1995 Dynamic
contrast-
enhanced
MR imaging

1.5 2D FLASH Enhancement factor 20 100 67 91

Relative signal intensity
increase

100 17 76

Gückel C,
et al.78

1996 Dynamic
contrast-
enhanced
MR imaging

1.5 2D turbo FISP Percentage increase
in signal intensity

28 100 50 86

Enhancement curves 100 88 96

Ohno Y,
et al.79

2002 Dynamic first-
pass contrast-
enhanced
MR imaging

1.5 3D radio-
frequency
spoiled GRE
(i.e. 3D-fast
field echo)

Mean maximum relative
enhancement ratio

58 100 75 91

Slope of enhancement 100 85 95

Schaefer
JF, et al.80

2004 Dynamic
contrast-
enhanced
MR imaging

1.5 2D T1-weighted
in-phase GRE

Maximum peak 51 96 88 92

Slope 96 75 86

Washout 52 100 75

Kono R,
et al.81

2007 N/A 1.5 2D T1-weighted
spin-echo

Maximum enhancement
ratio

202 63 84 67 malignant nodule
vs. OP

81 81 81 malignant nodule
vs. hamartoma

Slope 55 71 58 malignant nodule
vs. OP

94 96 94 malignant nodule
vs. hamartoma

Washout ratio 83 63 80

Ohno Y,
et al.82

2008 Dynamic first-
pass contrast-
enhanced MR
imaging

1.5 3D radio-
frequency
spoiled GRE
(i.e. 3D-fast
field echo)

Mean maximum relative
enhancement ratio

202 96 54 86

Slope of enhancement 96 64 88

Dynamic
contrast-
enhanced
MDCT

NA NA Maximum enhancement
combined with absolute
loss of enhancement

93 42 80.7

Net enhancement
combined with absolute
loss of enhancement

93 52 83.2

Slope of enhancement
combined with absolute
loss of enhancement

93 48 82

PET/CT NA N/A SUVmax 93 54 84

Zou Y,
et al.83

2008 Dynamic
contrast-
enhanced
MR imaging

1.5 T1-weighted
fast spin-echo

Steepest slope in
time–signal intensity

68 81 98 94 Benign SPN vs.
malignant and
active inflammatory
SPN

Enhancement of signal 93 100 94 Malignant SPN vs.
active inflammatory
SPN

intensity at 4th min on

time–signal intensity curve

(Continued)
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evaluation in routine clinical practice. Seki et al. reported
that quantitatively assessed DWI has a better capability
than CT for the management of anterior mediastinal
tumors and can play an important role in differentiating
mediastinal tumors requiring further intervention or treat-
ment from those requiring only follow-up examination or
no further evaluation.112 Dynamic CE-MR imaging has
also been introduced as a tool equally as useful as DWI
for mediastinal tumor assessment.113 These techniques, as
well as conventional T1-, T2-, and CE-T1-weighted ima-
ging with fast or turbo SE imaging with and without fat
suppression technique, are considered key participants in

the diagnosis of mediastinal tumors in routine clinical
practice. Moreover, whole-body MR imaging and
FDG-PET/MRI, as well as FDG-PET/CT, showed better
interobserver agreement and accuracy for evaluation of
TNM stage in thymic epithelial tumors using the new the
International Association for the Study of Lung Cancer
(IASLC) and the International Thymic Malignancies
Interest Group (ITMIG) thymic epithelial tumor staging
than conventional imaging examinations consisting of CT,
brain MR imaging, and bone scintigraphy.62 Therefore,
whole-body MR imaging may be considered as a one-
stop shopping modality for TNM stage assessment as

Table 3 (Continued).

Year Modality
Field

strength
(T)

MR sequence Parameters
No. of
nodule

SE
(%)

SP
(%)

AC
(%)

Coolen J,
et al.84

2014 DWI 3 spin-echo type
echo planar
imaging

ADChigh (ADC determined
from b values 500, 750
and 1,000 s/mm2)

54 98 36 85

Dynamic
contrast-
enhanced MR
imaging

3D radio-
frequency
spoiled GRE
(i.e. 3D-fast
field echo)

Visual curve typing 100 51 91

Dynamic
contrast-
enhanced MR
imaging with
DWI

Visual curve typing with
ADChigh (ADC determined
from b values 500, 750 and
1,000 s/mm2)

98 82 94

PET/CT N/A N/A SUV contrast ratio 93 36 76

Ohno Y,
et al.85

2015 Dynamic first-
pass contrast-
enhanced MR
imaging

3 3D radio-
frequency
spoiled GRE
(i.e. 3D-fast
field echo)

