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Prostate cancer, recognized as a “cold” tumor, has an immunosuppressive
microenvironment in which regulatory T cells (Tregs) usually play a major role.
Therefore, identifying a prognostic signature of Tregs has promising benefits of
improving survival of prostate cancer patients. However, the traditional methods of Treg
quantification usually suffer from bias and variability. Transcriptional characteristics have
recently been found to have a predictive power for the infiltration of Tregs. Thus, a novel
machine learning-based computational framework has been presented using Tregs and
19 other immune cell types using 42 purified immune cell datasets from GEO to identify
Treg-specific mRNAs, and a prognostic signature of Tregs (named “TILTregSig”)
consisting of five mRNAs (SOCS2, EGR1, RRM2, TPP1, and C11orf54) was developed
and validated to monitor the prognosis of prostate cancer using the TCGA and ICGC
datasets. The TILTregSig showed a stronger predictive power for tumor immunity
compared with tumor mutation burden and glycolytic activity, which have been
reported as immune predictors. Further analyses indicate that the TILTregSig might
influence tumor immunity mainly by mediating tumor-infiltrating Tregs and could be a
powerful predictor for Tregs in prostate cancer. Moreover, the TILTregSig showed a
promising potential for predicting cancer immunotherapy (CIT) response in five CIT
response datasets and therapeutic resistance in the GSCALite dataset in multiple
cancers. Our TILTregSig derived from PBMCs makes it possible to achieve a
straightforward, noninvasive, and inexpensive detection assay for prostate cancer
compared with the current histopathological examination that requires invasive tissue
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puncture, which lays the foundation for the future development of a panel of different
molecules in peripheral blood comprising a biomarker of prostate cancer.
Keywords: prostate cancer, regulatory T cells (Tregs), cancer immunotherapy (CI), therapeutic resistance,
prognostic signature
INTRODUCTION

Prostate cancer is the most frequently diagnosed cancer and the
second leading cause of cancer death in men worldwide, with an
estimated incidence of 1,414,259 new cases in 2020, accounting
for 7.3% of new cancer cases in men (1). Radical prostatectomy
(RP) and radiation therapy (RT) are the most common primary
treatment options for prostate cancer patients and can provide
definitive cure in many patients. Unfortunately, recurrent
prostate cancer following primary therapy is common (2), with
the incidence of biochemical recurrence (BCR) ranging from
19% to 35% at 10 years following RP and approximately 30%
following RT (3). Therefore, excavating a biomarker that can
predict the recurrence holds the promise of improving survival
for prostate cancer patients.

Recently, a growing body of evidence has revealed the
attractive clinical efficacy of cancer immunotherapy (CIT) in
the treatment of prostate cancer. For example, sipuleucel-T has
been evaluated in the multicenter Immunotherapy for Prostate
Adenocarcinoma Treatment (IMPACT) trial, which has been
approved by the Federal Drug Administration, in addition to
three Phase III clinical trials (NCT00065442, NCT00005947, and
NCT01133704). Sipuleucel-T-treated patients tended to have a
3-fold increase in activated T cells in prostatectomy specimens
compared to patients who did not receive sipuleucel-T (4).
Furthermore, the median survival of patients who received
sipuleucel-T was 25.8 months, while it was 21.7 months in
placebo-treated patients. Beer et al. found that there was a
significant difference seen in PFS between patients treated with
ipilimumab and patients treated with placebo: 5.6 months in the
ipilimumab group compared to 3.8 months in the placebo group
(5). Despite the sustained clinical efficacy of CIT, however, only a
fraction of patients benefit from them (6). Therefore, it has
become a primary priority to excavate a biomarker that can
accurately predict the prognosis and response to CIT for prostate
cancer, which will bring tremendous value in guiding the
management of prostate cancer patients. Previous studies have
unveiled some indicators associated with CIT response such as
tumor mutation burden (TMB) (7), eosinophilic count (8), PD-
L1 expression (9), deep sequencing of T-cell receptor DNA (10),
and glycolytic activity (11). However, accurate biomarkers for
predicting clinical outcome and CIT responses for prostate
cancer patients continue to be largely unexplored.

Prostate cancer, defined as a “cold” tumor, has an
immunosuppressive microenvironment. Tumor-infiltrating
lymphocytes (TILs) usually restrain the activity of T-effector
cells, which may contribute to cancer progression. A previous
study found that TILs residing in prostate cancer tissues were
converted to regulatory T cells (Tregs) and T helper 17 (Th17)
org 2
phenotypes, which suppressed autoreactive T cells and
antitumor immune responses (12). In TILs, Tregs are
numerous and highly activated (13, 14) and are supposed to
represent a major mechanism of tumor-induced immune
suppression (15, 16). Not only do Tregs inhibit T-effector cells,
but they also appear to fundamentally alter the entire immune
milieu related to the tumor. Overcoming the immunosuppressive
tumor microenvironment (TME) is the major challenge
impeding CIT today. Tregs are prevalent in nearly all cancers
and, as immunosuppressive regulators of immune responses,
they are the principal opponents of CIT (15, 17). Therefore,
strategies to deplete Tregs and to control Tregs’ functions to
increase anti-tumor immune responses are urgently required in
the CIT field (18). In addition, Tregs have been observed to be
significantly associated with poor prognosis of prostate cancer
(19, 20). Transcriptional characteristics have recently been found
to have a predictive power for the infiltration of Tregs, thus
leading to the identification of gene expression biomarkers for
quantitative evaluation of Tregs and prognosis and CIT response
stratifications (21, 22). However, Treg-specific mRNAs and their
application in evaluating Tregs and predicting prognosis and
CIT responses have not been explored.

Though diagnosis of prostate cancer based on histopathological
examination is accurate, this is not convenient for routine diagnosis
because of the required invasive tissue puncture. Monitoring of
peripheral blood is attractive for generating predictive biomarkers
for prostate cancer, due to the ease of accessing blood versus tumor
tissue. Blood is also more homogeneous compared to tumors,
making the sampling of blood easier and more consistent.
Moreover, for most patients who are candidates for CIT, the
clinical utility of biomarkers is limited, and better ways to match
patients with treatments are needed. Biomarkers isolated from
peripheral blood are probably for drug screening and treatment
monitoring. Therefore, due to the advantages of peripheral blood-
based biomarkers, such as easy availability for analysis, the
involvement of noninvasive procedures, the possibility for
multiple assessments, and broad applications in diagnostics and
monitoring therapeutic outcomes, there have been many studies
dedicated to identifying predictive biomarkers using transcriptional
profiles of peripheral blood mononuclear cells (PBMCs). For
example, Zhou et al. identified an lncRNA signature of tumor-
infiltrating B lymphocytes with potential implications in prognosis
and immunotherapy of bladder cancer using transcriptional profiles
of immune cells purified from PBMCs (23). Sun et al. also utilized
transcriptional profiles of immune cells purified from PBMCs to
develop a tumor immune infiltration-associated signature for non-
small cell lung cancer (24).

