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Abstract
Purpose  Image registration is important in medical applications accomplished by improving healthcare technology in recent 
years. Various studies have been proposed in medical applications, including clinical track of events and updating the treat-
ment plan for radiotherapy and surgery. This study presents a fully automatic registration system for chest X-ray images to 
generate fusion results for difference analysis. Using the accurate alignment of the proposed system, the fusion result indicates 
the differences in the thoracic area during the treatment process.
Methods  The proposed method consists of a data normalization method, a hybrid L-SVM model to detect lungs, ribs and 
clavicles for object recognition, a landmark matching algorithm, two-stage transformation approaches and a fusion method 
for difference analysis to highlight the differences in the thoracic area. In evaluation, a preliminary test was performed to 
compare three transformation models, with a full evaluation process to compare the proposed method with two existing 
elastic registration methods.
Results  The results show that the proposed method produces significantly better results than two benchmark methods 
(P-value ≤ 0.001). The proposed system achieves the lowest mean registration error distance (MRED) (8.99 mm, 23.55 
pixel) and the lowest mean registration error ratio (MRER) w.r.t. the length of image diagonal (1.61%) compared to the 
two benchmark approaches with MRED (15.64 mm, 40.97 pixel) and (180.5 mm, 472.69 pixel) and MRER (2.81%) and 
(32.51%), respectively.
Conclusions  The experimental results show that the proposed method is capable of accurately aligning the chest X-ray images 
acquired at different times, assisting doctors to trace individual health status, evaluate treatment effectiveness and monitor 
patient recovery progress for thoracic diseases.

Keywords  Fully automatic image registration · Chest X-ray image comparison · Difference analysis

1  Introduction

With the progression of healthcare technology, radiological 
images are increasingly used in medical research, diagnosis, 
treatment planning and basic science [1]. A variety of stud-
ies have been proposed in recent years for the registration 

of radiological images in various medical applications, 
including image-guided surgical systems [2, 3] and radio-
therapy [4, 5]. Registration is the process to find the optimal 
transformation matrix from the coordinate of one data to 
another of the same scene taken at different times or differ-
ent modalities, so that all features emerging in both images 
are overlapped and aligned. Image registration is generally 
achieved through four basic steps, including image rescal-
ing, feature detection, feature matching, and transformation 
function construction [6].

An automatic registration system could be classified as 
a semi-automatic and fully automatic approach. Semi-auto-
matic systems require corresponding landmarks annotated 
by medical experts for both of the images. Several studies 
have been proposed for developing a semi-automatic regis-
tration system, which had been applied to several medical 
applications [7–9]. However, manually annotated landmarks 
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are time-consuming, subjective and error-prone due to 
fatigue or image blurriness [10, 11]. Moreover, registration 
of the chest X-ray images is a challenging task due to vari-
ations in data appearance, imaging artefacts and complex 
data deformation problems, making existing registration 
approaches unstable and performing poorly. Therefore, we 
present a fully automatic registration system in this study. 
The proposed method automatically detects features, extracts 
corresponding landmarks and produces an optimal trans-
formation function without manual intervention. Geomet-
ric transformation can be classified into rigid and non-rigid 
transformations. Rigid transformation is conducted by linear 
transformation with translation, rotation, scaling and shear-
ing parameters [12, 13]. Considering that the geometric dif-
ference may be neglected in the rigid transformation [14], 
non-rigid transformation aims to warp local geometric fea-
tures [15, 16],which allows the crooked structural deforma-
tion to fix the geometric difference in the deformation.

In this study, we implement rigid and non-rigid trans-
formation in the system to combine the advantages of both 
types of approaches. The purpose of this study is to develop 
and validate a fully automatic registration system to accu-
rately align the chest X-ray images acquired at different 
times during the treatment. Consequently, the fused result 
could be used for the difference analysis for an effective 
treatment.

2 � Methods

2.1 � Methods Overview

In brief, the proposed method is constructed with data pre-
processing to normalize input and training datasets, a hybrid 
L-SVM model to detect lungs, ribs and clavicles for object 
recognition, an Absolute Distance Matching Algorithm 
(ADMA) to identify and match corresponding landmarks 
of input images, two-stage transformation approaches, and 
difference analysis to highlight the differences in the thoracic 
area between the two images. The flow diagram of the pro-
posed system is shown in Fig. 1.

2.2 � Data Normalization

The data normalization process includes histogram matching 
[17, 18] and scaling standardization. Histogram matching in 
this study is an approach to modify the histogram distribu-
tion of input images corresponding to a pre-determined ref-
erence image for the luminance compensation and contrast 
enhancement. Figure 2 presents the illustration of histogram 
matching and the reference image is selected based on the 
image contrast quality (see Fig. 2a).

The first step of data normalization is to compute the 
histogram of input hi and reference images hr.

where w and h denote the width and height of image, yr[m, n] 
denotes the image intensity of the reference image. Then, 
the cumulative histogram of reference Hr and input images 
Hi are computed.

Based on the difference of cumulative histogram Hd of Hr 
and Hi in Eq. 4, system finds an output level R for each input 
level T, and matches Ht[T] to Hr[R] by lookup entry in Eq. 5.

