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Abstract

Wildlife disease transmission, at a local scale, can occur from interactions between infected and susceptible conspecifics or
from a contaminated environment. Thus, the degree of spatial overlap and rate of contact among deer is likely to impact
both direct and indirect transmission of infectious diseases such chronic wasting disease (CWD) or bovine tuberculosis. We
identified a strong relationship between degree of spatial overlap (volume of intersection) and genetic relatedness for
female white-tailed deer in Wisconsin’s area of highest CWD prevalence. We used volume of intersection as a surrogate for
contact rates between deer and concluded that related deer are more likely to have contact, which may drive disease
transmission dynamics. In addition, we found that age of deer influences overlap, with fawns exhibiting the highest degree
of overlap with other deer. Our results further support the finding that female social groups have higher contact among
related deer which can result in transmission of infectious diseases. We suggest that control of large social groups
comprised of closely related deer may be an effective strategy in slowing the transmission of infectious pathogens, and
CWD in particular.
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Introduction

Social organization and interactions among individuals play an

important role in the transmission and potential management of

infectious wildlife diseases [1,2]. Many host characteristics such as

sex, age, relatedness, density, social group composition, inter-

group movement and isolation can influence the duration and

intensity of contacts and disease transmission [1,3]. Understanding

how contact rates and social organization influences disease

transmission and spread is a challenging issue in disease ecology

yet it is critical for disease management [2,4]. Complex social

behaviors are typical for wild mammals and can result in disease

transmission rates that are not explained by density alone [1,2]. In

social species with stable group membership, given that at least

one member is infected, individuals from the same group may

have a higher rate of infection than non-members. White-tailed

deer (Odocoileus virginianus) are one such social species known to

associate in stable matrilineal groups [5,6,7]. Female white-tailed

deer generally associate more closely with relatives than with non-

relatives [8,9,10]. Although the nature and persistence of these

interactions are still under study [3,6,7], this general pattern has

widespread acceptance and is sometimes referred to as the ‘‘Rose-

petal theory’’ [11]. However, deer social behavior, site fidelity, and

spatial overlap can vary among different habitats deer density, and

hunting pressure [12,13,14,15,16].

Chronic wasting disease (CWD) is a fatal neurodegenerative

disease, posing serious and complex challenges for deer manage-

ment [17,18]. In captive studies, CWD can be transmitted through

animal-to-animal contact and indirect environmental contamina-

tion [19,20]. The relative importance of these transmission routes

is not known in free-ranging deer. Probability of CWD infection in

harvested female deer was recently found to be strongly influenced

by genetic relatedness and, only incidentally, by spatial proximity

to other infected females [21]. Ultimately, local transmission of

CWD results from individual deer movements that lead to

interactions with conspecifics or the environment. In particular,

the degree of spatial overlap and contact among deer is likely to

impact both direct and indirect transmission of CWD, and other

infectious diseases such as bovine tuberculosis [3,6,22].

Although infection patterns and spatial distribution of CWD in

Wisconsin have recently been described, there is limited empirical

information on white-tailed deer behavior and interaction related

to potential disease transmission and spread. Following discovery

of the disease, an important management goal of the Wisconsin

Department of Natural Resources (WDNR) was to reduce the deer

population in the area where disease prevalence was highest,
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termed the Disease Eradication Zone (DEZ, [23]). Population

reductions are most likely to be effective in reducing disease

prevalence if disease transmission is density-dependent. Informa-

tion on deer movement, space use, social structure and potential

interaction are necessary to understand local-scale infectious

contacts that generate the emergent dynamics of disease trans-

mission on the landscape.

Although previous studies on deer spatial overlap have been

conducted [3,6], we provide the first study evaluating links

between deer spatial overlap, measured using VHF telemetry data,

and deer relatedness based on microsatellite genetic markers.

Based on female social structure, we hypothesize that related deer

have greater spatial overlap, and thus more direct contact, than

unrelated deer in the same areas. We also hypothesize that fawns,

who are dependent on their mothers, will overlap with adjacent

deer more strongly than yearlings or adults. These overlap areas,

where multiple deer share space, are the most likely regions for

either direct or indirect transmission of CWD [3]. As such,

understanding the factors that determine the degree of overlap,

and consequently the amount of direct contact, between deer will

be critical to understanding and mitigating the spread of CWD

and other infectious diseases.

