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Abstract
The receptor tyrosine kinase AXL is a member of the Tyro3-Axl-Mer receptor tyrosine

kinase subfamily. AXL affects several cellular functions, including growth and migration.

AXL aberration is reportedly a marker for poor prognosis and treatment resistance in vari-

ous cancers. In this study, we analyzed clinical, pathological, and molecular features of AXL

expression in lung adenocarcinomas (LADs). We examined 161 LAD specimens from

patients who underwent pulmonary resections. When AXL protein expression was quanti-

fied (0, 1+, 2+, 3+) according to immunohistochemical staining intensity, results were 0:

35%; 1+: 20%; 2+: 37%; and 3+: 7% for the 161 samples. AXL expression status did not

correlate with clinical features, including smoking status and pathological stage. However,

patients whose specimens showed strong AXL expression (3+) had markedly poorer prog-

noses than other groups (P = 0.0033). Strong AXL expression was also significantly associ-

ated with downregulation of E-cadherin (P = 0.025) and CD44 (P = 0.0010). In addition, 9 of

12 specimens with strong AXL expression had driver gene mutations (6 with EGFR, 2 with

KRAS, 1 with ALK). In conclusion, we found that strong AXL expression in surgically

resected LADs was a predictor of poor prognosis. LADs with strong AXL expression were

characterized by mesenchymal status, higher expression of stem-cell-like markers, and fre-

quent driver gene mutations.

Introduction
Lung cancer is the leading cause of cancer-related mortality in developed countries [1], and
lung adenocarcinoma (LAD) is the most common histologic subtype in lung cancer [2]. In
some LADs, activation of receptor tyrosine kinases has a key function in carcinogenesis and
maintenance of cancer phenotypes. For example, some LADs are driven by somatic mutations
in the epidermal growth factor receptor (EGFR) gene; these tumors are highly responsive to
EGFR tyrosine kinase inhibitors (TKIs). On the other hand, amplification of theMET gene or
ERBB2 gene reportedly lead to acquired resistance to EGFR-TKIs in LADs with EGFR
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mutation [3, 4]. Further understanding of LADs therefore requires analysis of the roles of other
receptor tyrosine kinases in addition to those with driver mutations.

AXL receptor tyrosine kinase, which is also known as ARK, JTK11, or Tyro7, is a member
of the Tyro3-Axl-Mer receptor tyrosine kinase subfamily. AXL transduces signals from the
extracellular matrix into the cytoplasm by binding to the vitamin K-dependent protein growth
arrest-specific-6 (Gas6) [5]. AXL is involved in several cellular functions including growth,
migration, aggregation and anti-inflammation, which are also associated with cancers. Recent
studies AXL to be a marker for poor prognosis in lung cancers [6], breast cancers [7], pancre-
atic cancer [8], renal cell carcinoma [9] and ovarian cancer [10], and for treatment resistance
in lung cancers [11–13], gastrointestinal stromal tumor [14], esophageal cancer [15], and ovar-
ian cancer [16]. Although AXL’s association with poor prognosis in LAD has been reported
[6], the clinical, pathological, and molecular characteristics of AXL+ LAD remains unclear.

Here, we explored clinical, pathological and molecular characteristics of AXL+ LAD.

Materials and Methods

Patient cohort
Between January 2007 through April 2009, a total of 169 patients underwent pulmonary resec-
tion for primary LAD at the Division of Thoracic Surgery, Department of Surgery, Kinki Uni-
versity Faculty of Medicine. Tissue samples were obtained from patients who had tumors of 1
cm or larger in diameter (n = 161). All of these tumors were histologically confirmed as LADs,
and their lymph node metastatic status, pathological staging, and degree of differentiation were
assessed. Staging by the latest tumor-node-metastasis classification (UICC ver.7) was used
[17]. Since many of the patients were already dead or lost to follow-up, we posted information
on this research plan on our website (http://www.kindai-geka.jp/biomarker/2013/07/post-2.
html) for those from whom informed consent could not be obtained. We also provided an
opportunity of exclusion of their samples from the analyses upon their request through the
website, according to the instruction of the IRB. This study was reviewed and approved by the
Ethics Committee of the Faculty of Medicine at Kinki University.