Maximum relative
enhancement ratio

218 92 49 76

Slope of enhancement ratio 93 49 76

Dynamic first-
pass contrast-
enhanced
ADCT

NA N/A Total perfusion 92 71 84

Pulmonary arterial perfusion 90 26 65

Systemic arterial perfusion 89 26 65

Nodule perfusion 91 28 67

PET/CT NA N/A SUVmax 89 31 67

Ohno Y,
et al.86

2019 Dynamic first-
pass contrast-
enhanced
ADCT

NA N/A Total perfusion 71 91 81 87

Pulmonary arterial perfusion 84 77 82

Systemic arterial perfusion 84 65 78

Dynamic first-
pass contrast-
enhanced MR
imaging

3 3D radio-
frequency
spoiled GRE
(i.e. 3D-fast
field echo)

Total perfusion 89 85 87

Pulmonary arterial perfusion 84 77 82

Systemic arterial perfusion 84 65 78

PET/CT NA N/A SUVmax 82 83 79

AC, accuracy; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; FISP, fast imaging with steady-state precession; FLASH, fast
low-angle shot magnetic resonance imaging; GRE, gradient-echo; OP, organizing pneumonia; PET, positron emission tomography; SE, sensitivity;
SP, specificity; SPN, solitary pulmonary nodule; SUV, standardized uptake value; SUVmax, maximum standardized uptake value.
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well as mediastinal tumor evaluation as a complement for
conventional radiological examinations in routine clinical
practice.

Malignant mesothelioma evaluation
Pleural malignancy is usually first suspected on the basis of
clinical history and chest radiographs, with further assess-
ment by CTorMRI, and FDG-PET/CT if required. Currently,

CT is usually the preferred initial investigation for pleural
disease. Although MR imaging is not commonly the first-line
modality for imaging of suspected pleural malignancy, it may
be useful in difficult cases or for patients with a contraindica-
tion of iodinated contrast medium. Falaschi et al. compared
the diagnostic accuracy of MR and CT for patients with
pleural disease and found that the two methods were equally
good for assessing morphological features.114

a cb

Fig. 5 Images in a 73-year-old patient with pathologically diagnosed N2 adenocarcinoma. a: STIR turbo SE image shows that primary
lesion (medium arrow), subcarina lymph node (thick arrow), and right hilar lymph node (thin arrow) have high SI. Primary lesion in the right
lower lobe is visible in the same axial plane. LSRs of lymph nodes were 0.75 (right hilar lymph node) and 0.78 (subcarina lymph node);
LMRs were 1.7 (right hilar lymph node) and 1.9 (subcarina lymph node); and visual scores were 5. An accurate diagnosis of N2 disease was
made. b: DW MR image shows that primary lesion (medium arrow), subcarina lymph node (thick arrow), and right hilar lymph node (thin
arrow) have high SI. Primary lesion in the right lower lobe is visible in the same axial plane. ADCs of lymph nodes were 2.8×10-3sec/mm2

(right hilar lymph node) and 3.4×10-3sec/mm2(subcarina lymph node), and visual scores were 5. An accurate diagnosis of N2 disease was
made. c: FDG PET/CT image shows that primary lesion (medium arrow) and right hilar lymph node (thin arrow) have high uptake of FDG,
and subcarina lymph node (thick arrow) has low uptake of FDG. Primary lesion in the right lower lobe is visible in the same axial plane.
SUVmax of lymph nodes was 3.2 (right hilar lymph node) and 1.5 (subcarina lymph node), and visual scores were 5 (right hilar lymph node)
and 2 (subcarina lymph node). An inaccurate diagnosis of N1 was made. (Reproduced, with permission, from reference No. 99) ADC,
apparent diffusion coefficient; DW, diffusion-weighted; FDG, fluorodeoxyglucose; LMR, lymph node-to-muscle ratio; LSR, lesion-to-saline
ratio; PET, positron emission tomography; SE, spin-echo; SI, signal intensity; STIR, short inversion time inversion recovery; SUVmax,
maximum standardized uptake value.