Then, scaling standardization is conducted to resize the 
width of images to 512 pixels and the height of images to 
the same ratio with width.

2.3 � Hybrid L‑SVM Model

A hybrid L-SVM model is composed of six L-SVM models 
for detection of left and right lungs, ribs, clavicle and middle 
clavicle. We built the hybrid L-SVM model based on Felzen-
szwalb Histograms of Oriented Gradients (FHOG) features 
[19, 20] and Linear Support Vector Machines (L-SVM) 
model [21]. Figure 3 presents the illustration from training 
templates to the hybrid L-SVM model. To obtain 31-dimen-
sional FHOG features for shape description, nine contrast 
insensitive gradient orientations, four dimensions captur-
ing overall gradient magnitude, and 18 contrast sensitive 
features are computed from training templates.

To compute the gradient magnitude of training template, 
the gradients of horizontal and vertical approximations ( Gh 
and Gv ) are defined as follows.

(1)
h[v] =

1

w × h

h−1∑
m=0

w−1∑
n=0

�[v, yr[m, n]]

�[a, b] =

{
1, if a = b.

0, otherwise.

(2)Hr[j] =

j∑
i=0

hr[i]

(3)Hi[j] =

j∑
i=0

hi[i]

(4)|Hr[R] − Hi[T]| =min
z

|Hr[R] − Hi[z]|

(5)lookup[R] =T

(6)Gh =
[
−1 0 1

]
∗ I(x, y)
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Then, the gradient magnitude G(x, y) and the angle of orien-
tation �(x, y) are further defined in Eqs. 8 and 9.

In order to reduce the dimension of feature vector, the defi-
nition proposed by Felzenszwalb [19] is utilized in Eqs. 10 
and 11. When k > 8, 13-dimensional feature is equal to 
a0, a1, ⋅ ⋅ ⋅, a8 ∪ b0, b1, ⋅ ⋅ ⋅, b3.

where ak is computed by summing the four normalizations 
for nine orientations, and bk is computed by summing nine 
orientations for four normalizations from output feature.

Based on the FHOG descriptor extracted from the train-
ing database, each L-SVM model finds a hyperplane for 
classification in the optimal layer of the multiple scaling 
feature pyramid. To detect objects in the testing images, the 
L-SVM model scans across all scales and positions of input 
images and computes an overall score for each root location 
according to the best possible placement of the parts.

The location yielding a high-scoring result defines the suc-
cess detection of the target object.

2.4 � Spin Assisted Algorithm (SAA)

After the left and right lung detection with the hybrid 
L-SVM model, we developed an algorithm called Spin 
Assisted Algorithm (SAA). This was utilized to calibrate a 
crooked body to the correct position to increase the detec-
tion accuracy of the left and right ribs, clavicle and middle 
clavicle.

Using the line connected with the top coordinates of the 
left and right lung as a baseline Lb , SAA computes the angle 
between the center line of chest Lc and the normal geometry 
of the baseline Ln for rotation. Figure 4 presents the illustra-
tion of SAA. In SAA, Pc , Ph and Pv are separately defined 
in Eqs. 13, 14 and 15. Pc is the central point of Lb , Ph is the 

(7)Gv =
⎡
⎢⎢⎣

−1

0

1

⎤
⎥⎥⎦
∗ I(x, y)

(8)G(x, y) =
√

(Gh)
2 + (Gv)

2

(9)�(x, y) =atan(
Gh

Gv

)

(10)ak(i, j) =

{
1, if j = k.

0, otherwise.

(11)bk(i, j) =

{
1, if i = k.

0, otherwise.

(12)Score(p0) = max
P0,⋅⋅⋅,Pn

(P0, ⋅ ⋅ ⋅,Pn)

intersection of the Ln and the highest horizontal line of chest 
X-ray image, and Pv is the intersection of Ln and Lc.

The rotation angle � of the chest X-ray image is computed 
from the angle of Ln and Lc.

The central point of the input image Pi and rotate equation 
are defined in Eqs. 17, 18 and 19.

2.5 � Absolute Distance Matching Algorithm (ADMA)

To precisely match corresponding landmarks, we built an 
algorithm called Absolute Distance Matching Algorithm 
(ADMA). To match corresponding landmarks (�T

i
,�S

i
) , 

ADMA selects the central points of the detected clavicle 
(pT

cc
, pS

cc
) and top points of the left and right lung of tar-

get and source images (pT
ll
, pT

rl
, pS

ll
, pS

rl
) for the base points 

(pT
lb
, pT

rb
, pS

lb
, pS

rb
) definition. Then, ADMA calculates the 

vertical distance (AT
l
,AT

r
,AS

l
,AS

r
) as a matching value from 

the central point of the detected ribs (�T
lr
,�T

rr
,�S

lr
,�S

rr
) to 

base points and sets up thresholds (tl and tr) with an average 
height of detected ribs. ADMA selects matching landmarks 
when the subtraction of matching values is lower than the 
threshold. After landmarks matching, ADMA transforms the 
landmarks to their original position before data preprocess-
ing. Figure 5 illustrates ADMA.