Pathologic evaluation
Predominant histologic patterns were determined by two of us (KS, SS), according to the new
WHO classification system [17]. Grade classification was also performed based on the new
WHO classification [17]. High grade included micropapillary and solid predominant tumors
and invasive mucinous adenocarcinomas; low grade included lepidic, papillary, and acinar pre-
dominant adenocarcinomas [18, 19].

Immunohistochemistry (IHC)
Tissue microarrays (TMA) were created by aligning 2-mm cores (2 cores from each specimen
including the part with the predominant histologic pattern) taken from paraffin-embedded
tumor blocks. IHC staining was performed using the TMA. Briefly, each TMA was cut into 4-
μm sections and mounted on glass slides. After deparaffinization and rehydration, the slides
were heated in a retrieval solution (Dako Real Target Retrieval Solution, Dako, Tokyo, Japan)
for antigen retrieval at 121°C for 15 min. After quenching endogenous activity with 3% hydro-
gen peroxide for 30 min, the sections were treated with blocking agent (Dako Protein Block.
Serum-Free. Ready-To-Use, Dako, Tokyo, Japan) for 10 min to eliminate nonspecific staining.
The sections were incubated overnight with an anti-AXL antibody (AF154, 1:100, R&D Sys-
tems Inc., MN, USA). The slides were then incubated for 60 min with the secondary antibody
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(N-Histofine Simple Stain™Max PO (G), Nichirei, Tokyo, Japan), followed by visualization
with 3,30-diaminobenzine tetrahydrochloride (Dako Liquid DAB + Substrate Chromogen Sys-
tem, Dako, Tokyo, Japan). Finally, the sections were counterstained with hematoxylin.

Other primary antibodies; E-cadherin (#3195, 1:500, Cell Signaling Technology, Danvers,
MA, USA), vimentin (#5741, 1:200, Cell Signaling Technology), CD44 (#3570S, 1:500, Cell Sig-
naling Technology), ALDH1A1 (ab52492, 1:500, Abcam, Cambridge, MA, USA), and P-glyco-
protein (ab3366, 1:100, Abcam) were also used to evaluate expression of these proteins. Dako
Real Envision Detection Reagent Peroxidase Rabbit/Mouse was used as secondary antibody.

Expression of AXL and other proteins was scored by staining intensities, graded as 0 (no
staining), 1+ (weak), 2+ (moderate), or 3+ (strong). For AXL expression, we used vascular
endothelial cells as an internal control. Staining intensity similar to that of vascular endothelial
cells was classified as 3+, and weaker than that of vascular endothelial cells was classified into
1+ or 2+. Weak partial membrane staining was defined as 1+, and weak to moderate complete
membrane staining was defined as 2+, according to Ishikawa et al[6]. We independently ana-
lyzed two cores for each tumor specimen. When scores of the two cores were different, we
adopted the higher one. Scoring was performed by two of us (KS and SS) who were blinded to
patients’ clinical information.

Expression status was classified as positive if more than 10% of cells showed staining
(vimentin, CD44, ALDH1A1 and P-glycoprotein) and E-cadherin downregulation was defined
as negative staining in more than 10% of cells, following previous reports [20, 21].

Target sequencing analysis
Target sequencing analysis was performed as previously described [22]. Briefly, 10 ng of geno-
mic DNA was extracted from formalin-fixed paraffin-embedded sections, and used for multi-
plex PCR amplification with Ion AmpliSeq Library kit 2.0 (Life Technologies) and the Ion
AmpliSeq Cancer Hotspot panel v2 (Life Technologies). The Ion Xpress Barcode Adapters
(Life Technologies) were ligated into the PCR products and purified with Agencourt AMPure
XP beads (Beckman Coulter, Brea, CA). The purified libraries were then pooled and sequenced
on an Ion Torrent PGM device (Life Technologies) using the Ion PGM 200 Sequencing kit v2
(Life Technologies) and the Ion 318 v2 Chip kit.