a b c

Fig. 6 Images in a 72-year-old patient with pathologically diagnosed N1 adenocarcinoma. a: STIR turbo SE image shows that left hilar
lymph node (arrow) has high SI. Primary lesion is not visible in the same axial plane. Thymic cyst can be seen in the anterior mediastinum.
LSR of the lymph node was 0.70, LMR was 1.5, and visual score was 5. An accurate diagnosis of N1 disease was made. b: DW MR image
shows that left hilar lymph node (arrow) has low SI. Primary lesion is not visible in the same axial plane. Thymic cyst can be seen as low SI in
anterior mediastinum. ADC of the lymph node was 1.5×10-3sec/mm2, and visual score was 2. An inaccurate diagnosis of N0 was made. c:
FDG PET/CT image shows that left hilar lymph node (arrow) has low uptake of FDG. Primary lesion is not visible in the same axial plane.
Thymic cyst can be seen in the anterior mediastinum. SUVmax of the lymph node was 1.2, and visual score was 1. An inaccurate diagnosis
of N0 disease was made. (Reproduced, with permission, from reference No. 99) ADC, apparent diffusion coefficient; DW, diffusion-
weighted; FDG, fluorodeoxyglucose; LMR, lymph node-to-muscle ratio; LSR, lesion-to-spinal cord ratio; PET, positron emission tomo-
graphy; SE, spin-echo; SI, signal intensity; STIR, short inversion time inversion recovery; SUVmax, maximum standardized uptake value.
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Table 4 Diagnostic performance of T factor evaluation with MR imaging

Author Year
Field

strength
(T)

Sequence

MR imaging CT

Standard referenceSE
(%)

SP
(%)

AC
(%)

SE
(%)

SP
(%)

AC
(%)

Webb,
et al.1

1991 0.35 or 1.5 ECG-gated T1- and T2-
weighted spin-echo

80 56 73 84 63 78 Surgical and
pathological diagnosis

Sakai,
et al.88

1997 1.5 Free-breathing Cine-GRASS 10 70 76 80 65 68 Surgical and
pathological diagnosis

Ohno,
et al.89

2001 1.5 dynamic ECG-triggered 3D-
GRE

78-90 73-87 75-88 67-70 60-64 68-71 Surgical and
pathological diagnosis

Tang,
et al.90

2015 3 Breath-hold dynamic CE
2D-GRE

N/A N/A 82.2 N/A N/A 84.4 Pathological diagnosis

AC, accuracy; CE, contrast enhanced; ECG, electrocardiogram; GRASS, gradient recalled acquisition in the steady state; GRE, gradient echo; SE,
sensitivity; SP, specificity.

Table 5 Diagnostic performance of N factor evaluation with MR imaging

Author Year
Field strength

(T)
Sequence

MR imaging CT FDG-PET/CT

AnalysisSE
(%)

SP
(%)

AC
(%)

SE
(%)

SP
(%)

AC
(%)

SE
(%)

SP
(%)

AC
(%)