Considering the transformation accuracy, ADMA selects 
at most seven corresponding landmarks of the target image 
It and source image Is , which are defined as point array �T

i
 

and �S
i
 . Based on different detection condition occurring in 

different parts of the chest X-ray image, we set up 12 flags 
(FT

ll
,FS

ll
,FT

rl
,FS

rl
,FT

lr
,FS

lr
,FT

rr
,FS

rr
,FT

c
,FS

c
,FT

mc
,FS

mc
) to reflect 

(13)xPc
=

xPl
+ xPr

2
and yPc

=
yPl

+ yPr

2

(14)xPh
= −1 ÷

xPl
− xPr

yPl
− yPr

× (yPh
− yPc

) + xPc
, yPh

= 0

(15)xPv
= 256, yPv

= (xPv
− xPh

) × −(
xPl

− xPr

yPl
− yPr

) + yPh

(16)� = atan(
xPv

− xPh

yPv
− yPh

)

(17)xPi
=

Iwidth
�

2
and yPi

=
I�
height

2

(18)x� = (x − xPi
) × cos(�) − (y − yPi

) × sin(�) + xPi

(19)y� = (x − xPi
) × sin(�) − (y − yPi

) × cos(�) + yPi
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the result whether the hybrid L-SVM model detects feature 
in the regions of the left lung (FT

ll
) in It , left lung (FS

ll
) in Is , 

right lung (FT
rl
) in It , right lung (FS

rl
) in Is , left ribs (FT

lr
) in It 

, left ribs (FS
lr
) in Is , right ribs (FT

rr
) in It , right ribs (FS

rr
) in Is 

, clavicle (FT
c
) in It , clavicle (FS

c
) in Is , middle clavicle (FT

mc
) 

in It and middle clavicle (FS
mc
) in Is .

After SAA, the top points ofthe left and right lungs (pT
ll
 for 

left lung of target image, pT
rl
 for right lung for target image, 

pS
ll
 for left lung of source image, pS

rl
 for right lung of source 

image) are located and utilized for base points definition. 
Four basepoints of left and right, matching the source and 
target images (pT

lb
 for left matching of target image, pS

lb
 for 

left matching of target image, pT
rb

 for right matching of tar-
get image and pS

rb
 for right matching of source image) are 

defined in Eqs.22, 23, 25 and 26. The basepoints are affected 
by the detection condition of the lungs, ribs and clavicle, and 
the central point of the clavicle (pT

cc
 for target image, pS

cc
 for 

source image) is defined by the central point of the clavicle 
(pT

cl
 for target image, pS

cl
 for source image) and middle clavi-

cle (pT
mc

 for target image, pS
mc

 for source image) detected by 
the hybrid L-SVM model in Eqs. 21 and 24.

In It :

In Is :

(20)12flags =

{
1, detected object of area> 0.

0, otherwise.

(21)PT
cc
=

⎧⎪⎨⎪⎩

PT
mc
, FT

mc
> 0.

PT
cl
, FT

cl
> 0.

0, otherwise.

(22)PT
lb
=

⎧⎪⎨⎪⎩

PT
ll
, FT

ll
> 0.

PT
cc
, FT

c
> 0orFT

mc
> 0.

PT
rl
, FT

rl
> 0

0, otherwise.

(23)PT
rb
=

⎧
⎪⎨⎪⎩

PT
rl
, FT

rl
> 0.

PT
cc
, FT

cc
> 0orFT

mc
> 0.

PT
ll
, FT

ll
> 0

0, otherwise.

(24)PS
cc
=

⎧⎪⎨⎪⎩

PS
mc
, FS

mc
> 0.

PS
cl
, FS

cl
> 0.

0, otherwise.

(25)PT
lb
=

⎧
⎪⎨⎪⎩

PS
ll
, FS

ll
> 0.

PS
cc
, FS

c
> 0orFS

mc
> 0.

PS
rl
, FS

rl
> 0

0, otherwise.

To match the corresponding landmarks for ribs, four point 
arrays (�T

lr
,�S

lr
,�T

rr
,�S

rr
) are separately defined as the cen-

tral points of left detected ribs of the target image (�T
lr
) , left 

detected ribs of source image (�S
lr
) , right detected ribs of 

target image (�T
rr
) and of right detected ribs of source image 

(�S
rr
) . Based on the vertical distance from the central point of 

every detected rib to the basepoint, four arrays (AT
l
AS
l
,AT

r
,AS

r
) 

are generated. AT
l
AS
l
,AT

r
 and AS

r
 are defined as the vertical 

distance from �T
lr

 to pT
lb

 , �S
lr

 to pS
lb

 , �T
rr

 to pT
rb

 , �S
rr

 to pS
rb

 . 
In addition, four thresholds (tT

l
, tS
l
, tT
r
, tS
r
) are generated as 

matching thresholds. tT
l
, tS
l
, tT
r
, and tS

r
 are separately defined 

as the average height of the detected left ribs in the target 
image, left ribs in the source image, right ribs in the target 
image, and right ribs in the source image. The correspond-
ing landmark matching of left and right ribs are conducted 
to compare whether the subtraction of AS

l
 and AT

l
 is lower 

than the left threshold tl Eq. 27 and whether the subtraction 
of AS

r
 and AT

r
 is lower than the right threshold tr Eq. 28. �T

i
 

and �S
i
 are further defined in Eqs. 29 and 30.

where � and � are empirically determined; � = 0.8, � = 0.8.
In It :

where � = abs(AS
lj
− AT

lk
) and � = abs(AS

rm
− AT

rn
).