Methods

Deer Tracking
Our study was conducted within two areas of Wisconsin’s

Disease Eradication Zone (DEZ; see [24,25]), between January

and April, 2003–2008. We captured 173 individual white-tailed

deer (113 females, 60 males; [24,25], using modified Clover and

Stephenson box traps, rocket nets [26], drop-nets [27], and

darting. We aged deer as fawns (,1 year), yearlings ($1 year, ,2

years), and adults ($2 years) by tooth wear and replacement [28].

We chemically immobilized captured deer [25] and affixed VHF

radio collars. We tested deer for CWD using tonsillar biopsy [29]

and collected blood and tissue samples for genetic analysis. Five

deer initially tested CWD-positive (4 females, 1 male) and were

culled.

We triangulated locations of radio-collared deer using 3 to 5

azimuths collected from fixed telemetry stations and obtained

locations on a 24 hr basis, using rotating start times. We located

radio-collared deer roughly 3 times/wk from 2003 to 2008

(Range: 1–6, Mean: 3.2). We estimated locations using Location of

a Signal (LOAS), Version 2.09 [30], for groups of azimuths

obtained within 20 min of each other. Estimates of positional error

were #0.05 km2. We spaced relocations of individual deer $6 hrs

apart to minimize temporal autocorrelation.

Ethics Statement
The University of Wisconsin-Madison (UW) College of

Agriculture and Life Sciences’ Animal Care and Use Committee

(ACUC, Permit No. A-3368-01), UW Research Animal Resources

Center (Permit No. A01088309-02), and the Wisconsin De-

partment of Natural Resources (WDNR, Scientific Collector’s

permit No. SCP-SCR-018-0202) approved capture and handling

methods. Landowner permissions were acquired for capture on

private lands.

Inclusion Criteria
We selected a subset of radio-tracked deer for analysis in this

study. We excluded all male deer older than 1 yr from analysis

because they display less philopatry than females and often engage

in long-range movements [9]. Male fawns were retained due to

their close association with their mother prior to dispersal. In

addition, to limit the number of possible deer-pairs with extremely

low or no overlap, we used only deer-pairs trapped within 1.5 km

of each other. To address the potential lack of spatial in-

dependence among deer-pairs, we assigned deer trapped within

Table 1. Results of AIC model selection procedure to determine the best models predicting white-tailed deer spatial overlap in
Wisconsin.

Dataset Variables K Delta AICc Weight

1 (Pairs with at least one adult) Age classes Relatedness (Rxy-cat) 4 0.00 0.71

Age classes (sex effects- fawns) Relatedness (Rxy-cat) 4 1.95 0.27

Age classes Relatedness (Rxy) 4 7.66 0.02

Age classes (sex effects- fawns) Relatedness (Rxy) 4 9.59 0.01

Age classes 3 13.63 ,0.01

Relatedness (Rxy- cat) 3 15.22 ,0.01

Age classes (sex effects- fawns) 3 15.55 ,0.01

Relatedness (Rxy) 3 24.62 ,0.01

2 (Capture groups 1 and 2) Age classes Relatedness (Rxy- cat) 4 0.00 0.88

Age classes Relatedness (Rxy) 4 4.69 0.08

Age classes (sex effects- fawns) Relatedness (Rxy- cat) 4 7.38 0.02

Age classes 3 8.05 0.02

Age classes (sex effects- fawns) Relatedness (Rxy) 4 12.23 ,0.01

Relatedness (Rxy- cat) 3 13.93 ,0.01

Age classes (sex effects- fawns) 3 15.53 ,0.01

Relatedness (Rxy) 3 19.74 ,0.01

Datasetadult contains only deer-pairs including at least one adult deer, and datasetcapgroup contains only capture groups 1 and 2 (see text). All models contain capture
group and deer-pair as random effects. Age classes are either in categories of adult, yearling, and fawn (if lacking sex effects), or adult, yearling, male fawn, and female
fawn. Relatedness is either represented as a continuous variable (Rxy) or categorical (Rxy-cat), in 3 categories consisting of Rxy of 0–0.25, 0.26–0.5, and 0.5–1.
doi:10.1371/journal.pone.0056568.t001
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1.5 km of one another to one of 7 distinct capture groups which

were treated as a random effect in our analysis. We used only deer

with .50 estimated locations (n = 105) during a given year.