Takenaka,
et al.91

2002 1.5 ECG-triggered T1W TSE, STIR 52 or
100

91 or
96

83or
96

52 91 83 N/A N/A N/A per-node basis

Ohno,
et al.92

2004 1.5 STIR 93 87 89 53 83 72 N/A N/A N/A per-node basis and
per-patient basis

Ohno,
et al.93

2007 1.5 STIR 84 or
90

74 or
77

88 or
92

88 90
or
93

82.6 N/A N/A N/A per-node basis and
per-patient basis

Hasegawa,
et al.94

2008 1.5 DWI (b = 0 and 1000 s/mm2) by
SS-SE-EPI

80 97 95 N/A N/A N/A N/A N/A N/A per-patient basis

Nomori,
et al.95

2008 1.5 DWI (b = 0 and 1000 s/mm2) by
SS-SE-EPI

67 99 98 N/A N/A N/A 72 97 96 per-node basis and
per-patient basis

Morikawa,
et al.96

2009 1.5 STIR 93.9
or

96.3

67.3
or

70.9

84.7 N/A N/A N/A 90.2 65.5 80.3 per-node basis and
per-patient basis

Nakayama,
et al.97

2010 1.5 DWI (b = 50 and 1000 s/mm2) by
SS-SE-EPI

69 100 94 N/A N/A N/A N/A N/A N/A per-node basis and
per-patient basis

Usuda,
et al.98

2011 1.5 T1W SE, T2W FSE and DWI (b = 0
and 800 s/mm2) by SS-SE-EPI

59 93 81 N/A N/A N/A 33 90 71 per-node basis and
per-patient basis

Ohno,
et al.99

2011 1.5 STIR, DWI (b = 0 and 1000 s/
mm2) by SS-SE-EPI

71.0
or

82.8

88.5
or

90.4

82.8
or

86.8

N/A N/A N/A 69.9
or

74.2

91.7
or

92.4

83.6
or

85.6

per-node basis and
per-patient basis

Ohno,
et al.100

2015 3 STIR-FASE, DWI (b = 0 and 300 s/
mm2) by SS-SE-EPI and FASE

60.3–
82.1

98.7 79.5–
90.4

N/A N/A N/A 57.7 97.4 77.6 per-node basis and
per-patient basis

Usuda,
et al.101

2015 1.5 T1W SE, T2W FSE, DWI (b = 0
and 800 s/mm2) by SS-SE-EPI

71 100 91 N/A N/A N/A 86 31 48 per-patient basis

Nomori,
et al.102

2016 1.5 DWI (b = 800 s/mm2) by SS-SE-EPI 38 or
79

92 or
94

75 N/A N/A N/A 33 or
58

89 or
90

67 per-node basis and
per-patient basis

Peerlings,
et al.103

2016 Mainly 1.5T
(Meta-

Analysis)

DWI and STIR 86.5 88.2 N/A N/A N/A N/A N/A N/A N/A per-node basis and
per-patient basis

AC, accuracy; DWI, diffusion-weighted imaging; ECG, electrocardiogram; FASE, fast advanced spin-echo; FSE, fast spin-echo; SE, sensitivity; SP,
specificity; SS-SE-EPI, single shot spin-echo type echo planar imaging; T1W, T1-weighted; T2W, T2-weighted; TSE, turbo spin-echo.
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There are several types of malignant pleural tumors with
several causes, and malignant pleural mesothelioma
(MPM) is one of the most aggressive malignant neoplasms,
with epithelial, sarcomatoid, and mixed as its major histo-
logic subtypes. While osteosarcomatous degeneration
within MPM is considered a rare subtype, the majority of
MPM cases are associated with asbestos exposure. In fact,
although MPM was once uncommon, its incidence is
increasing worldwide as a result of widespread exposure
to asbestos.115,116

MR imaging is superior to CT for the differentiation
of malignant from benign pleural disease.114–118 In addi-
tion, MR imaging using various sequences with and
without contrast media has been found to be useful for
evaluation of tumor extent in MPM patients.119,120 MPM
is generally divided into three histologic subtypes:
epithelioid, sarcomatoid, and biphasic, with a significant
difference in prognosis between epithelioid and none-
pithelioid (biphasic and sarcomatoid) MPM.121 A study

demonstrated that quantitatively assessed DWIs show a
significant difference in the ADC between the epithe-
lioid and sarcomatoid subtypes, suggesting that DWI is
capable of MPM evaluation, especially subtype assess-
ment in routine clinical practice.122 A few studies of
evaluation of the TNM stage in MPM demonstrated
that the capability of whole-body MR imaging or
FDG-PET/MRI was superior to that of FDG-PET/CT or
conventional radiological examination.63,123 Although
the disease frequency of MPM is quite low and gather-
ing more evidence may thus be difficult, whole-body
MR imaging as well as dedicated thoracic MR imaging
may perform a complementary function for management
of MPM in routine clinical practice.

Pulmonary hypertension
Pulmonary hypertension (PH) is defined as a mean pres-
sure of > 20 mmHg in the main pulmonary artery at rest
in the supine position measured by means of right heart

Table 6 Diagnostic performance of M factor evaluation with MR imaging

Author Year Field
strength (T)

Whole-body MRI FDG-PET/MRI FDG-PET/CT

SE (%) SP (%) AC (%) SE (%) SP (%) AC (%) SE (%) SP (%) AC (%)

Ohno, et al.54 2007 1.5 N/A N/A 80 N/A N/A N/A N/A N/A 73.3

Yi, et al.55 2008 3 N/A N/A 86 N/A N/A N/A N/A N/A 86

Ohno, et al.56 2008 1.5 58 or 70 88 or 92 82 or 88 N/A N/A N/A 63 95 88

Takenaka, et al.57 2009 1.5 73 or 96 94 or 96 94 or 96 N/A N/A N/A 97 96 96

Ohno, et al.60 2015 3 100 88 99 93 or 100 81 or 88 91 or 99 93 75 91

Lee, et al.106 2016 3 N/A N/A N/A 83 100 98 67 100 96

Ohno Y, et al.64 2020 3 N/A N/A 94 or 97 N/A N/A 94 or 97 N/A N/A 96

Standard reference for M-stage in each study was determined by standard imaging, pathological examination and follow-up examination results.
AC, accuracy; FDG, fluorodeoxyglucose; PET, positron emission tomography; SE, sensitivity; SP, specificity.