DNA sequencing data were accessed through the Torrent Suite v4.0 software program.
Reads were aligned against the hg19 human reference genome; variants were called using the
variant caller v4.0. Raw variant calls were filtered out using the following annotations: homozy-
gous and heterozygous variants, quality score of<100, depth of coverage <19. Germline muta-
tions were excluded using the Human Genetic Variation Database (http://www.genome.med.
kyoto-u.ac.jp/SnpDB) [23].

Statistical analysis
Statistically significant differences within categorical data were evaluated by the χ2 test or
Fisher exact test. The Cochran–Armitage test was used for categories with trends. Overall sur-
vival was defined as the time from pulmonary resection to death. Patients without a known
date of death were censored at the time of the last follow-up. Kaplan–Meier curves were used
to estimate survival probability at each time point; the log-rank test was used to compare differ-
ences between groups. Univariate and multivariate analysis of overall survival used the Cox
proportional hazard modeling technique. All statistical analyses were performed with JMP ver-
sion 11 (SAS Institute). P< 0.05 was considered significant.
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Results

AXL expression and clinical factors
Representative AXL staining patterns are shown in Fig 1. Of the 161 specimens, 57 had AXL
expression level 0 (Fig 1A), 32 had 1+ (Fig 1B), 60 had 2+ (Fig 1C), and 12 had 3+ (Fig 1D).
None of the clinical factors (sex, age, carcinoembryonic antigen, stage, smoking status, patho-
logic grade) were significantly associated with AXL expression (Table 1). There was heteroge-
neity in AXL expression in our cohort. However the scores of two cores in each tumor were
similar; 91.7% of tumors showed the same or 1 point difference between the two cores.

AXL expression and prognosis
We then compared overall survival among groups with different AXL expression status. Five-
year survival rates by AXL expression scores were 0: 85%; 1+: 80%; 2+: 76%; and 3+: 39%
(Fig 2); in particular, 5-year survival differed very significantly for patients in the AXL 3
+ group compared with other groups (P = 0.0165). In multivariate analyses of age, sex, smoking
status, and pathological stage, AXL 3+ expression was also a significant predictor of poor prog-
nosis (P = 0.048, data not shown). We focused on the 3+ group in because of poor prognostic
implications of 3+ AXL.

AXL strong expression and clinical / molecular factors
We compared clinical characteristics of patients with AXL 3+ LAD specimens with the other
groups, but found 3+ AXL expression was not significantly correlated with any of the analyzed
clinical factors, including sex, smoking status, and P-stage.

We then analyzed correlations between AXL 3+ expression and several molecular markers
that reportedly confer poor prognosis in lung cancers. In analyses for epithelial–mesenchymal

Fig 1. AXL expression in LADs by IHC. AXL expression status was classified in four categories, 0
(negative, A), 1+ (weak, B), 2+ (moderate, C), and 3+ (strong, D). All images include vascular endothelial
cells, which were used as internal controls.

doi:10.1371/journal.pone.0154186.g001
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transition (EMT) markers and so-called cancer stem cell (CSC) markers, we observed signifi-
cant correlation between AXL 3+ expression and these molecular markers. Of the 12 patients
with AXL 3+ specimens, 7 (58%) showed down-regulated E-cadherin, compared with only
26% of the 0/1+/2+ group (P = 0.025; Table 2). In addition, AXL 3+ expression tended to be
correlated with vimentin expression, although not significantly so (3+: 67% vs 0/1+/2+: 43%;
P = 0.11). On the other hand, the CD44+ rate was significantly higher in the AXL 3+ group
(83%) than in the 0/1+/2+ counterpart (36%; P = 0.0010), and p-glycoprotein expression was
relatively higher in the AXL 3+ group (P = 0.069).