Therefore, in this study, a machine learning-based computational
framework is presented based on 42 transcriptional datasets of
June 2022 | Volume 13 | Article 807840
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Tregs and other immune cell types purified from PBMC to
identify Treg-specific mRNAs and develop a prognostic
signature of Tregs (named “TILTregSig”) for monitoring
prognosis of prostate cancer. The potential of the TILTregSig
to serve as a predictive biomarker of CIT response and cancer
therapeutic resistance was also explored.
METHODS

Patient Data
Clinical information and transcriptional profiles of prostate
cancer patients were retrieved from the Cancer Genome Atlas
data portal (TCGA, http://cancergenome.nih.gov/). After the
removal of patients with shorter than 1 month survival time
from the data, 454 prostate cancer patients and their
corresponding RNA sequencing (RNA-seq) data profiled
expressed as transcripts per million (TPM) were obtained from
the TCGA database. The R package “edgeR” was utilized to
normalize and process the data by using the R version
4.0.4 software.

For validation, we also downloaded clinical information and
transcriptional data of 25 prostate cancer patients (PRAD-FR
cohort) from the International Cancer Genome Consortium
(ICGC, https://dcc.icgc.org/).

We downloaded the immunotherapy response datasets from the
GEO database (GSE19423, GSE111636, GSE67501, and GSE53922)
and Miao et al. (25). The list of these immunotherapy response
datasets is displayed in Table S1.

Cell Culture
We obtained peripheral blood samples from 3 healthy donors and 3
prostate cancer patients. PBMCs were isolated by density gradient
centrifugation with Ficoll-Paque (GE Healthcare). Human primary
CD4+ CD25-T cells or CD4+ CD25+ Treg cells were purified using
the CD4+ T Cell Isolation Kit (Miltenyi Biotec) and CD25
MicroBeads II (Miltenyi Biotec) (Figure S1). CD4+ CD25+ Treg
cells were cultured with plate-bound anti-human-CD3 (OKT3;
eBiosciences) antibodies (5 mg ml−1) and/or anti-human-CD28
(CD28.2; BD Pharmingen) antibodies (2 mg ml−1) in complete
medium [RPMI supplemented with 10% FBS and IL-2 (Peprotech)
(100 units ml−1)]. Then, CD4+ CD25+ CD127- Treg cells were
enriched using flow cytometry (Figure S1). All cells were cultured at
37°C in an atmosphere of 5% CO2.

Purified Immune Cell Data
Transcriptional profiles of T regulatory (Treg) cells and 19 other
immune cell types conducted by GPL571 (Affymetrix Human
Genome U133A 2.0 Array) were obtained from the publicly
available GEO database (https://www.ncbi.nlm.nih.gov/geo/)
including GSE38043, GSE11292, GSE22501, GSE22045,
GSE23332, GSE65010, GSE43769, GSE50175, GSE42058,
GSE59237, GSE23371, GSE37750, GSE14000, GSE4984,
GSE27838, GSE8059, GSE46062, GSE17186, GSE39411,
GSE50006, GSE13987, GSE85260, GSE56591, GSE16386,
GSE16755, GSE13670, GSE11864, GSE84331, GSE51288,
Frontiers in Immunology | www.frontiersin.org 3
GSE44126, GSE26347, GSE142672, GSE134209, GSE101587,
GSE66936, GSE49910, GSE28490, GSE93776, GSE67321,
GSE72642, GSE28491, and GSE28726.

Construction of a TILTreg-Derived mRNA
Prognostic Signature for Prostate Cancer
The mRNA and clinical profiling analysis was developed for
identifying TILTregSig (i.e., the TIL-Treg-derived prognostic
mRNA signature) as follows (Figure 1): (i) Differential expression
analysis of mRNAs between Treg cell lines and other immune cell
lines derived from PBMCs was performed using the R package
“limma”. Those mRNAs highly expressed in Treg cell lines and
downregulated in other immune cell lines were defined as Treg-
specific mRNAs [by criterion as false discovery rate (FDR) < 0.05
and LogFC > 2]. (ii) To identify mRNAs that were associated with
prostate cancer, a list of 384 genes differentially expressed between
healthy donors and prostate cancer patients using gene expression
profiles of Tregs excavated from PBMC of 3 healthy donors and 3
prostate cancer patients (26) was involved in this analysis. Treg-
specific mRNAs that overlapped with these 384 genes were
extracted out as Treg-specific mRNAs associated with prostate
cancer (TILTreg-associated mRNAs). (iii) Univariate Cox
regression analysis was used to explore TILTreg-associated
mRNAs related to RFS as prognostic mRNAs. (iv) The machine
learning approach was applied to select for the optimal combination
from the list of candidate biomarkers for monitoring prognosis of
prostate cancer (TILTregSig) based on multivariate Cox regression
models and a forward and backward variable selection procedure
via the “stepAIC” function from the R package “MASS”. The
forward and backward variable selection model is one of the most
basic and commonly used feature selection algorithms available and
is also general and conceptually applicable tomany different types of
data (27). The combination of TILTreg-associated mRNAs related
to the lowest Akaike information criteria (AIC) was retained as the
final signature (named “TILTregSig”). (v) The corresponding risk
scores for patients were calculated according to the expression levels
of the genes (expi) and the coefficients of the multivariate Cox
regression analysis (bi) for easy application in the clinic.
Subsequently, patients were divided into low- and high-risk
groups according to the mean risk score. The formula used was
as follows:

Riskscore =  o
n

i=1
expi ∗ bi

Malta et al. applied the one-class logistic regression (OCLR)
machine-learning algorithm to TCGA datasets to calculate the
stemness indices (mRNAsi and mDNAsi) using transcriptomic
and epigenetic signatures (28). mDNAsi is reflective of epigenetic
features, while mRNAsi is reflective of gene expression. Each
stemness index (si) ranges from low (zero) to high (one) stemness.

Cell Proliferation Assay
CD4+ CD25+ CD127- Treg cells were stimulated as described
above and were then cultured with CD4+ CD25- T cells at a ratio
of 1:1, 2:1, 4:1, and 8:1 (Teff:Treg) in each well of a round-bottom
June 2022 | Volume 13 | Article 807840
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96-well plate and cultured for 3 days. In the experimental group,
the siGENOME SMARTpool and DharmaFECT 4 (Dharmacon)
were used to knock down RRPM from CD4+ CD25+ CD127-
Treg cells on a 96-well plate based on the manufacturer’s
instruction. Si-RRPM Tregs were stimulated and were then
cultured with CD4+ CD25- T cells as described above. The
proliferation of the cells was monitored using Cell Counting Kit-
8 (CCK-8) (Beyotime).

Genetic Variation and Methylation Analysis
of the TILTregSig
A webtool GSCALite (http://bioinfo.life.hust.edu.cn/web/
GSCALite/) was used to analyze the genetic variation and
methylation of the genes involved in the TILTregSig. Data in
Frontiers in Immunology | www.frontiersin.org 4
GSCALite overlapped with the samples derived from the
TCGA database.