In Is :

where � = abs(AS
lj
− AT

lk
) and � = abs(AS

rm
− AT

rn
).

(26)PS
rb
=

⎧
⎪⎨⎪⎩

PS
rl
, FS

rl
> 0.

PS
cc
, FS

cc
> 0orFS

mc
> 0.

PS
ll
, FS

ll
> 0

0, otherwise.

(27)tl = (tT
l
+ tS

l
) ÷ 2 × �,

(28)tr = (tT
r
+ tS

r
) ÷ 2 × �,

(29)
PT
i
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

PT
ll
, FT

ll
> 0andFS

ll
> 0.

PT
cc
, (FT

c
> 0orFT

mc
> 0)and

(FS
c
> 0orFS

mc
> 0).

PT
rl
, FT

rl
> 0andFS

rl
> 0.

�
T
lrk
, i < 5and𝜑 < tl.

�
T
rrn
, i < 7and𝜏 < tr.

�
T
i
= [PT

0
,PT

1
, ⋅ ⋅ ⋅,PT

i
]

(30)
PS
i
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

PS
ll
, FT

ll
> 0andFS

ll
> 0.

PS
cc
, (FT

c
> 0orFT

mc
> 0)and

(FS
c
> 0orFS

mc
> 0).

PS
rl
, FT

rl
> 0andFS

rl
> 0.

�
S
lrj
, i < 5and𝜏 < tl.

�
S
rrm

, i < 7and𝜑 < tr.

�
T
i
= [PT

0
,PT

1
, ⋅ ⋅ ⋅,PT

i
]
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After ADMA localizes transformation landmarks, we 
compute corresponding location of transformation land-
marks in original chest X-ray images. The revert process 
follows the transformation, aiming at original images to 
decrease the image distortion in the corresponding land-
marks extraction. To transform landmark sets matched by 
ADMA correspond to original images before data pre-
processing, the revert angle � is defined as − � Eq. 16. xP 
and yP are defined as the coordinates of landmark sets after 
revert-rotation. x′

P
 and y′

P
 are defined as the coordinates of 

landmark sets transformed to the original scaling of input 
images.

2.6 � Singular Value Decomposition (SVD)

After ADMA, we adopted a two-stage registration, including 
global and elastic registration approaches for transforma-
tion. In the previous research, global registration is regarded 
as an Absolute Orientation Problem (AOP) [22]. It finds 
the optimal transformation function consisting of rotation, 
translation, and scaling for the source image. Based on the 
corresponding landmark sets extracted from input images, 
global registration calculates the optimal rigid transforma-
tion matrix for the source image to obtain the minimum error 
registration. The global registration is defined by finding the 
optimal transformation (rotation R, translation T and scaling 
S) from a corresponding landmark set Ti of the target image 
to the corresponding landmark set Si of the source image, 
where i�[1, n] and n are defined as the number of correspond-
ing landmarks matched by ADMA. The corresponding land-
marks of Si after global registration is defined.

where Ni is defined as a noise vector. To find the optimal 
rigid transformation matrix, the minimum error distance ℶ 
is denoted in Eq. 33.

The approach of global registration of the proposed method 
is called Singular Value Decomposition (SVD), proposed 
by Umeyama [23]. The transformation matrix of SVD ( Ms ) 
is defined.

(31)

x
�

P
=
(
Iwidth − 1

)
−

(
Iwidth − 1

I
�

width
− 1

× ((I
�

width
− 1) − xPi

)

)

y
�

P
= (Iheight − 1) −

(
Iheight − 1

I
�

height
− 1

× ((I
�

height
− 1) − yPi

)

)

(32)Si = (SRTi + T) + Ni

(33)ℶ =
1

n

n∑
i=1

(Si − (SRTi + T))2

where T �
i
= Ti − Ti and (S�

i
)T = (Si − Si)

T . The SVD matrix 
( Ms ) is composed of right-singular orthogonal matrix Rs , 
left-singular orthogonal matrix Ls , and non-zero diagonal 
singular matrix ∝.

Ls and Rs are defined in 36 by multiplying with MT
s

After three components of SVD matrix Ms are determined, 
the optimal transformation (rotation R, translation T and 
scaling S) are computed in Eqs. 37, 38 and 39.

where � is defined as identical matrix I.

The source image after alignment I′
s
 is defined.

2.7 � Elastic Registration

In order to ensure the correct alignment result, we further 
implement elastic registration called Elastix [24, 25] after 
global registration. The affine and B-spline elastic registra-
tion methods were conducted sequentially, and the param-
eters of individual methods were optimized separately. Fig-
ure 6 presents the process of elastic transformation in the 
proposed system.