AXL strong expression and genetic aberrations
We searched for mutations in 22 cancer-related genes, using target sequencing techniques to
further characterize the 12 patients who had AXL 3+ expression, of whom 6 had mutations in
EGFR, 2 in KRAS, and 1 EML4–ALK fusion gene (Table 3). Among the other patients, 2 har-
bored TP53mutations and 1 harbored a SMAD4mutation. These results indicate that most
AXL 3+ tumors have so-called “driver mutations.”

A case of LAD with AXL strong expression who treated by gefitinib
Among 7 patients whose AXL 3+-expressing adenocarcinomas had “targetable”mutations,
only one patient with an EGFRmutation received an appropriate molecular targeted drug for
her recurrent disease (Case 2). Although AXL expression reportedly confers acquired resis-
tance to EGFR tyrosine kinase inhibitors, this patient responded well to gefitinib, as shown in
Fig 3.

Table 1. Relationships between AXL expression and clinical factors in 161 LAD specimens.

Factor AXL expression P*

0 1+ 2+ 3+

n n = 57 n = 32 n = 60 n = 12

Sex Female 87 31 (35%) 17 (20%) 33 (38%) 6 (7%) 0.77

Male 74 26 (35%) 15 (20%) 27 (37%) 6 (8%)

Age (years) < 69 82 26 (32%) 20 (24%) 30 (37%) 6 (7%) 0.95

� 69 79 31 (39%) 12 (15%) 30 (38%) 6 (8%)

CEA < 5.0 103 38 (37%) 18 (17%) 41 (40%) 6 (6%) 0.25**

� 5.0 54 17 (31%) 14 (26%) 17 (31%) 6 (12%)

unknown 4 2 (50%) 0 (0%) 2 (50%) 0 (0%)

P-stage I 111 40 (36%) 24 (22%) 38 (34%) 9 (8%) 0.82

II 25 9 (36%) 3 (12%) 12 (48%) 1 (4%)

III 23 8 (35%) 5 (22%) 8 (35%) 2 (8%)

IV 2 0 (0%) 0 (0%) 2 (100%) 0 (0%)

Smoking Ever 78 27 (35%) 20 (26%) 28 (36%) 3 (3%) 0.084**

Never 72 27 (38%) 11 (15%) 26 (36%) 8 (11%)

Unknown 11 3 (27%) 1 (9%) 6 (55%) 1 (9%)

Grade*** Low 129 44 (34%) 28 (22%) 48 (37%) 9 (7%) 0.62

High 31 12 (39%) 4 (13%) 12 (38%) 3 (10%)

*[0/1+/2+] vs [3+].

**Patients with unknown status were excluded from statistical analysis.

***One case of minimally invasive adenocarcinoma was excluded. CEA: carcinoembryonic antigen, in μg/L.

doi:10.1371/journal.pone.0154186.t001
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Discussion
In this study, we found that patients’ prognoses were inversely correlated with AXL expression,
as previously shown by Ishikawa, et al. [6]. However, we observed no correlation between AXL
expression status and clinical factors such as sex, smoking history, or pathological stage. This
was inconsistent with the analysis of Ishikawa et al., which showed correlations between AXL
expression and younger age (P = 0.022), female sex (P = 0.018), and advanced P-stage
(P< 0.001) [6]. Our molecular analysis found that AXL 3+-expression was correlated with the
presence of so-called “driver mutations” such those found in EGFR, KRAS and ALK fusion
genes. Because these molecular aberrations reportedly correlate with female sex, younger age,
and advanced disease, respectively [24], these discrepancies may reflect the complexity of clini-
cal and molecular characteristics of AXL 3+ LADs.

In LAD, changes resulting from driver mutations generally occur in a mutually enforcing
fashion [25]. Our finding that AXL 3+ expression often co-exists with driver gene mutations
suggests that AXL may play supplementary or modifying roles in these changes. The frequency
of these driver mutations were identical to the previous report that analyzed unselected

Fig 2. Overall survival of the patients based on AXL expression status.Overall survival rates correlated
with AXL expression status. The group of patients whose specimens showed strong AXL expression (3+
intensity) showedmarkedly shorter survival than groups whose specimens showed weaker intensity (0, 1+ or 2+;
P = 0.0033; log-rank test). 5ysr: 5-year survival rates.

doi:10.1371/journal.pone.0154186.g002

Table 2. Relationships between AXL expression andmarkers for EMT and CSCs.