Evaluation of Tumor Immunity, Tumor
Mutation Burden, Glycolysis Score and
Immune-Related Indicators, and
Epithelial–Mesenchymal Transition Levels
In order to assess tumor immunity, we employed Estimation of
STromal and Immune cells in MAlignant Tumors using
Expression data (ESTIMATE), a method that quantifies the
immune score, stromal score, ESTIMATE score, and tumor
purity for each tumor sample as well as the immune activity
(immune infiltration level) based on the expression of immune
genes (29). For each tumor sample, we determined its TMB as
FIGURE 1 | Schematic diagram of the framework for identification of the TILTregSig.
June 2022 | Volume 13 | Article 807840
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the total count of somatic mutations (except silent mutations)
detected in the tumor. Glycolysis score, an immune-related
signature that has been proved by Jiang et al. (11), was also
estimated in our study for each tumor sample using ssGSEA
based on the glycolytic gene set (11) to compare the ability to
predict immunity with the TILTregSig. The ssGSEA algorithm
was utilized to calculate different immune-related indicators
(including APC co-inhibition, APC co-stimulation, chemokine
receptors, type I; IFN response and type II IFN response, anti-
inflammatory cytokines, pro-inflammatory cytokines, MHC
class I;, cytolytic activity, HLA, and TILs) using their feature
genes (Table S2). We used epithelial–mesenchymal transition
(EMT) markers including EMT1, EMT2, and EMT3, which were
reported by Mariathasan et al. (30) to ssGSEA to evaluate the
levels of EMT for prostate cancer patients in different groups.

Evaluation of Immune Cell Infiltrations
To ensure the accuracy of our results, in this work, we utilized
three methods to estimate the immune cell infiltrations in
prostate cancer. In the first method, we employed ssGSEA to
calculate the immune cell infiltration levels using immune cells’
marker genes (Table S2). The second method is CIBERSORT
algorithm (31), which can infer the relative proportions of 22
types of infiltrating immune cells using gene expression profiles
obtained from the TCGA database. In the last method, we
employ the ImmuneCell AI database (http://bioinfo.life.hust.
edu.cn/ImmuCellAI/#!/), which can evaluate the abundance of
24 immune cells, composed of 18 T-cell subtypes and 6 other
immune cells: B cell, NK cell, monocyte cell, macrophage cell,
neutrophil cell, and DC cell.

Gene Set Enrichment Analysis
To explore the potential biological functions of the TILTregSig,
we conducted Gene Set Enrichment Analysis (GSEA) based on
the curated gene sets “c7.all.v7.4.symbles.gmt [immunologic
signature]”. Normalized p-value < 0.05 was considered to be
statistically significant.

Statistical Analysis
The expression profiles of mRNAs from TCGA and GEO were
shown as raw data, and each mRNA was normalized by log2
transformation for further analysis. The t-test p < 0.05 was
utilized to determine the statistical significance. We calculated
the correlation between two variables using the Spearman
method. The threshold of p < 0.05 (Spearman’s correlation
test) indicates the significance of correlation. Kaplan–Meier
(K-M) survival curves and log-rank tests were used to compare
the survival distribution between the high-risk and low-risk
groups via GraphPad Prism version 7.0. To compare the
predictive power of different genomic features, time-dependent
receiver operating characteristic (ROC) curve analysis was
performed using the R package “survivalROC”, and the area
under the ROC curve (AUC) was used to assess the predictive
performance of the genomic features. A webtool, GSCALite
(http://bioinfo.life.hust.edu.cn/web/GSCALite/), was used to
analyze the relationships between the IC50 data of different
molecules and the genes’ expression levels in the TILTregSig.
Frontiers in Immunology | www.frontiersin.org 5
The Kruskal–Wallis test was used for comparisons among
multiple groups. All the statistical analyses were performed in
R version 4.0.4 with additional Bioconductor packages. A two-
tailed p < 0.05 was considered statistically significant.
RESULTS

Identification of Treg-Specific mRNAs
Associated With RFS of Prostate Cancer
To identify Treg-specific mRNAs derived from PBMCs,
differential expression analysis of mRNAs was performed
between Tregs and other immune cell lines, and 2,407
dysregulated mRNAs were identified that were highly
expressed in Tregs and downregulated in other immune cell
lines [false discovery rate (FDR) <0.05, LogFC >2, Table S3].
These 2,407 dysregulated mRNAs were proposed as Treg-specific
mRNAs. Ngar-Yee Huen et al. identified 384 genes of Tregs that
were differentially expressed between healthy donors and
prostate cancer patients using gene expression profiles
excavated from PBMC of 3 healthy donors and 3 prostate
cancer patients (26). To explore mRNAs of Tregs that were
associated with prostate cancer, we further extracted 74 mRNAs
out of these 2,407 mRNAs, which overlapped with the 384
differentially expressed genes (Table S4). A large body of
evidence indicated that recurrent prostate cancer following
primary therapy is common with a high incidence of BCR (2).
Therefore, we further applied these 74 Treg-specific mRNAs
derived from PBMC to the TCGA database to evaluate their
association with recurrence-free survival (RFS) of prostate cancer
based on univariate Cox regression analysis. Subsequently, 18
mRNAs were obtained that were significantly associated with
RFS of prostate cancer patients (Table S5, p < 0.01). In these 18
mRNAs, 11 mRNAs were adverse indicators, while 7 mRNAs
were protective indicators for prostate cancer, which were
identified to be significantly associated with RFS and defined
as candidate mRNAs of the prognostic signature for
prostate cancer.

Construction of a Prognostic Signature
That Can Predict RFS of Prostate Cancer
To explore a prognostic signature for monitoring RFS of prostate
cancer, multivariate Cox regression models were employed using
gene expression profiles and clinical information of 454 patients
with prostate cancer obtained from the TCGA database. Thus, the
prognostic signature, named “TILTregSig”, was composed of five
Treg-specific mRNAs (SOCS2, EGR1, RRM2, TPP1, and
C11orf54). The risk score system was built as follows: risk score =
(−0.332 × expression value of SOCS2) + (−0.111 × expression value
of EGR1) + (0.286 × expression value of RRM2) + (−0.609 ×
expression value of TPP1) + (−0.748 × expression value of
C11orf54). A total of 454 PRAD patients were dichotomized into
high- and low-risk groups according to the cutoff value of 0.946 as
the median value of risk score.

Kaplan–Meier (K-M) curves revealed that patients in high-
risk groups tended to suffer from recurrence (Log-rank p <
June 2022 | Volume 13 | Article 807840
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0.0001, Figure 2A). Patients’ recurrence rate was increased in the
high-risk group compared to that in the low-risk group
(Figure 2B). Correlation analysis indicated that RFS status, T,
N, age, cancer status, treatment response, and postoperative RX
Frontiers in Immunology | www.frontiersin.org 6
were significantly associated with the risk score (Figure 2C, p <
0.05). The strip chart showed that the risk of patient mortality
and recurrence rate obviously increased and the TNM staging
gradually rose as the risk score increased (Figure 2D). The chi-
B C

D

E

F

A

FIGURE 2 | The TILTregSig can serve as a biomarker for RFS of prostate cancer patients in both TCGA and ICGA datasets. (A) Kaplan–Meier curves of RFS of low- and
high-risk groups stratified by the TILTregSig in prostate cancer patients in the TCGA dataset. (B) The distribution of gene risk scores and patients’ recurrence status for
prostate cancer patients in the TCGA dataset. (C) Correlation analysis between risk score and clinical characteristics in prostate cancer. R: Spearman’s correlation coefficient.
(D) The strip chart of risk score and clinical characteristics for patients with prostate cancer in the TCGA dataset. (E) Pie charts showing the chi-square test of clinicopathologic
factors for low- and high-risk groups in prostate cancer samples from the TCGA dataset. (F) Comparison of predictive ability of TILTregSig, PSA levels, Gleason score, Clinical
T, Clinical N, and Clinical M for RFS of prostate cancer in 1, 3, 5, and 7 years using ROC curve analysis. **, P<0.01. ***, P<0.001.
June 2022 | Volume 13 | Article 807840
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square test demonstrated that the high-risk group significantly
tended to recurrence (p < 0.0001, Figure 2E), higher T stage (p =
0.0167, Figure 2E), higher N stage (p < 0.0001, Figure 2E), being
older (p = 0.0068, Figure 2E), survival with tumor (p < 0.0001,
Figure 2E), no response to treatment (p = 0.0160, Figure 2E),
and no postoperative RX (p < 0.0001, Figure 2E) compared to
the low-risk group of prostate cancer. These results suggested
that highly malignant prostate cancer was associated with high-
risk score, and our risk score system based on the TILTregSig had
tremendous potential to predict RFS for prostate cancer patients.