The intensity-based registration is formulated as an opti-
mization problem, with the cost function ∁ minimized by 
the geometric transformation T for image registration. ∁ is 
measured by the similarity between the target image It and 
source image Is after SVD.

(34)Ms =

n∑
i=1

T
�

i
(S

�

i
)

(35)Ms = Ls ∝ RT
s

(36)
MsM

T
s
Ls = Ls ∝

2

MT
s
MsRs = Rs ∝

2

(37)
R = Ms𝜔L

T
s

𝜔 =

{
I, ifdet(R) ≥ 0.

det(1, 1,−1), ifdet(R) < 0.

(38)T = Si − (R × Ti)

(39)S =
∝∑n

i=1
det(T �

i
)

(40)I�
s
= SR × Is + T

(41)T̂𝜇 = argmin
T𝜇

∁(𝜇;It, Is)
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where � indicates the transformation has been parameter-
ized. The vector � contains the values of the transformation 
parameters.

In the elastic registration, a Gaussian pyramid is con-
ducted to the target and source image after SVD to create 
image pyramids by down sampling and smoothing. The 
Gaussian function G(�r) is defined to reduce the data and 
transformation complexity of registration.

The input target and source images are separately defined as 
It(x) ∶ ∀t ⊂ Ŝ → S and Is(x) ∶ ∀s ⊂ Ŝ → S , where x𝜖Ŝ rep-
resents the coordinate in 2-D. During the transformation, 
multiresolution strategies are applied by hierarchical strate-
gies and resizing the image continues. The convolution of It 
and Is with a Gaussian kernel G(�r) are defined.

Then, different multiresolution strategies are further defined 
by computing cost function ∁ in each resolution level �.

where N denotes the number of resolution levels, ��[1,N] 
denotes each resolution level of transformation. In each 
resolution, the Gaussian smoothing with down sampling 
is applied. Smoothing scales G(�r) of Gaussian kernel are 
chosen as follows, when r = 0 , �0 = [40, 40] ; when r = 1 , 
�1 = [20, 20] ; when r = 2 , �1 = [10, 10] ; when r = 3 , 
�3 = [5, 5].

To produce an optimal transformation function, the simi-
larity measure method in this study is calculated by normal-
ized mutual information (MI) [26].

where Lt and Ls are sets of regularly spaced intensity bin 
centers, p is the discrete joint probability, and pt and ps are 
the marginal discrete probabilities of the target and source 
image, obtained by summing p over t and s, respectively. 
The joint probabilities are estimated with B-spline Parzen 
windows.

(42)G(𝜎r) =
1√

2𝜋𝜎x
r
𝜎
y
r𝜎

z
r

ê
−
(

x2

2(𝜎xr )
2
+

y2

2(𝜎
y
r )
2
+ z2

2(𝜎zr )
2

)

(43)It(x, r) =G(�r) × It(x)

(44)Is(x, r) =G(�r) × Is(x)

(45)∁� =

N∑
r=1

∁(It(x, r), T(Is(x, r)))

(46)MI(�;It, Is) =
∑
x�Ls

∑
y�Lt

p(t, s;�)log2
p(t, s;�)

pt(t)ps(s;�)

(47)

p(It, Is;�) =
1

|�t|
∑
xi��t

�t

( 1

�f
−

It(Xi)

�f

)
× �s

( 1

�s
−

Is(Xi)

�s

)

where �t and �s represent the B-spline Parzen windows of 
the target and source images. The scaling constants �f  and 
�s must equal the intensity bin widths defined by Lt and Ls . 
These follow directly from the gray-value range of It and 
Is and the user-specified number of histogram bins |Lt| and 
|Ls| . Based on the definition of MI in Eq. 46, the normalized 
mutual information (NMI) is defined.

where H denotes entropy. With the joint probability defined 
in Eq. 46, NMI is further defined.

To solve the optimization problem in Eq. 41, the optimal 
transformation parameter vector 𝜇̂ and an iterative optimiza-
tion strategy is employed.

where dk denotes the search index at iteration k, and ak 
denotes a scalar gain factor controlling the step size along 
the search direction. In this study, we apply Adaptive Sto-
chastic Gradient Descent (ASGD) [27] in the elastic trans-
formation. Based on the range of sampler region size (200 
pixels × 200 pixels), the optimizer randomly selects the 
region for deformation in each iteration. In k rounds of itera-
tions, ASGD gradually optimizes the alignment, where the 
maximum of k is defined as Ni for transformation ( Ni=500 
for affine; Ni=50 for b-spline).

where �(tk−1)denotes the function of the step size at iteration 
k , ĝk is an approximation of the true derivative g = �∁∕�� 
at �k , �k is approximation error and f is a sigmoid function.

For transformation approaches, Affine allows the defor-
mation of rotation, scaling, translation, and shearing.

where c denotes the central point of rotation, t denotes trans-
lation vector, and R, G, and S respectively denote the rota-
tion, shearing and scaling matrix.