Fig. 7 Images in 42-year-old woman with chronic pulmonary arterial hypertension from an atrial septal defect with pulmonary insufficiency.
a: Coronal MR angiogram shows an enlarged pulmonary artery (arrow). b: Four-dimensional flow systolic phase path lines from emitter plane
at pulmonary valve show rapid flow in red at the pulmonary trunk and turbulent (helical) flows in right and left (arrow) pulmonary arteries. c:
Four-dimensional flow in diastolic phase shows lower velocity pulmonary insufficiency path lines in blue (arrow) from same emitter plane at
pulmonary valve, with calculated regurgitant fraction of 28%. (Reproduced, with permission, from reference No. 2)

State-of-the-art MRI for Thoracic Diseases

Vol. 21, No. 1 223



catheterization.124,125 Pulmonary arterial hypertension
(PAH) characterizes a very specific group of PH patients
defined by a pulmonary capillary wedge pressure of < 15
mm Hg and a pulmonary vascular resistance of > 3
Wood units in the absence of lung disease or chronic
thromboembolic pulmonary hypertension (CTEPH).124

The reader is referred to the recent consensus statement
by the European Society of Cardiology and European
Respiratory Society (ESC/ERS) guidelines for an
excellent overview of the diagnosis and treatment of
this disorder.126,127 The diagnostic paradigm currently
includes ventilation perfusion (V/Q) SPECT lung scan-
ning for CTEPH evaluation. In addition, dynamic CE-
perfusion MR imaging has been shown to have equal
sensitivity and specificity to those of both planar scinti-
graphy and SPECT for CTEPH screening.128,129

Furthermore, cardiovascular MR imaging has been
strongly recommended for aspects of patient manage-
ment such as the initial diagnosis, follow-up, and
therapeutic effect evaluation (Fig. 7).130,131 Findings of
septal flattening, delayed contrast enhancement of the
septal insertions, and an elevation in the right ventricu-
lar end diastolic volume index (RVEDVI) are of prog-
nostic value for PH.132–135 In addition, quantitatively
assessed CE-MR angiography is useful for the assess-
ment of the severity of PH and the longitudinal assess-
ment of therapy effect.136–139 CE-MR angiography has
been used for CTEPH to diagnose proximal arterial
enlargement, webs of chronic thrombi, and amputation
of the smaller pulmonary arterial branches. Bright-blood
steady state free precession imaging can also be used to
delineate thrombi in the major pulmonary vessels in
patients with CTEPH140 and reveal a reduced flow in
the pulmonary artery due to PH.141 Distensibility in the
pulmonary artery is also predictive of outcomes for
patients with PH,140,142 while RVEDVindex and PA
area can also predict survival,143 with all of the validity
of these aspects confirmed via meta-analysis.144 In
addition, right ventricular evaluation using cardiovascu-
lar MR imaging was suggested as a useful procedure for
characterization and disease severity evaluation of pul-
monary hypertension.145–147 Therefore, strong evidence
supports the current clinical use of cardiopulmonary MR
imaging for PH patients. Table 7 shows major study
results for assessment of pulmonary hypertension by
means of cardiac MR imaging.

Pulmonary thromboembolism
Pulmonary thromboembolism (PTE) is a common disorder
that is part of the spectrum of venous thromboembolic dis-
eases. PTE can have a high mortality if not diagnosed; how-
ever, even the most common treatment for this disorder carries
a risk of significant morbidity and mortality, particularly for
the aged. In routine clinical practice, diagnostic testing for PE
is vital and CE-CT angiography (CTA) has become the test of

choice. Currently, the CTA positivity rates for PE are lower
than 10% at most medical centers, and overtesting is now an
issue along with overdiagnosis for PTE.148,149

Since 2004, Time-resolved or 4D CE-MR angiography
has improved the spatial and temporal resolution of CE-
MR angiography with parallel imaging techniques and
has revealed both the direct signs of PTE within pulmon-
ary arteries and lung perfusion.150–152 This technique can
be considered an alternative to CT angiography for
patients presenting with signs and symptoms of PTE,
and may be at least as effective as pulmonary digital
subtraction angiography.2,150–156 In addition, the investi-
gators involved in the PIOPED III study reported a very
high percentage of technically inadequate examinations
(mean, 25%), with as many as 52% of examinations at
individual centers found to fall within that category.
These findings give rise to further questions, such as
whether all participating centers had extensive experience
with CE-MR angiography, since at the time of the study,
even the PIOPED III study did not use time-resolved
CE-MR angiography, which is easier to use in routine
clinical practice. In addition, PTE was correctly diag-
nosed in only 57% of patients by the centers enrolled in
this study which used technically inadequate examina-
tions. However, if only the results obtained with techni-
cally adequate examinations were taken into
consideration, non-time-resolved CE-MR angiography
showed a sensitivity of 78%. The investigators, therefore,
concluded that the use of non-time-resolved CE-MR
angiography should be considered only at the centers
that routinely perform CE-MR angiography well and
only for patients for whom standard tests are
contraindicated.156 The main results of this study are
listed in Table 8. These results indicate that CE-MR
angiography can be used in routine clinical practice as a
substitute or in a complementary role for CE-CT angio-
graphy in the management of PTE patients.