To better evaluate the predictive power of our TILTregSig for
prostate cancer patients, we involved PSA levels, Gleason score,
Clinical T, Clinical N, and Clinical M into this comparison
analysis based on the available clinical information from the
TCGA database. ROC curves indicated that the risk score based
on our TILTregSig had moderate potential as a predictor of RFS
in prostate cancer (Figure 2F). PSA levels and Gleason score
presented low potential for predicting RFS, while Clinical T,
Clinical N, and Clinical M showed minimal potential in prostate
cancer (Figure 2F). These results suggest that the risk score
based on our TILTregSig is a predictor with stronger power for
RFS than PSA levels, Gleason score, Clinical T, Clinical N, and
Clinical M as classically clinical parameters.

Cancer stem cells were proved to be associated with poor
prognosis (32). Malta et al. employed the OCLR machine-
learning algorithm to TCGA datasets to calculate the stemness
indices (mRNAsi and mDNAsi) using transcriptomic and
epigenetic signatures (28). Thus, we also involved stemness
indices derived from study of Malta et al. to validate the
clinical association between the TILTregSig and the prognosis
of prostate cancer patients. The results showed a significantly
positive correlation between the TILTregSig and the stemness
indices in both the mRNA expression levels (p = 0.0006, R =
0.160, Figure S2A) and DNA methylation levels (p < 0.0001, R =
0.296, Figure S2B), which was consistent with our previous
results where a high-risk score based on the TILTregSig was
markedly associated with recurrence of prostate cancer.

Validation of the TILTregSig in the ICGC
Database and Experimental Data
To validate the prediction power of the TILTregSig, we further
applied the signature to ICGC database. Then, 25 prostate cancer
patients were divided into low- and high-risk groups according
to the median value of the risk score in the ICGC dataset. As
shown in Figure 3A, K-M curves showed significant utility in
predicting RFS of prostate cancer. We also found that patients’
recurrence rate was increased in the high-risk group compared to
that in the low-risk group (Figure 3B). The strip chart of clinical
characteristics of prostate cancer patients indicated that the risk
of mortality and recurrence rate increased as the risk score
increased (Figure 3C). The chi-square test showed that
patients in the high-risk group markedly tended to suffer from
recurrence (p = 0.0027, Figure 3D). These results illustrate that
high-risk score is associated with recurrence of prostate cancer
patients, which is consistent with our previous results in the
TCGA dataset.
Frontiers in Immunology | www.frontiersin.org 7
To validate the different expression levels of the five genes
(SOCS2, EGR1, RRM2, TPP1, and C11orf54) based on our
TILTregSig in Tregs between healthy donors and prostate cancer
patients, we obtained Tregs excavated from PBMCs of 3 healthy
donors and 3 prostate cancer patients, and carried out Western blot
analysis. The results show in Figure 3E that SOCS2, EGR1, TPP1,
and C11orf54 had significant lower expression in Tregs excavated
from prostate cancer patients compared to those excavated from
healthy donors, while RRM2 was significantly overexpressed in
prostate cancer (Figure 3E), suggesting that RRM2 was a risk factor
in our TILTregSig for prostate cancer patients. These results were
consistent with our previous findings using bioinformatics analysis.

The TILTregSig Is an Independently
Prognostic Indicator for Prostate
Cancer Patients
Next, univariate and multivariate Cox regression analysis was
carried out to analyze whether the TILTregSig can be an
independent predictor for prostate cancer patients. The risk score
and other clinicopathological factors were used as covariates. Stage
M was not included in this analysis because of only one patient in
stage M1 in the TCGA dataset. The results unveiled that the risk
score (Multivariate Cox: HR = 1.170, 95% CI = 1.079–1.267; p <
0.001), stage T (Multivariate Cox: HR = 1.749, 95% CI = 1.235–
2.474; p = 0.002), and cancer status (Multivariate Cox: HR = 8.084,
95% CI = 4.557–14.33; p < 0.001) were significantly associated with
the RFS and could be independent RFS prognostic factors for
prostate cancer patients (Figures S3A, B).

To further investigate the clinical potentiality of the risk score
in prostate cancer, stratified analysis based on these clinical
characteristics was implemented. The results indicated that the
TILTregSig seemed to be more applicable to predict RFS of
prostate cancer patients in the subgroups of T1 and T2, N0,
younger than 71, White, response to treatment, did not receive
postoperative RX, and laterality in bilateral (Figure S3C).
Meanwhile, patients in the high-risk group had significantly
poorer clinical outcomes compared to those in the low-risk
group. These results illustrate that the TILTregSig can serve as
an independent predictor for RFS of prostate cancer patients,
and still applicable for patients in some subgroups.

The Landscape of Genetic Variations of
the TILTregSig in Prostate Cancer
Genetic alterations have been found to usually confer susceptibilities
to prostate cancer (33). GSCALite (http://bioinfo.life.hust.edu.cn/
web/GSCALite/) is a webtool that can be used to analyze the genetic
variation of the genes, and data in the GSCALite overlapped with
the samples derived from the TCGAdatabase. Therefore, in order to
comprehensively understand the molecular characteristics of the
five genes in the TILTregSig, we examined the SNV and CNV status
of these genes using GSCALite. It was found that the EGR1 (0.6%)
exhibited the highest mutation frequency followed by RRM2 (0.2%)
and TPP1 (0.2%), while both SOCS2 and C11or54 did not show any
mutations in prostate cancer samples (Figure 4A). In addition,
EGR1 had three effective mutation sites, while both RRM2 and
TPP1 had one site, respectively (Figure 4A). Among alteration
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FIGURE 3 | Validation of TILTregSig in the ICGC database and experimental data. (A) Kaplan–Meier curves of RFS of low- and high-risk groups stratified by the
TILTregSig in prostate cancer patients in the ICGC dataset. (B) The distribution of gene risk scores and patients’ recurrence status for prostate cancer patients in the
ICGC dataset. (C) The strip chart of risk score and clinical characteristics for patients with prostate cancer in the ICGC dataset. (D) Pie charts showing the chi-
square test of clinicopathologic factors for low- and high-risk groups in prostate cancer samples from the ICGC dataset. (E) Comparison of the expression of five
genes (SOCS2, EGR1, RRM2, TPP1, and C11orf54) based on our TILTregSig between Tregs excavated from PBMC of 3 healthy donors and 3 prostate cancer
patients using Western blot analysis. *, P<0.05. **, P<0.01.
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types, most were focused on the amplification (SOCS2: 7.72%,
RRM2: 4.67%, TPP1: 5.69%, and C11orf54: 7.93%, Figure 4B;Table
S6), while EGR1 had a widespread frequency of deletion (EGR1:
6.1%, Figure 4B; Table S6). The investigation of the correlation
between CNV and the expression levels of the five genes indicated a
significant positive correlation of SOCS2 (Figures 4C, D; Spearman
coefficient: R = 0.18, p = 3.2e−04) and TPP1 (Figures 4C, D;
Spearman coefficient: R = 0.19, P = 8.8e−05) expression with CNV,
which indicated that patients with high expression of SOCS2 and
TPP1 were prone to have high CNV load. The above analysis
presents a widespread genetic alteration landscape of the five genes
in the TILTregSig in prostate cancer patients, suggesting genetic
alterations as the molecular mechanism that shows that high-risk
score is related to poor prognosis in prostate cancer.