(48)NMI =
H(It) + H(Is)

H(It, Is)

(49)

NMI(�;It, Is) =

∑
t�Lt

pt(t)log2pt(t)∑
t�Ls

∑
t�Lt

p(t, s;�)log2p(t, s;�)

+

∑
s�Ls

ps(s;�)log2ps(s;�)∑
t�Ls

∑
t�Lt

p(t, s;�)log2p(t, s;�)

(50)�k+1 = �k + akdk, k = 0, 1, 2, ⋅ ⋅ ⋅,

(51)𝜇k = ̂𝜇k−1 + 𝛾(tk − 1) ̂gk − 1, k = 1, 2, 3, ⋅ ⋅ ⋅,Ni

(52)tk =max(0, tk−1 + f (− ̂gT
k−1

̂gk−2)), k = 2, 3, 4, ⋅ ⋅ ⋅,Ni

(53)k̂ =gk + 𝜖k, k = 0, 1, 2, ⋅ ⋅ ⋅,Ni

(54)T�(x) = RGS(x − c) + t + c
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Compared with affine, b-spline allows the degree of non-
rigid deformation through the mesh of control points, which 
obtains better alignment of the structural change in the trans-
formation to fix the geometric difference of original input 
datasets.

where xk denotes the control points on a regular grid overlaid 
on the target image, �3(x) denotes the cubic multidimen-
sional B-spline polynomial [28], pk denotes the B-spline 
coefficient vectors, � denotes the B-spline control point 
spacing and Nx denotes the set of all control points within 
the compact support of the B-spline at x. In B-spline, the 
control point grid is defined by the amount of space between 
the control points � = (�1, ⋅ ⋅ ⋅, �d) (d denotes the dimension 
of image) and the transformation of a point can be computed 
from surrounding control points. This is beneficial for mod-
elling local transformations and fast computation.

2.8 � Difference Analysis

For difference analysis, the fusion result is generated by 
overlapping the registered source image to the target image. 
In order to highlight the difference between two images, the 
system subtracts and reallocates the pixel intensity to an 
eight bit range (0-255). The overlapped images Id is com-
puted from the subtraction of the target image and the reg-
istered image. I′

d
 denotes the fusion result in the intensity 

range of eight bits.

where Imax = max(Id) and Imin = min(Id) . The area in the 
fusion result with high intensity belongs to the target image, 
and the area with low intensity belongs to the region of the 
registered source image.

3 � Experimental Results

In this study, 142 images from 106 patients were collected 
from three databases, including the Open-i database (the 
national library of medicine, USA) [29] for building AI 
training models, the Chest X-ray8 database (NIH Clinical 
Center, USA) [30] and a clinical data set collected from the 
Wan Fang Hospital, Taiwan (IRB-LN201703078) for vali-
dating the proposed method. A challenging clinical dataset 
with the Scoliosis (S-shaped spine) condition as shown in 
Fig. 9 from the Wan Fang Hospital, Taiwan is selected to test 
the system’s robustness.

(55)Tb(x) = x +
∑
xk�Nx

pk�
3
(x − xk

�

)

(56)I�
d
= 255 ×

Id − Imin

Imax − Imin

To build training models for lungs, ribs and clavicles in 
the proposed system, 70 frontal-view chest X-ray images of 
70 patients, originally from the Indiana University Chest 
X-ray Collection [31], are selected from the Open-i data-
base. Open-i is an open-access and diverse database, totally 
containing 7,470 chest X-ray images of 3,851 patients. The 
selection of the training database is to collect images with 
varying bone structure appearances, diverse image contrast 
based on histogram distribution and intensity strength. On 
the other hand, to validate the performance and implica-
tions for patient care of the proposed system, testing images 
are randomly selected from the datasets collected from the 
Wan Fang Hospital and an open database, i.e. Chest X-ray8 
datasets, which comprises 108,948 frontal-view chest X-ray 
images of 32,717 patients (from 1992-2015). All images in 
the Chest X-ray8 are collected from the clinical PACS data-
base at the National Institutes of Health Clinical Center and 
rescaled to 1024 × 1024 pixels from the DICOM files. All 
images from the Wan Fang Hospital are rescaled to 1024 
× 840-1248 pixels from the DICOM files. For quantitative 
evaluation, the average registration error distance is com-
puted among 15 pairs of manually annotated evaluation 
landmarks. A preliminary test is conducted using 10 pairs 
of X-ray images (10 patients, 5 male, 5 female; mean age 64 
years; range 48-80 years) to compare three elastic registra-
tion approaches in the proposed method. Then, a full evalu-
ation is conducted using 36 pairs of chest X-ray images (36 
patients, 16 male, 20 female; mean age 49.88 years; range 
24-80 years) to compare the proposed method with two 
current benchmark methods, including BunwarpJ [32] and 
Fully Automatic Elastic Registration (FAER) [33]. Table 1 
shows the data distribution with respect to the data source, 
the number of patients and images for training and testing. 
For training, 70 patients’ images from the Open-i database 
(the National Library of Medicine, USA) [29] are collected. 
For testing, 36 chest X-ray images of 18 patients from the 
Chest X-ray8 database (NIH Clinical Center, USA) [30] and 
36 images of 18 patients from the Wan Fang Hospital, Tai-
wan (IRB-LN201703078) are utilized. Separate training and 
testing sets are used for evaluation to guarantee the model 
is never trained and validated on the same data. The dataset 
from the Wan Fang Hospital, along with manual annotations, 
are made available (see the Declaration section at the end 
of the paper).