Overlap Modeling
We used volume of intersection (VI) of utilization distributions

[6,31] as our measure of spatial overlap. This measure has

previously been found to correlate strongly with contact rates in

deer [6]. Utilization distributions are three-dimensional probabil-

ity densities that indicate relative space use based on point

locations [32,33]. The VI is the approximate spatial integral of the

square root of the product of two fixed utilization distribution

kernels. VI values range from 0 to 1, with 0 representing no

overlap, and 1 indicating complete overlap. For included deer-

pairs, VI values were calculated for all points collected within one

year (years were defined to begin on 10 May). To avoid correlation

from multiple observations of the same deer-pairs (example: Deer

1003 and 1004 in years 2003, 2004, and 2005), we selected a single

VI calculated for each deer-pair, from the year with the most

combined locations. Volumes of intersection (VI) were then logit-

transformed to facilitate analysis using linear models.

Relatedness
Whole genomic DNA was extracted from deer samples using

a Qiagen DNeasy extraction kit (Qiagen Inc., Valencia, CA)

following the manufacturer’s protocol for either 100 ul of blood or

20 mg of tissue from ear punch samples (all samples frozen since

collection). We amplified 13 highly variable microsatellite loci

using PCR with the Qiagen multiplex PCR kit [34]. We re-

genotyped 32 individuals to assess errors in genotyping. We

calculated Hardy-Weinberg equilibrium (HWE) and expected

versus observed numbers of heterozygotes and homozygotes for all

loci (using Genepop on the web; [35]) to assess data quality and

assumptions for population genetics models. We used probability

Figure 1. Scatterplots showing the relationship between degree of overlap and relatedness for white-tailed deer-pairs. Figure 1a is
generated from the dataset where each pair contains at least one adult (datasetadult), and figure 1b is generated from the dataset using only deer-
pairs from capture groups 1 and 2 (datasetcapgroup). Figure 1a. Figure 1b.
doi:10.1371/journal.pone.0056568.g001
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of identity statistics (PID and PIDsibs, performed in GenAlEx,

[36]) to ensure adequate power to identify closely related

individuals in our dataset. In order to provide a more genetically

representative background with which to test our hypotheses, we

supplemented the current sample with 100 additional deer from

the same general geographic area that were genotyped in

a collaborating study (analyzed using the same genetic methods

[21]).

We calculated genetic relatedness and pedigree relationships

using maximum likelihood [37] methods in program ML-Relate

[38]. Pair-wise genetic relatedness (Rxy) ranges from 0 to 1

representing the proportion of allelic composition shared between

individuals x and y [39]. Theory suggests first-order relatives (full

siblings or parent-offspring pairs) should share half their genetic

makeup (i.e., Rxy = 0.5). Half siblings or grandparent-grandchild

pairs, termed second-order relatives, would be expected to share

only a quarter of their ancestry (i.e., Rxy = 0.25). We evaluated the

importance of relationship classes, in addition to continuous Rxy

values, using three classes of relatedness: first order kin (Rxy of

0.51–1), second order kin (0.26–0.5), and unrelated (0–0.25).

Age and Sex
Age and sex categories were male fawn (B), female fawn (G),

yearling female (Y), and adult female (A). Each deer-pair was

Figure 2. Charts detailing the average degree of overlap among deer in different categories of relatedness. Unrelated indicates Rxy
values between 0 and 0.25, partially related indicates Rxy values between 0.26 and 0.5, and related indicates Rxy values above 0.5. Figure 2a is
generated from the dataset where each pair contains at least one adult (datasetadult), and figure 2b is generated from the dataset using only deer-
pairs from capture groups 1 and 2 (datasetcapgroup). Figure 2a. Figure 2b.
doi:10.1371/journal.pone.0056568.g002
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assigned an age-sex class category corresponding to the ages of

each deer in the pair, for example; ‘AA’ for two adult females, and

‘BY’ for a male fawn-female yearling pair. We also created an

alternate age-class variable consisting of only fawns (F) regardless

of sex, yearling females, and adult females. We used May 10 to

define a new year in the analysis, at which point fawns were

transferred to the yearling class, and yearlings to the adult class.