The Five mRNAs Involved in the
TILTregSig Have Significant Differential
Methylation Between Normal and Tumor
Samples in Prostate Cancer
Genemethylation plays a vital role in malignant transformation and
can be specific to types of cancers including prostate cancer (34).
Frontiers in Immunology | www.frontiersin.org 9
To get a better understanding of the mechanism of the effect of the
genes in the TILTregSig on tumorigenesis, we analyzed the
differential methylation of the five genes using GSCALite.
Surprisingly, we found that all of the five genes showed significant
differential methylation between normal and prostate cancer
samples (p < 0.05, Figure 4E). Furthermore, SOCS2 (Figures 4F,
G; Spearman coefficient: R = −0.61, p < 0.0001), RRM2 (Figures 4F,
G; Spearman coefficient: R = −0.39, p < 0.0001), TPP1
(Figures 4F, G; Spearman coefficient: R = −0.21, p = 2.3e−06),
and C11orf54 (Figures 4F, G; Spearman coefficient: R = −0.33, p =
4.7e−14) showed significant negative correlation between gene
methylation and expression in prostate cancer, whereas the
expression of EGFR (Figure 4F; p > 0.05) showed no significant
correlation with gene methylation. These findings could contribute
to enhancing our understanding of the potential mechanisms on the
predictive ability of the TILTregSig in prostate cancer.

The TILTregSig Is a Stronger Predictor for
Tumor Immunity in Prostate Cancer
Because the five genes were initially derived from immune cell
lines, we consequently investigated whether the signature was
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FIGURE 4 | Gene alteration and methylation landscape of the five genes in the TILTregSig in prostate cancer. (A, B) The SNV status of the five genes in the
TILTregSig of prostate cancer patients in GSCALite. (C) The correlation between CNV and the expression levels of the five genes in the TILTregSig of prostate
cancer patients in GSCALite. (D) The correlation between CNV and the expression levels of SOCS2 and TPP1. R: Spearman’s correlation coefficient. FDR, false
discovery rate. (E) The difference of gene methylation between normal and prostate cancer samples. (F) The correlation between gene methylation and the
expression levels of the five genes in the TILTregSig of prostate cancer patients in GSCALite. (G) The correlation between gene methylation and the expression levels
of SOCS2, RRM2, TPP1, and C11orf54. R: Spearman’s correlation coefficient. FDR, false discovery rate.
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related to the tumor immunity. Therefore, we firstly measured
the correlation between the TILTregSig and immune-related
factors (chemokines, immunoinhibitors, MHCs, and receptors)
and found that the risk score was commonly associated with
these immune-related factors. In particular, the TILTregSig has
the highest positive correlation with CCL17 followed by
CCL14 among 39 chemokines (Spearman correlation:
CCL17.R = 0.206, CCL14.R = 0.202, p < 0.0001, Figure S4). In
24 immunoinhibitors, the TILTregSig presented the highest
positive correlation with LGALS9 followed by TGF-b1
(Spearman correlation: LGALS9.R = 0.218, TGF-b1.R = 0.182,
p < 0.0001, Figure S4), but showed the highest negative
correlation with CD274 followed by TGFBR1 (Spearman
correlation: CD274.R = −0,185, TGFBR1.R = −0.175, p <
0.0001, Figure S4). Moreover, the TILTregSig has the highest
negative correlation with B2M among 21 MHCs (Spearman
correlation: R = −0.296, p < 0.0001, Figure S4) and CXCL1
among 18 receptors (Spearman correlation: R = −0.244, p <
0.0001, Figure S4). Next, further analysis indicated that type I;
IFN response and anti-inflammatory cytokines were significantly
enhanced in patients with high-risk scores, while type II IFN
response was decreased (p < 0.005, Figure 5A).

In light of these results, we further conjectured that the
TILTregSig was correlated with tumor immunity and might
have potential to predict tumor immunity. To test this
hypothesis, we firstly employed the ESTIMATE algorithm to
quantify the immune score, stromal score, ESTIMATE score, and
tumor purity of prostate cancer patients in the TCGA dataset.
The results showed that the high-risk group significantly tended
to have higher immune scores (p = 0.0052, Figures 5B, C) and
ESTIMATE score (p = 0.0036, Figures 5B, C) and lower tumor
purity (p = 0.0286, Figures 5B, C) compared to the low-risk
group of prostate cancer patients. However, for stromal score,
there was no significant difference between low- and high-risk
groups (p = 0.061, Figures 5B, C). These results illustrate that the
TILTregSig is significantly correlated with tumor immunity,
which suggests that the TILTregSig promises to predict tumor
immunity in prostate cancer.

TMB (35) and glycolytic activity (11) have been demonstrated
to have predictive ability for immune signatures. Next, to
compare the predictive ability to tumor immunity, we involved
TMB and glycolytic signature as reported biomarkers and PSA
levels, Gleason score, Clinical T, Clinical N, and Clinical M as
classical biomarkers into this analysis. ROC curves indicated that
the TILTregSig achieved an AUC of 0.665 in predicting tumor
immune score for prostate cancer, while TME achieved an AUC
of 0.610 and glycolysis achieved an AUC of 0.509 (Figure 5D).
The TILTregSig represented moderate potential as an indicator
of immune score, as compared to PSA levels, Gleason score,
Clinical T, Clinical N, and Clinical M being predictors with
minimal potential in prostate cancer (Figure 5D). To validate the
predictive potential to tumor immunity, we further involved
CYT recognized as an immune signature. The TILTregSig
achieved an AUC of 0.727 in predicting CYT, while TME
achieved an AUC of 0.626 and glycolysis achieved an AUC of
0.459 (Figure 5E). For classical biomarkers, PSA levels, Gleason
Frontiers in Immunology | www.frontiersin.org 10
score, Clinical T, Clinical N, and Clinical M showed minimal
potential for predicting prostate cancer (Figure 5E). Our work
strongly indicates that the TILTregSig is significantly correlated
with tumor immunity and is a predictor with stronger power for
tumor immunity than PSA levels, Gleason score, Clinical T,
Clinical N, and Clinical M as classically clinical parameters and
some other reported biomarkers in prostate cancer. The
TILTregSig is significantly associated with tumor-infiltrating
Tregs in prostate cancer.