Factor AXL expression P

0/1+/2+ 3+

n = 149 n = 12

E-cadherin Normal 110 (74%) 5 (42%) 0.025*

Downregulated 39 (26%) 7 (58%)

Vimentin Negative 85 (57%) 4 (33%) 0.11

Positive 64 (43%) 8 (67%)

CD44 Negative 96 (64%) 2 (17%) 0.0010*

Positive 53 (36%) 10 (83%)

ALDH1A1 Negative 59 (40%) 5 (42%) 0.89

Positive 90 (60%) 7 (58%)

P-glycoprotein Negative 77 (52%) 3 (25%) 0.069

Positive 72 (48%) 9 (75%)

*Significant relationship

doi:10.1371/journal.pone.0154186.t002
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Japanese lung adenocarcinoma patients; EGFR mutation, KRAS mutation, ALK fusion, or
HER2 mutation were identified in 67.7% (216/319) [26].

The IHC analyses showed that AXL expression in LADs was correlated with EMT status,
which was consistent with the previous reports [12, 27]. In addition, we found a correlation
between strong AXL expression and that of CSC-related proteins. This is a novel finding in
lung cancer, as far as we know. Although AXL has been shown to mediate stem-like behavior
in other solid tumors such as breast cancer, glioblastoma, and cutaneous squamous cell carci-
noma [28–30], this is a new finding in lung cancer. Because tumors with stem-like features
have been shown to lead to poor survival and resistance to therapies, AXL strong expression in
our lung cancer patients may promote such features and contribute to their poorer prognosis.

AXL activation has been recently reported to confer acquired resistance to EGFR-TKIs in
lung cancers with EGFRmutations [12, 31, 32]. However a patient in this study, whose LAD
specimen had 3+ AXL expression and an EGFRmutation, responded well to gefitinib. Because
she died of another disease, progression-free survival was unclear in her case. Our analysis
implies that strong AXL expression does not preclude EGFR-TKI treatment.

A limitation of our analysis is the effect of tumor heterogeneity, because we utilized TMA
tissue specimens. To check the heterogeneous status of AXL expression, we independently ana-
lyzed two cores for each tumor specimen, and adopted the higher score, as described in Meth-
ods. However, as described in Results, heterogeneity was negligible.

Table 3. Results of target sequencing for 22 genes in AXL 3+-expressing lung adenocarcinomas from 12 patients.

Case P-stage Mutation of interest Rec TKI Cx

1 IB EGFR (19del) − − −

2 IIIA EGFR (L858R) + Gefitinib −

3 IB EML4-ALK + Gefitinib +

4 IB EGFR (exon 20INS) + − −

5 IIIA KRAS (G12D) − − −

6 IA EGFR (L858R, T790M) − − −

7 IB KRAS (G12C) − − −

8 IB EGFR(19del) + − −

9 IIA TP53 + − +

10 IB EGFR (L858R) + − +

11 IB SMAD4 + − −

12 IA TP53, PIK3CA, DDR2 + − −

Cx: chemotherapy; Rec: recurrence; TKI, tyrosine kinase inhibitor

doi:10.1371/journal.pone.0154186.t003

Fig 3. A case of AXL 3+-expressing lung adenocarcinoma that responded well to gefitinib. (A) Pre-
treatment and (B) post-treatment (6 months after initiation of gefitinib, CT scans are shown.

doi:10.1371/journal.pone.0154186.g003
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In conclusion, strong AXL expression in resected LAD specimens is marker for poor prog-
nosis. Lung adenocarcinomas with strong AXL expression may be characterized by mesenchy-
mal status, higher expression of CSC markers, and frequent presence of driver gene mutations.
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