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Abstract: The previous recommendation system applied the matrix factorization collaborative
filtering (MFCF) technique to only single domains. Due to data sparsity, this approach has a
limitation in overcoming the cold-start problem. Thus, in this study, we focus on discovering latent
features from domains to understand the relationships between domains (called domain coherence).
This approach uses potential knowledge of the source domain to improve the quality of the target
domain recommendation. In this paper, we consider applying MFCF to multiple domains. Mainly,
by adopting the implicit stochastic gradient descent algorithm to optimize the objective function
for prediction, multiple matrices from different domains are consolidated inside the cross-domain
recommendation system (CDRS). Additionally, we design a conceptual framework for CDRS, which
applies to different industrial scenarios for recommenders across domains. Moreover, an experiment
is devised to validate the proposed method. By using a real-world dataset gathered from Amazon
Food and MovieLens, experimental results show that the proposed method improves 15.2% and
19.7% in terms of computation time and MSE over other methods on a utility matrix. Notably, a much
lower convergence value of the loss function has been obtained from the experiment. Furthermore,
a critical analysis of the obtained results shows that there is a dynamic balance between prediction
accuracy and computational complexity.

Keywords: cross-domain; user rating consolidation; recommendation system; inner approximation;
implicit update; convex optimization

1. Introduction

Recent achievements in the Internet and computing technologies have made it possible for
organizations to collect, store, and process large amounts of data. These data contain detailed
information related to the behaviors of users. Accurately, they represent the set of user evaluations
for specific items. For example, Amazon (https://www.amazon.com/) collects information about
the user’s habits shopping-wise, or even regarding surfing on their website. Netflix (https://www.
netflix.com/) also has substantial data related to the subject of movies. These data are beneficial for
recommending useful decisions when supporting their clients. In this scenario, each firm designs
a unique and maximally efficient system that can recommend as pleasant as possible items to its
customers [1]. Nevertheless, not all users give ratings for items that they like or dislike. This limitation
causes the fragmentation of the dataset obtained from the user, which is called data sparsity. In the
real-life, a dataset is sparse at around 0.05% [2]. Therefore, the system can not produce useful
recommendations when a new user or item has entered the system due to the insufficient previous
ratings. This problem is named the cold-start [3], which is the most challenging issue for researchers
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to overcome. The cold-start problem is that problem wherein a system is not able to recommend
items to users. Every recommender system is required to build a user’s profile by considering his/her
preferences and likes. The user’s profile is developed by considering his/her activities and behaviors
being perform with the system. Based on user’s previous history and activities, the system makes
decisions and recommends items consequently. Many investigations have been proposed to solve
the cold-start problem by locating extra information among the intradomain objects to imply the
association between a user and item [4–7]. Nevertheless, we cannot always obtain this kind of extra
useful information.

On the other hand, the cold-start problem in insufficient data in one domain can be solved if
another domain has relatively abundant data [8]. In other words, since there exists either implicitly or
explicitly correlated between domains, we could overcome the cold-start problem by grouping multiple
domains. In particular, the latent features existing among domains may improve recommendation
accuracy. By this approach, a recommendation system can be built to exploit valuable information
from one domain to contribute to another domain. These systems are known as cross-domain
recommendation systems (CDRSs) [9]. In CDRSs, one of the most popular and efficient methods
that has been used is matrix factorization collaborative filtering (MFCF) [10]. This method could
handle both two major problems regarding two directions of CDRS development. The first direction
focuses on collecting preference data from users and items from all domains. Oppositely, the CDRS in
the second direction aims to connect domains based on other information, such as the properties of
items or the social relations of users [11]. The preference data are exclusively focused on our research,
since they is not affected by other information yet can be applied widely. Zhang et al. (2018) classified
the preference-based CDRS into two groups: the first one is the situation in which there are no common
areas between domains, while the other group has at least a partial overlap between domains [12].
In this paper, we concentrate on the first class of CDRS, where there is not any overlap among domains,
since this situation is prevalent in real life. Regarding this type of CDRS, the existing method has
used shared information from the items and users in domains [13]. Notably, similar information
related to the item’s contents and user’s preferences was extracted from all domains to build the
group-level knowledge, which is used for the utility matrices afterward [14]. Nevertheless, there are
some limitations to this approach, since it is unsteady to transfer knowledge from one domain to the
other. This unstable state will adversely affect the performance of the recommendation system [15].