3.1 � Preliminary Test

In the preliminary test, the quantitative analysis (Table 2) 
and pair-sample t test (Table 3) are conducted to find the 
optimal transformation model of the proposed method by 
comparing three elastic transformation methods. Proposed 
methods 1, 2 and 3 represent the proposed method with 
three elastic transformation methods, i.e., affine (Proposed 
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1), b-spline (Proposed 2) and affine+b-spline (Proposed 3), 
respectively. Table 2 shows that Proposed 3 achieves the 
lowest mean registration error distance (MRED) (8.03 mm, 
23.38 pixel) compared to Proposed 1 (8.86 mm, 25.79 pixel) 
and Proposed 2 (10.89 mm, 31.55 pixel), and the lowest 
mean registration error ratio (MRER) w.r.t. the length of 
image diagonal (1.46%) compared to Proposed 1 (1.61%) 
and Proposed 2 (1.98%). Table 2 also shows the computa-
tional efficiency of the three proposed methods. For auto-
matic landmark detection and registration of a pair of chest 
x-ray images, Proposed 1 takes 23.20 seconds; Proposed 2 
takes 8.67 seconds; Proposed 3 takes 23.69 seconds. For 
registration accuracy, Table 3 shows that Proposed 3 obtains 
significantly better result than Proposed 1 (P = 0.013) and 
Proposed 2 (P = 0.029). Thus, Proposed 3 is adopted for 
further full evaluation.

3.2 � Full Evaluation

In full evaluation, the quantitative analysis (Table 4) and 
paired-sample t test (Table 5) are conducted to compare the 
proposed method with two benchmark methods, includ-
ing BunwarpJ and FAER. Table 4 shows that the proposed 
method achieves the lowest MRED (8.99 mm, 23.54 pixel) 
compared to BunwarpJ (15.64 mm, 40.97 pixel) and FAER 
(180.5 mm, 472.69 pixel) and the lowest MRER (1.61%) 
compared to BunwarpJ (2.81%) and FAER (32.51%), and 
the computational time of the proposed method (23.69s) is 
slightly slower than BunwarpJ (12.86s) and FAER (8.25s) 
but still in seconds. Table 5 shows that the proposed method 
achieves significantly better results than BunwarpJ (P = 
0.001) and FAER (P < 0.001).

Elastic transformation, including B-spline transformation, 
has been demonstrated to be effective for soft tissue align-
ment; however, it may be too flexible in introducing unrealis-
tic deformation at times. The experimental results show that 
the proposed method, which combines rigid transformation 
and elastic transformation, is demonstrated to be better than 
the benchmark elastic registration methods. As in the pro-
posed framework, the hybrid L-SVM and ADAM methods 
render anatomical landmarks and force constraints for global 
bone structure (hard tissue) alignment, and afterwards elastic 
transformation is applied for local registration to refine soft 

tissue alignment locally. Figure 7 shows the fusion results 
of four pairs of chest x-ray images (36 in total) before and 
after registration generated by Proposed 3 and two existing 
benchmark approaches.

3.3 � Error Distance of 15 Evaluation Landmarks

The mean registration errors of individual evaluation land-
marks show that the proposed method achieves the lowest 
error distance in every evaluation landmark (Fig. 8). The 
landmark L11 and L7, located near the bottom corner of the 
lungs, tend to have high registration errors among all meth-
ods, as the lung size is retractable depending on the breath-
ing status of the patient during chest radiography. To avoid 
the influence of data outliers, we removed 14 failed results 
of FAER, which are given as image width (1024 pixels) in 
the full evaluation.

3.4 � Special Case of Scoliosis

In addition, we evaluated the special case of a scolio-
sis patient. These images contain high noise and varying 
structures, making rib and clavicle regions hard to identify. 
Figure 9 presents this study, which can align the cases of 
scoliosis, even when the input images are out of the training 
database.

3.5 � System Limitation

Even though the proposed method achieves the most accu-
rate registration result in the evaluation, it rarely fails in few 
cases, and the proposed method is slower compared to the 
benchmark method shown in Table 4. Figure 10 presents a 
failed registration condition due to the interference caused 
from the medical instrument worn by the patient occluding 
the target bone features of the clavicle, right lung, and ribs.