To elucidate the mechanism of the correlation between the
TILTregSig and tumor immunity, we further investigated the
immune functional annotation using the gene set of
“c7.all.v7.4.symbles.gmt [immunologic signature]” by GSEA.
The results demonstrated that the TILTregSig is highly
associated with many immune cells, such as CD8+ T cells,
CD4+ T cells, B cells, and Tregs (Figure 6A). Subsequently, to
deeply unveil the relationship between the TILTregSig and
tumor-infiltrating immune cells, we then evaluated the
infiltration levels of immune cells in high- and low-risk groups
in prostate cancer samples using marker genes’ expression
analysis, the CIBERSORT algorithm, and the ImmuneCell AI
database, respectively. We noticed a consistent result in marker
genes’ analysis (Figure 6B), the CIBERSORT algorithm
(Figure 6C), and the ImmuneCell AI database (Figure 6D):
patients with high-risk scores had a higher infiltration of Tregs
compared to those with low-risk scores (Mann–Whitney U test,
p < 0.05, Figures 6B–D), which suggested a significant
correlation between the TILTregSig and Tregs in prostate
cancer. To validate these results, we further involved Tregs’
marker genes (FoxP3 and TGF-b1) into our study, and the
correlation analysis demonstrated that the TILTregSig was
significantly positively related to FoxP3 and TGF-b1
expression (p < 0.05, Figure 6E), which was consistent with
our previous results (Figures 6B–D). Additionally, RRM2
showed the highest correlation with iTreg cells and nTreg cells
among these five genes in the TILTregSig (Figure 6F), suggesting
that RRM2 might be a key gene to determine the correlation
between the TILTregSig and tumor immunity. These results
suggest that the TILTregSig may influence tumor immunity
mainly by mediating tumor-infiltrating Tregs, and RRM2 may
play a vital role in this section, which needs to be verified by
further experiments.

The TILTregSig Is a Powerful Predictor for
the Infiltration of Tregs in Prostate Cancer
In view of the relationships between Tregs and the TILTregSig in
the TME, we further conjectured that the TILTregSig had
potential for predicting the infiltration of Tregs in prostate
cancer. To test this hypothesis, prostate cancer patients in the
TCGA dataset were firstly split into the Treg-low group (n = 227)
and the Treg-high group (n = 227) based on the median
infiltration levels of Tregs. Principal component analysis (PCA)
demonstrated that the TILTregSig was able to distinguish Treg-
low cluster from Treg-high cluster (Figure 6G), which
preliminary hinted to us that the TILTregSig had the potential
of predicting the infiltration of Tregs in prostate cancer.
June 2022 | Volume 13 | Article 807840
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Additionally, we found that patients in the Treg-high group
had significantly higher risk scores compared to those in Treg-
low group (p < 0.001, Figure 6H). In particular, the expression of
SOCS2, EGR1, TPP1, and C11orf54 was markedly lower in
patients with high infiltration levels of Tregs compared to
patients with low infiltration levels of Tregs, while RRM2 was
Frontiers in Immunology | www.frontiersin.org 11
markedly higher (p < 0.0001, Figure 6I). These results
reconfirmed the predictive potential of the TILTregSig for
Tregs’ infiltrations in prostate cancer.

Therefore, to evaluate the predictive power of the TILTregSig
for Tregs’ infiltrations, ROC curves were employed in further
analyses. Additionally, FoxP3 has been proven as a classic
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FIGURE 5 | The TILTregSig shows stronger predictive ability for tumor immunity in prostate cancer. (A) The expression levels of immune-related signatures in low-
and high-risk groups stratified by the TILTregSig in prostate cancer from the TCGA dataset. (B) The strip chart of risk score, immune score, stromal score,
ESTIMATE score, and tumor purity of prostate cancer patients in the TCGA dataset. (C) Pie charts showing the chi-square test of risk score, immune score, stromal
score, ESTIMATE score, and tumor purity for low- and high-risk groups in prostate cancer samples from the TCGA dataset. Comparison of the predictive ability of
the TILTregSig, TMB, glycolytic activity, PSA levels, Gleason score, Clinical T, Clinical N, and Clinical M for immune score (D) and immune cytolytic activity (CYT)
(E) using ROC curve analysis. *, P<0.05. **, P<0.01. ***, P<0.001.
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FIGURE 6 | The TILTregSig can serve as a predictor for Tregs in prostate cancer. (A) GSEA of the TILTregSig using the gene set of “c7.all.v7.4.symbles.gmt
[immunologic signature]”. The infiltration of immune cells in high- and low-risk groups stratified by the risk score in prostate cancer samples from the TCGA dataset
using marker genes’ expression analysis (B), CIBERSORT algorithm (C), and ImmuneCell AI database (D). (E) The correlation of the TILTregSig with FoxP3 and
TGF-b1 expression. (F) The correlation of the five genes in the TILTregSig with tumor-infiltrating immune cells in prostate cancer samples from TCGA. (G) Principal
components analysis (PCA) of the risk scores between Treg-low and Treg-high samples in prostate cancer. The distribution of the risk scores (H) and the expression
of five genes (I) among samples grouped by the infiltration of Tregs in prostate cancer. (J) Comparison of predictive ability of the TILTregSig and FoxP3 for Treg
infiltration using ROC curve analysis. (K) The proliferation rates of Teff cells (Teff:Treg = 1:1, 2:1, 4:1, and 8:1) with normal Tregs or si-RRPM Tregs. *, P<0.05. **,
P<0.01. ***, P<0.001.
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indicator of Tregs (36). Therefore, we also involved FoxP3 in this
analysis to compare the predictive ability to the TILTregSig.
Surprisingly, we found that the TILTregSig represented high
potential as an indicator of Tregs (AUC = 0.897, Figure 6J), as
compared to FoxP3 being a predictor with moderate potential in
prostate cancer (AUC = 0.763, Figure 6J). Moreover, we further
constructed a combined model consisting of the TILTregSig and
FoxP3, and found that the combined model had weaker
predictive power compared with the TILTregSig (AUC =
0.767, Figure 6J). These results suggest that the TILTregSig is
a robust and accurate predictor for Tregs in prostate cancer, and
its predictive power is stronger than FoxP3.

RRM2 Downregulation Attenuates the
Suppressive Function of Tregs
In order to investigate the influence of RRM2 as a risk factor in
our TILTregSig on Treg function, Tregs were treated with small
interfering RNA (siRNA) to knock down RRM2 expression and
then si-RRPM Tregs were stimulated and cultured with CD4+
CD25- T cells (Teff) as described in Methods. CCK8 assay was
employed to detect the suppressive function of Tregs. The
proliferation rates of Teff cells (Teff:Treg = 1:1, 2:1, 4:1, and
8:1) with normal Tregs or si-RRPM Tregs were compared.
Subsequently, we showed that RRM2 knockdown led to an
enhancement of the proliferation rate of Teff cells, which
suggested that RRM2 might contribute to the suppressive
function of Tregs (Figure 6K).