Statistical Analyses
Overlap values derived from logit-transformed VIs were related

to predictor variables including relatedness (continuous Rxy values

and kinship categories) and age-sex classes using linear mixed

effects models and maximum likelihood estimation (MLE) [40]

with the nlme package in program R [41]. Fixed effects included

relatedness and deer-pair age, while random effects were deer-pair

nested within capture group (all deer captured within 1500 m). We

used random effects for capture group and deer-pair to account for

potential spatial autocorrelation and lack of independence for deer

with multiple pairs, respectively. We first fit a global model using

restricted maximum likelihood (REML), and tested the impor-

tance of the random effects using likelihood ratio tests [42]. We

then recomputed our models using maximum likelihood (ML) to

test the importance of fixed effects, with models selection based on

Akaike’s information criterion adjusted for small sample sizes

(AICc, [43]) and AIC weights. We used odds ratios to determine

effect sizes for predictor variables.

Initial models failed to converge due to very low representation

of some age class-capture group combinations. Because of this, we

created two subsets of the data in which all age-sex class-capture

group combinations contained sufficient data. The first, dataseta-

dult, included only those deer-pairs with at least 1 adult, excluding

deer-pair age classes such as fawn-yearling and fawn-fawn, which

were absent in some capture groups. However, it does include

representation from all 7 capture groups. The second, dataset-

capgroup, included only deer from capture groups 1 and 2, which

contained the majority (70.4%) of all deer-pairs, including at least

27 deer in each age-pair type.

Results

Over the 13 loci, no errors were found in the genotyping of the

32 repeated individuals. No deviations from Hardy-Weinberg

equilibrium were found after Bonferonni correction for multiple

loci tests. The locus set was highly variable, yielding sufficient

power to distinguish among closely related individuals

(PID=7.18E-18, and PIDsibs = 1.30E-06).

Datasetadult consisted of 668 deer-pairs with at least one adult.

Datasetcapgroup consisted of 615 deer-pairs from capture groups 1

and 2. We tested a sequence of age and Rxy models, based on

a priori knowledge of deer biology, for each of our two datasets

(Table 1). Likelihood ratio tests applied to our global model

indicated that both capture group and deer-pair (nested within

capture group) contained significant explanatory power as random

effects (capture group x2 = 4.29, p = 0.04; deer-pair x2 = 23.84,

p,0.001) so both were used in all subsequent models.

Deer relatedness (Rxy) had a positive association with spatial

overlap (Figure 1, 2); however, this association had poor

explanatory power (R2,0.10). Based on AIC values, the best

models were those containing both kinship categories and age

classes. The second best model for datasetadult contained kinship

categories and age-sex classes that differed for male and female

fawns. This model has lower support from the data, as it was

separated by 1.95 AIC units, with 27% of the total model weight

compared to 71% for the top model. All other models were

separated by at least 7.6 AIC units with #2% of the total model

weight indicating virtually no support. For datasetcapgroup, all other

models were separated from the top model by $4.69 AIC units,

with #8% of the total model weight, indicating very low support

from the data.

For adult deer (datasetadult), first order kin had significantly

higher spatial overlap (Odds Ratio = 32.46695% CI: 5.14–

204.87) than unrelated deer (Table 2). Second order kin also

had much higher overlap than unrelated deer (OR=5.42, CI:

1.17–25.00). Adult females also had higher spatial overlap with

fawns than with other adults (OR=3.06, CI: 1.35–6.98) or than

with yearlings, but adult-yearling pairs were not significantly

Table 2. Parameter estimates from top models used to predict white-tailed deer spatial overlap in Wisconsin.