Future Directions and Conclusion

Until recently, the clinical uses of MR imaging for thoracic
diseases have been limited; however, recently developed
methods are now providing more opportunities to exploit
the advantages of MR imaging for the evaluation of many
common lung disorders. State-of-the-art MR imaging can
non-invasively visualize lung structural and functional
abnormalities without ionizing radiation, and thus provide
an alternative to CT. Major efforts must, therefore, be made
by vendors and developers to maximize the potential of MR
imaging for improving care of patients with thoracic diseases
to ensure that novel pulse sequences and measurements be
made available more widely and more quickly. While CT
will remain the principal imaging tool for routine pulmonary
imaging examinations in thoracic diseases, MR imaging is
emerging as the clinical standard or at least shows great
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potential for changing clinical care for certain patients and
indications. In addition, MR imaging is considered as a tool
that can provide unique information of clinical interest and
can be utilized for physiologic, pathophysiologic, and
hypothesis-driven research and preclinical studies of various
thoracic diseases. Finally, prospective, randomized, and
multi-center trials need to be conducted to directly compare
MR imaging with conventional clinical methods to deter-
mine whether the former is of equal or superior clinical
relevance for many thoracic diseases. The results of these
trials together with continued improvements can be expected
to result in further updates or modifications of recommenda-
tions for the use of MR imaging.
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Table 7 Cardiovascular magnetic resonance biomarkers for assessment of pulmonary hypertension

Author Year No. of
patients

Field
strength

(T)

Cardiac
MR

indexes
Hazard Ratio

Hazard
Ratio 95%

C.I.
P value

Gan, et al.142 2007 70 1.5 PA RAC 0.87 (risk of mortality) 0.79-0.96 0.006

van Wolferen,
et al.132

2007 64 1.5 SVI 0.764 (risk of mortality) N/A < 0.001

RVEDVI 1.61 < 0.001

LVEDVI 0.705 0.002

van de
Veerdonk,
et al.134

2011 110 1.5 RVESVI 1.014 (risk of mortality) 1.001-1.027 0.048

RVEF 0.938 0.902-0.975 0.001

LVEDVI 0.962 0.931-0.994 0.019

LVESVI 0.942 0.888-0.998 0.045

SVI 0.945 0.899-0.993 0.025

Swift, et al.131 2014 79 1.5 FWHM 1.08 (risk of mortality) 1.01-1.16 0.034

PTT 1.1 1.03-1.18 0.01

Baggen, et al.144 2016 539 N/A (meta-
analysis)

RVEF 1.23 (prognostic value) 1.07-1.41 0.003

RVEDVI 1.06 1.00-1.12 0.049

RVESVI 1.05 1.01-1.09 0.013

LVEDVI 1.16 1.00-1.34 0.045

de Siqueira,
et al.145

2016 110 1.5 GLS 1.06 (risk of disease severity,
associated with

clinically
relevant outcomes)

1-1.12 0.026

RVEF 0.97 0.94-0.99 0.03

GLSR 2.52 1.03-6.1 0.04

GCSR 4.5 1.3-15.6 0.01

Swift, et al.143 2017 576 1.5 RVESV 1.217 (risk of mortality) 1.061-1.539 0.005

PA RAC 0.762 0.623-0.932 0.008

C.I., confidence interval; FWHM, full width at half maximum; GCSR, global circumferential strain rate; GLS, global longitudinal strain; GLSR, global
longitudinal strain rate; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular end-systolic volume index; PA RAC, pulmonary
artery relative area change; PTT, pulmonary transit time; RVEDVI, right ventricular end-diastolic volume index; RVEF, right ventricular ejection
fraction; RVESV, right ventricular end-diastolic volume; RVESVI, right ventricular end-systolic volume index; SVI, stroke volume index.
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