The TILTregSig Has Predictive Potential as
an Indicator of Response to CIT
Accumulating evidence demonstrated that patients with a low
infiltration of Tregs presented a durable clinical response to CIT
(37). Our previous data demonstrated that the TILTregSig was
associated with Tregs, suggesting that the TILTregSig might be a
pivotal factor that mediated the clinical response to CIT. The
correlation between our TILTregSig and checkpoint genes’
expression indicated that the risk score was markedly
correlated with checkpoint genes’ expression, and most were
positively correlated (p < 0.05, Figure 7A). Subsequently, to
investigate whether the TILTregSig could predict patients’
response to CIT, we utilized five CIT response-associated
datasets (GSE19423, GSE111636, GSE67501, GSE53922, and
Miao et al. (25)). We found that the significant therapeutic
advantages and clinical response to CIT in patients with high-
risk score compared to those with low-risk score were confirmed
in bladder urothelial carcinoma (BLCA), kidney renal clear cell
carcinoma (KIRC), prostate carcinoma (PRCA), and renal cell
carcinoma (RCC). However, in bladder adenocarcinoma
(BLAD), pat ients with high-risk scores had lower
immunotherapy response rate compared to those with low-risk
scores (Figure 7B). Tregs and TME stroma activity, which
usually mediated the immune tolerance of tumors, was also
assessed (12, 38). We found that Tregs were significantly
activated in tumors with high-risk scores in the BLAD-
GSE19423 dataset, but were inhibited in BLCA-GSE111636
and PRCA-GSE53922 datasets (p < 0.05, Figure 7C).
Frontiers in Immunology | www.frontiersin.org 13
Additionally, TME stroma activity was significantly enhanced
in patients with high-risk scores such as the activation of EMT in
the BLAD-GSE19423 dataset, but was decreased in tumors with
high-risk scores in the BLCA-GSE111636 and PRCA-GSE53922
datasets (p < 0.05, Figure 7C). The above data imply that the
TILTregSig is correlated with CIT response and might have
potential for predicting CIT response. To assess the predictive
power of the TILTregSig for CIT response, ROC curves were
employed in this work. The results showed that the TILTregSig
achieved AUCs of 0.710, 0.677, 0.799, 0.614, and 0.695 for
BLAD-GSE19423, BLCA-GSE111636, KIRC-GSE67501, PRCA-
GSE53922, and RCC, respectively, in predicting the response to
CIT, which implied that the TILTregSig was a potential and
robust biomarker for response assessment of CIT with moderate
predictive potential (Figure 7D). In summary, our work strongly
indicated that the TILTregSig was significantly correlated with
immunotherapy response, and the established TILTregSig would
contribute to predicting the response to CIT.

The TILTregSig Is a Promising Marker of
Therapeutic Resistance in Pan-Cancers
Considering Treg cells have been indicated to usually promote
resistance to cancer therapy (39), we investigated whether our
TILTregSig was correlated with cancer therapeutic resistance. To
unveil the relationship between the TILTregSig and therapeutic
resistance, we utilized GSEA. As shown in Figure 8A, GSEA
predicted that the TILTregSig was significantly associated with
resistance to different therapies, including salirasib, endocrine
therapy, doxorubicin, and SB216763 in prostate cancer (p < 0.05,
Figure 8A). Next, a landscape plot was generated by GSCALite
to depict the relationships between the five genes’ expression in
the TILTregSig and drug responses in pan-cancers. The bubble
heat map showed that some genes exhibited significant
correlations with lower half-inhibitory concentration (IC50)
data. In detail, EGR1, TPP1, and SOCS2 conferred drug
resistance, while RRM2 and C11orf54 exhibited drug
sensitivity in pan-cancers (Figure 8B). These results imply that
the TILTregSig is a promising indicator for therapeutic resistance
in pan-cancers.
DISCUSSION

TILs serve as the cellular underpinnings of cancer immunotherapies,
and a better understanding of TILs in the TME is essential for
deciphering mechanisms of immunotherapies, defining predictive
biomarkers, and identifying novel therapeutic targets. As a key
component of the TILs, Tregs usually play a pivotal role in tumor
development and progression due to their immunosuppressive
functions in the TME. Therefore, better benefits of improving
survival of cancer patients can be realized if Tregs can be
quantitatively evaluated. However, the traditional method of TIL
quantification, including making visual measurements through a
microscope by pathologists using hematoxylin and eosin- or
immunohistochemistry-stained tumor sections, usually suffers
from bias and variability (40). Therefore, identification of a
June 2022 | Volume 13 | Article 807840
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Treg-specific signaturebasedongenomicprofilesmayopenupanew
path to the prediction for survival and immunotherapy response of
cancer patients.

In our study, we develop and validate a prognostic signature
(named TILTregSig) composed of five Treg-specific mRNAs
(SOCS2, EGR1, RRM2, TPP1, and C11orf54) for prostate
cancer, which is associated with RFS in prostate cancer.
Moreover, our data further show a significantly positive
correlation between the TILTregSig and stemness indices in
both transcriptomic (mRNA expression) and epigenetic (DNA
methylation) levels. These observations consistently indicate that
the TILTregSig is a risk factor for prognosis of prostate cancer.

Suppressors of cytokine signaling (SOCS) has been identified
as an inhibitor for prostate cancer progression (41, 42).
Downregulation of SOCS2 was an independent predictor of
shorter biochemical recurrence-free survival for prostate cancer
patients (43). Early growth response-1 (EGR1) is a transcription
Frontiers in Immunology | www.frontiersin.org 14
factor involved in cell proliferation and in the regulation of
apoptosis. Several previous studies showed that EGR1 exhibits
prominent tumor suppressor function in glioma (44), non-small-
cell lung cancer (45), colon cancer (46), papillary thyroid
carcinoma (47), and breast cancer (48). Saha et al. indicated
that low levels of EGR1 expression were positively correlated
with poor survival for RFS and distant metastasis-free survival
(DMFS) in breast cancer (49). Ribonucleotide reductase small
subunit M2 (RRM2), as a master driver of aggressive prostate
cancer (50), showed significant prognostic value of RRM2 in
prostate cancer (51). These studies are consistent with our
results. Liu et al. reported that the telomere shelterin protein
TPP1 can activate telomerase for telomere repeat synthesis (52).
C11orf54 was found to be downregulated in clear cell renal cell
carcinoma and might be a potential biomarker for the diagnosis
of clear cell renal cell carcinoma (53). However, there has been
no study that reported the potential function of TPP1 or
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FIGURE 7 | The TILTregSig is a potential predictor for immunotherapy response in prostate cancer. (A) The correlation of the risk scores with the expression levels
of checkpoint genes in prostate cancer samples from the TCGA dataset. R: Spearman’s correlation coefficient. (B) The response rate to immunotherapy in low- and
high-risk groups stratified by risk scores in each dataset. (C) The distribution of the Treg infiltration and EMT activity among samples in low- and high-risk groups in
each dataset. (D) ROC curves of the TILTregSig in predicting immunotherapy response in each dataset. *, P<0.05.
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C11orf54 in prostate cancer. Our study might fill this gap and
lays the foundation for future experimental exploration of the
potential roles of these genes in prostate cancer.