Dataset Variable Estimate SE Odds Ratio
Odds Ratio
Lower 95% CI

Odds Ratio
Upper 95% CI

Adult Intercept 22.76 0.55

Second Order Kin 1.69 0.78 5.42 1.17 25.00

First Order Kin 3.48 0.94 32.46 5.14 204.87

Age- AF 1.12 0.42 3.06 1.35 6.98

Age- AY 20.72 0.38 0.49 0.23 1.03

Capgroup Intercept 23.19 1.01

Second Order Kin 1.64 1.03 5.16 0.68 38.81

First Order Kin 3.86 1.23 47.47 4.26 528.90

Age- AF 0.88 0.64 2.41 0.69 8.45

Age- AY 21.05 0.55 0.35 0.12 1.03

Age- YY 21.05 0.74 0.35 0.08 1.49

Age- YF 0.20 0.68 1.22 0.32 4.63

Age- FF 2.43 1.00 11.36 1.60 80.64

Datasetadult contains only deer-pairs including at least one adult deer, and datasetcapgroup contains only capture groups 1 and 2 (see text). Estimates for first order
(Rxy.0.5) and second order kin (0.5. Rxy.0.25), and resultant odds ratios, are with respect to unrelated deer (Rxy ,0.25). Estimates for age group pairs, and resultant
odds ratios, are with respect to pairs consisting of two adults. In age group pairs A = adult, Y = yearling, F = fawn.
doi:10.1371/journal.pone.0056568.t002
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different (p.0.05) from adult female pairs (Table 2). For

datasetcapgroup (all ages), first (OR=47.47, CI: 4.26–528.90) and

second (OR=5.16, CI: 0.68–38.81) order kin again had

significantly higher overlap than unrelated deer (Table 2). Among

the different age classes, fawn-fawn pairs had significantly higher

overlap than did adult females (OR=11.36, CI: 1.60–80.64). In

addition, adult-fawn pairs tended to have higher spatial overlap

than adult-yearling or yearling-yearling pairs (Table 2).

Discussion

Social interactions, as well as group membership, may influence

transmission of wildlife diseases [1,2] and relatedness may be more

important for transmission than simple proximity [21]. However,

proximity can be a poor surrogate for relatedness [14] or group

membership [6]. While related female white-tailed deer form

social clusters on the landscape [9,21,44], social groups may

overlap in space, but not in time. Thus, proximity of deer alone is

not enough to discern relatedness, and by extension, the likelihood

of transmission of infectious diseases [21]. Even adult females and

fawns trapped in the same location are not always mother-

offspring pairs [45]. The mechanisms by which related deer

transmit infectious disease to one another are unclear, however.

Because volume of intersection is a useful predictor of both direct

and indirect contact rates in deer [6], it appears that related deer

are more likely to come into contact, and therefore drive the

dynamics of infectious diseases [21]. We identified a clear

relationship between overlap (as measured by a volume of

intersection) and relatedness for white-tailed deer in south-central

Wisconsin. In addition, we found that age of deer influenced

degree of overlap, with adult-fawn, yearling-fawn, and fawn-fawn

pairs overlapping more strongly, whereas adult-adult pairs, and

adult-yearling and yearling-yearling pairs exhibited lower overlap.

Kinship categories were stronger predictors than continuous Rxy

values, suggesting that deer beyond a certain degree of relatedness

exhibit higher amounts of overlap. Even within kinship classifica-

tions, such as half-siblings or parent and offspring, there is

variation in the proportion of shared DNA, and thus degree of

relatedness may be less important than the nature of the social

relationship between individual deer (e.g., parent offspring vs.

cousins).

We found that first order kin had 32.5 times as much overlap as

unrelated deer. This value is somewhat larger than a previous

finding that deer in Illinois had 5.0–22.1 times greater odds of

direct contact when they belonged to the same social group, as

estimated by proximity [6]. However, our results may be closer to

a separate study in Wisconsin indicating that deer were .100

times more likely to become infected with CWD when a highly

related infected female was in close proximity, with much lower

effects from proximal unrelated animals [21]. This indicates that

probability of CWD infection is likely higher among closely related

deer, because they have much higher contact rates, as opposed to

unrelated deer that simply share space, but have lower contact

rates. In addition, a higher probability of transmission may occur

because of the more intense nature of contacts among related deer

[46,47]. Previous observational studies indicate that parent-

offspring pairs engage in significant contact during the first year

of life [46]. Studies that investigate the spatial dynamics of disease

transmission in wild populations should include direct observation

of deer behavior to more thoroughly address the heterogeneous

disease transmission that result from the social structure of deer

[22].

Our finding that adult-fawn pairs had higher overlap is not

surprising given patterns of maternal care in white-tailed deer [8].