4 � Discussion and Conclusion

Chest X-rays assist healthcare providers in diagnosing issues 
that cause symptoms in our heart or lungs, such as difficulty 
breathing, fever with other signs of infection, pneumonia, 

Table 1   Data Distribution of Training and Testing sets

Database Location Images Patients Total Total
Patients Images

Training 1. Open-i National Library of Medicine, USA [29] 70 70 70 70
Testing 2. Chest X-ray8 NIH Clinical Center, USA [30] 36 18 36 72

3. Hospital Taipei Municipal Wan Fang Hospital, Taiwan 36 18
Total 106 142
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congestive heart failure, emphysema or chronic obstruc-
tive pulmonary disease (COPD), chest pain, chronic cough, 
lung cancer, and ribcage fracture. During examinations, 
doctors need to trace the patient’s health status for medical 
diagnosis and evaluation of treatment progress. Tracing a 
patient’s health status is a difficult task, and even experi-
enced doctors can make mistakes, especially when a large 
number of patients need to be examined. This study pre-
sents a fully automatic registration system for chest X-ray 
images to generate fusion results for difference analysis. 
Fusion results highlight the difference in the thoracic area, 
enabling monitoring of patient recovery progress and aid-
ing medical diagnosis and evaluation of treatment progress 
for thoracic diseases. The proposed system includes data 
normalization with histogram matching, a hybrid L-SVM 
model for detection of lungs, ribs and clavicle, an ADMA 
method to extract corresponding landmarks, a feature-based 
transformation method (SVD) for coarse global registration 
and elastic transformation models for local registration. In 
evaluation, compared with two existing medical image reg-
istration methods, the proposed method achieves a signifi-
cantly lower mean registration error distance (P ≤ 0.001).

For future work, we would like to investigate the appli-
cations of deep learning models in the field of chest X-ray 
image registration that will decrease the computational time 
while increasing the accuracy of image registration, and to 
investigate the applications of the proposed image registra-
tion and fusion technology in quantifying and segmenting 
COVID-19 lung infection and monitoring the treatment 

progress of common thoracic diseases, including pneu-
monia, pneumothorax, atelectasis, cardiomegaly, etc., and 
further develop quantitative measurements and indicators 
for clinical applications. In addition, the proposed method 
may occasionally fail when chest X-ray images are seriously 
corrupted or image features are heavily occluded by medi-
cal instruments. For future technology development, more 
robust feature detection methods [34] could be integrated 
into the system to deal with partial lung occlusion.
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Table 2   The quantitative 
analysis of error distance 
of three types of elastic 
transformation approaches in 
the proposed method

MRED MRED MRER N Std. Dev. Mean Std. Dev. Time
(pixel) (mm) (%) (pixel) (pixel) (s)

Proposed 1 25.79 8.86 1.61 10 17.32 2.33 23.20
Proposed 2 31.55 10.89 1.98 10 19.55 2.65 8.67
Proposed 3 23.38 8.03 1.46 10 17.62 2.38 23.69

Table 3   The paired-sample t 
test result comparing the error 
distance of proposed 3 with 
proposed 1 and proposed 2

Paired Differences 95% Mean C. I. df P value

Mean Std. Dev. Std. Err. Mean Lower Upper

Prop.3 V.S. Prop.1 −2.41 2.46 0.78 −4.18 −0.65 0.013 23.20
Prop.3 V.S. Prop.2 −8.16 9.95 3.14 −15.29 −1.04 9 0.029

Table 4   The quantitative 
analysis of error distance 
comparing the best method in 
the preliminary test with two 
benchmark methods

MRED MRED MRER N Std. Dev. Mean Std. Dev. Time
(pixel) (mm) (%) (pixel) (pixel) (s)

Proposed 3 23.54 8.99 1.61 36 22.09 3.68 23.69
BunwarpJ [31] 40.97 15.64 2.81 36 29.97 4.99 12.86
FAER [32] 472.69 180.5 32.51 36 500.26 83.37 8.25

https://github.com/cwwang1979/Chest-X-ray
https://github.com/cwwang1979/Chest-X-ray
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Fig. 2   Illustration of histogram matching. a The reference image. b Histogram of reference image. c One of the input images for histogram 
matching. d Histogram of input image. e Input image after histogram matching. f Histogram of input image after histogram matching
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Fig. 3   The illustration from training templates to the hybrid L-SVM 
model. a Training templates manually labeled for lungs, ribs and 
clavicle. b The gradient magnitude of training template is computed 

with horizontal and vertical approximations. c FHOG descriptor for 
each L-SVM model is formed by massive 31-dimensional features for 
classification

Fig. 4   The illustration to present the definition of rotation angle � of SAA. a The image after lung detection. b The modified image after SAA
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Fig. 5   The illustration of ADMA process
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Fig. 6   The illustration to show the process of elastic transformation
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Fig. 7   The difference analysis of four types of testing datasets gen-
erated by three methods in the full evaluation. Yellow and blue rec-
tangles separately indicate the location of 15 evaluation landmarks 
on target and registered source images. The average error distance 
in millimeter is labeled at the lower right of every difference analy-

sis. Row a indicates the difference analysis before registration. Row 
b indicates the difference analysis for the proposed method. Row c 
indicates the difference analysis for BunwarpJ. Row d indicates the 
difference analysis for FAER
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Fig. 8   a The mean registration errors of 15 evaluation landmarks for Proposed 3 and two benchmark approaches, showing that Proposed 3 con-
sistently obtains the lowest MRED overall. b The layout of 15 evaluation landmarks in a chest X-ray image
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Fig. 9   a The input datasets of 
patient suffered from scoliosis. 
b The registered result and the 
difference analysis generated 
from the proposed method
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Fig. 10   a The input datasets 
with medical instruments worn 
by the patient. b The failed 
alignment and the difference 
analysis generated by the 
proposed method due to the 
occlusion of local feature
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