Cancer is a disease driven by genetic variation and mutation
(33), and prostate cancer has been recognized as having high
intratumoral genetic heterogeneity (54). We also identify the
landscape of genetic variations of the five genes in TILTregSig in
prostate cancer. The results demonstrate that the EGR1 exhibited
the highest mutation frequency followed by RRM2 and TPP1,
while both SOCS2 and C11or54 do not show any mutations in
prostate cancer samples. Moreover, the high expression of
SOCS2 and TPP1 is prone to have a high CNV load. A
previous study indicated that CNV and SNV status was
Frontiers in Immunology | www.frontiersin.org 15
reported to be significantly associated with overall cancer risk
and metastasis (54–56). These data suggest genetic alterations as
the molecular mechanism that shows that high-risk score is
related to poor prognosis in prostate cancer.

In addition, our data show that type I; IFN response and anti-
inflammatory cytokines are significantly enhanced in prostate
cancer patients with high-risk scores. A large body of evidence
indicated that type I; IFN response was emerging as a key driver
of immunosuppression and tumor progression (57). Anti-
inflammatory cytokines are proved to be usually involved in
cancer progression and related with worse prognosis (58). These
previous studies are consistent with our findings that prostate
cancer patients with high-risk scores have high levels of type I;
B
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FIGURE 8 | The TILTregSig is a promising marker of cancer therapeutic resistance. (A) The relationship between the TILTregSig and therapeutic resistance using
GSEA. (B) A landscape plot was generated to depict the relationships between the IC50 data of different molecules and the five genes’ expression profiles in cancers
using GSCALite.
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IFN response and anti-inflammatory cytokines, and are related
to poor prognosis. This observation has important implications
for comprehending the mechanism of the influence of the
TILTregSig on anti-tumor immunity.

Moreover, we also reveal that the TILTregSig significantly
correlates with tumor immunity. TMB (7) and glycolytic activity
(11) have been demonstrated to have promising potential to
predict tumor immunity. Subsequently, in comparison with
TMB and glycolytic activity, the TILTregSig displays higher
predictive power for predicting tumor immunity than TMB
and glycolytic activity, with moderate predictive potential. This
observation enhances the predictive accuracy of the evaluation of
tumor immunity based on existing markers in prostate cancer,
which have tremendous significance to improve the prognosis of
prostate cancer patients.

Furthermore, the TILTregSig shows higher potential as an
indicator of Tregs in prostate cancer with moderate potential,
while it is recognized as a hallmark of Tregs compared to FoxP3
(36). A high infiltration of Tregs is associated with poor survival in
various cancers (59). Tregs act on innate immune cells and effector
T cells to suppress the anticancer immunity that is mediated by
natural killer cells, cytotoxic CD8+ T cells, and pro-inflammatory
cytokines through secretion of inhibitory cytokines, such as IL-10,
TGF-b, and IL-35 (18, 60, 61). Moreover, IFN-Is can also enhance
the suppressive effects of Tregs, and the IFN-I production in the
tumor drives the suppressive Tregs’ phenotype (62). Our previous
results show that type I; IFN response and anti-inflammatory
cytokines are significantly enhanced in prostate cancer patients
with high-risk scores. Based on the above data, we infer that Tregs
may affect prostate cancer prognosis through exerting their
immunosuppressive functions by regulating type I; IFN response
and the secretion of anti-inflammatory cytokines.

CIT is a validated and critically important approach for
treating patients with cancer. A large body of evidence
indicated that Tregs were prevalent in nearly all cancers and,
as immunosuppressive regulators of immune responses, they
were strongly associated with the response of CIT (15, 17). Given
the correlation between the TILTregSig and Tregs, we involve
five CIT response-associated datasets [GSE19423, GSE111636,
GSE67501, GSE53922, and Miao et al. (25)], and find that the
TILTregSig is a promising biomarker for predicting CIT
response. Further investigation is therefore warranted to
establish the potential utility of the TILTregSig as an additional
measure to identify patients likely to respond to CIT. In addition,
these findings support the development of agents targeting
tumor-infiltrating Tregs for use in combination with existing
CIT. However, using an agent that targets Tregs considered to be
predictive of response to this class of agents requires further
clinical validation. As our signature has been derived
independently of any specific molecular agent targeting the
tumor-infiltrating Tregs, it may have widespread utility of
candidate drugs currently in development.

Given that Tregs have been indicated to usually promote
resistance to therapy (39), we reason that the TILTregSig can be
applicable to the prediction of cancer therapeutic resistance.
We firstly find that the TILTregSig is significantly associated
Frontiers in Immunology | www.frontiersin.org 16
with resistance to different therapies, including salirasib,
endocrine therapy, doxorubicin, and SB216763 in prostate
cancer. Further analysis reveal that EGR1, TPP1, and SOCS2
confer drug resistance, while RRM2 and C11orf54 exhibit drug
sensitivity in pan-cancers. A previous study demonstrated that
EGR1 is related to cancer therapy resistance, such as radiation
resistance (63) and drug resistance (64). SOCS2 was also proved
as a therapeutic resistance-related gene for cancers (65).
Altogether, these results indicate that the TILTregSig can also
serve as a promising marker for therapeutic resistance in cancers.
Of course, the association between the TILTregSig and
therapeutic resistance revealed in this study needs to be
validated in a clinical setting.

Our results presented one unexpected finding: patients with
BLCA, KIRC, PRCA, and RCC in high-risk groups were prone to
have a better response to CIT, while patients with high-risk scores
had a lower CIT response rate in BLAD. Tregs and TME stroma
activity, such as EMT activity, usually induce tumor immune
tolerance and relate to low CIT response rate (12, 38). Further
investigation shows that Tregs are significantly activated in tumors
with high-risk scores in BLAD, but are inhibited in BLCA and
PRCA. Additionally, EMT activity is significantly enhanced in
patients with high-risk scores in BLAD, but is decreased in
BLCA, KIRC, and PRCA. Given these data, we confer that the
distinction of CIT response rate in diverse cancers may be due to the
different activations of Tregs and EMT in diverse cancers.

Despite the significant results obtained in the current study,
there are inevitably several shortcomings of our study that
should be acknowledged. First, the signature described here
may be limited by the decision to only include genes within
publicly available datasets, which may introduce bias into the
results. Second, transcriptomics analysis can reflect only some
aspects of immune status rather than global alterations. Third,
the reliability of our results from the bioinformatics analysis is
still challenged by the lack of in vitro or in vivo experiments.
CONCLUSION

In conclusion, in this work, a machine learning-based
computational framework based on immune, mRNA, and
clinical profiles has been presented for identifying a Treg-
specific prognostic signature (TILTregSig) for patients with
prostate cancer. The TILTregSig displays an independently
predictive potential for the prognosis of prostate cancer
patients, even when adjusting for clinical covariates. Further
analyses indicate that the TILTregSig may influence tumor
immunity mainly by mediating tumor-infiltrating Tregs, and it
can serve as a potential indicator for tumor-infiltrating Tregs in
prostate cancer. Moreover, we also find that the TILTregSig is
capable of assessing CIT response in multiple cancers and shows
a promising potential for predicting cancer therapeutic
resistance. Our TILTregSig derived from PBMCs makes it
possible to achieve a straightforward, noninvasive, and
inexpensive detection assay for prostate cancer compared with
the current histopathological examination that requires invasive
June 2022 | Volume 13 | Article 807840
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tissue puncture, which lays the foundation for the future
development of a panel of different molecules in peripheral
blood comprising a biomarker of prostate cancer.
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