The average VI of probable parent-offspring pairs (adult-fawn

pairs with Rxy values .0.5) were very high (0.64 in datasetadult,

0.55 in datasetcapgroup), compared to the overall mean (0.22 in

datasetadult, 0.20 in datasetcapgroup). Adult-fawn pairs with moder-

ate relatedness value (0.26, Rxy ,0.5) exhibited lower overlap

(0.36 in datasetadult, 0.36 in datasetcapgroup). Those pairs with low

(Rxy #0.25) relatedness values had VI values approximating the

overall mean (0.24 in datasetadult, 0.22 in datasetcapgroup, re-

spectively). In this system yearling females rarely disperse from

their natal home range [24,25]. However, yearling females

sometimes establish home ranges on the periphery of their

mother’s home range once they breed [5], which may help

explain slightly reduced overlap between adult and yearling deer.

Female white-tailed deer are highly philopatric, characterized

by stable home ranges with a high degree of overlap among

individuals within social groups [6,9,44,46]. However, social

structure of deer is less typical where rates of harvest are high

and age structure is biased towards young animals [14,48].

Nonetheless, we found that overlap (as measured by VI) closely

associated with degree of relatedness, providing evidence for social

structure at a local scale in spite of heavy harvest pressure. While

ongoing disease eradication efforts may have temporarily in-

creased deer harvest, this population has been subjected to

ongoing harvest for many years, and CWD control efforts are

unlikely to have produced the patterns observed. The strong

matriarchal social structure of female white-tailed deer likely

prevents homogenous mixing of individuals [6,9] and homoge-

neous CWD transmission among members of different social

groups [21].

The degree to which deer contact each another varies seasonally

[6, 56]. However, to ensure sufficient observations, our analyses

were based on annual data and provide no insight into seasonal

patterns. In addition to relatedness, hotspots of activity such as

scrapes, rubs, feeding/baiting sites, and mineral licks also likely

play a role in contact rates of cervids and potential disease

transmission [49,50,51]. We did not identify such features in our

study and have no basis to evaluate the contribution of these

behavioral hotspots to potential transmission of disease. Deer may

also be more likely to overlap in agricultural areas due to

concentrated food sources [3,16,25,52]. In fragmented systems,

deer would likely congregate closely in areas of remaining

resources, particularly in seasons when food is limited [52].

Unfortunately, accuracy of the spatial locations in this study was

insufficient to investigate the effects of habitat use, given that the

study area is a complex mosaic of forested and agricultural land

[25]. Our study focused on female deer because they are most

often targeted for population control and, unlike males, rarely

engage in long-distance movements [9,21,25]. However, males are

more frequently CWD positive than females (Grear et al. 2006),

and long-distance movements by males may be important in the

geographic spread of CWD.

CWD can be transmitted both directly (by deer-to-deer contact)

and indirectly (via contamination of the environment), though the

importance of these modes of transmission in the wild are

unknown [17,19,21]. VI provides a metric for both direct and

indirect contact, though the spatial-temporal resolution of our data

is insufficient to differentiate these specific events. While it is

possible for two deer who overlap in space to avoid direct contact,

indirect contact is virtually guaranteed, particularly given the likely

occurrence of congregation points such as scrapes, rubs, feeding/

baiting sites, and mineral licks. However, given previous findings

that contact rates vary predictably with VI [6], we believe our

findings likely apply for both direct and indirect transmission

scenarios. Our findings support previous research that suggest

Deer Spatial Overlap in CWD Zone
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CWD should spread more rapidly among related deer [21]. As

such, control of large related social groups may be an effective

strategy in slowing pathogen transmission, particularly given that

there is little evidence that female harvest impacts movement

behavior [16]. We also found limited overlap among unrelated

deer, suggesting that disease spread among social groups, which is

needed to sustain disease, may occur between neighboring social

groups. We believe the rate and mechanisms of disease trans-

mission between adjacent social groups is an important area for

future research.

We provide an important step in understanding the mechanisms

underlying observed patterns of CWD transmission, namely, that

related individuals are more likely to come into close proximity on

the landscape, where disease transmission may occur either

directly or indirectly. Further progress in understanding the

specifics of disease spread will be necessary to devise practical

strategies for deer management.
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