Differently from previous works, to overcome the limitations mentioned above, we propose an
efficient framework for a cross-domain recommendation system. In this framework, multiple domains
that are presented by matrices are consolidated into one. Then we apply the MFCF to predict the
unknown ratings from user to item. In this way, it is possible to extract the latent features from the
user-group and item-group. An implicit update technique is adopted while optimizing the objective
function to increase prediction accuracy. Additionally, the optimization convergence is significantly
improved.

The main contributions of this study are as follows :

• We propose an efficient framework for a cross-domain recommendation system based on a
constrained optimization model. In our model, the optimal solution and computation time are
simultaneously taken into consideration.

• We devise an approximation algorithm that is suitable for objective function optimization in a
cross-domain related problem. In particular, an implicit updating technique is applied to improve
convergence time.

• We conduct extensive experiments on two real-world datasets to validate the effectiveness and
efficiency of our method. The results demonstrate that the proposed framework can achieve better
performance in comparison with the previous approach.

The remainder of the paper is organized as follows. Section 2 explains the background knowledge
of MFCF in a single domain and reviews literature related to CRDS. Section 3 formally defines the
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problem formulation. In Section 4, we present our conceptual framework for CDRS. Section 5 presents
an experiment. Finally, we draw conclusions and suggest directions for future study in Section 6.

2. Related Work and Background

2.1. Related Work

Recent researchers have studied cross-domain related work, as mentioned in [11,16,17], wherein
there are two types of cross-domain recommended tasks. The first task is to use the information of the
source domain to enhance the quality of the target domain recommendation [18–20]. Karatzoglou et al.
used a machine learning method to transfer dense knowledge from the source domain to the target
areas, which is much more sparse [21]. Enrich et al. used the user tags as connections between multiple
domains, from which they learn the users’ rating models to gain performance in the target domain [22].
The second task is recommending items in separate domains concurrently. They proposed a method for
creating a rating matrix, which is the multidisciplinary shared latent factor [23,24]. Shi et al. [25] used
the user-generated tags to calculate the similarity between cross-domain users and items, respectively,
and then integrated these similarities into a matrix factorization model to improve the recommended
accuracy. Gao et al. presented the clustering latent factor model based on a joint non-negative matrix
framework [26].

For recommendation using matrix factorization, work was done by Gogna et al. [27].
They proposed a matrix completion framework that can be implemented in different domains.
Zhenzhen et al. presented a cross-domain recommendation algorithm to overcome cold-start and
sparsity problems and mentioned that this could be extended to consider temporal dynamics, as user
preferences may change over time [28]. A cross-domain collaborative framework for recommending
the venue proposed by Farseev et al. [29] is not able to address the cold-start problem. Loni et al. [30]
presented a cross-domain factorization machine that can exploit additional knowledge from an
auxiliary domain by encoding specific knowledge from a domain in terms of the real-valued
feature vector.

In this study, we apply the MFCF for multiple domains using an updated technique to increase the
convergence time of the objective function. Additionally, the implicit stochastic gradient descent-based
algorithm is utilized to apply to the cross-domain recommendation system.

2.2. Background

In a single domain, let us suppose there are M users and N items. The relationship between
the users and the items is presented by the user-item rating matrix Y ∈ RM×N , called utility matrix.
Any rating rij in Y is subject to rij ∈ {1, 2, 3, 4, 5, ?}, where “?” represents missing value. To predict
the missing values, users and items are clustered. The utility matrix Y can be factorized into two
matrices Y ≈ Ŷ = XWT , where X ∈ RM×K is the user-group membership matrix, and W ∈ RN×K is
the item-group membership matrix.

Figure 1 represents the matrix factorization, in which the full utility matrix Y is decomposed into
two matrices X and W, where K is much smaller than M, N. Each row in X represents a user profile x,
and each column in W denotes an item profile w. On the other hand, the i-th item and the j-th user are
represented by the i-th and j-th rows of the two matrices as Wi∗ and Xj∗. After matrix factorization,
the users and items are mapped to a latent factor feature of a lower dimensionality K.
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Figure 1. Decomposing utility matrix into two matrices.

To predict the missing values in the utility matrix, the low-rank matrix factorization is
approximated as an optimization problem given by

min
X,W
L( f (X, W), Y) + λR(X, W), (1)

where L is the loss function of the predicted ratings f (X, W) and the original ratings Y, R(X, W) is
the regularization term, and λ is the regularization tradeoff parameter. λR(X, W) is regularization
component to avoid overfitting. Regarding probabilistic matrix factorization (BMF) [31,32],
the objective function to measure the loss with regularization terms and a Frobenius norm is
expressed as

J(X, W) =
1
2
‖I� (Y− XWT)‖F +

λ

2
‖X‖F +

λ

2
‖W‖F, (2)

where I is the rating indicator matrix, Iij ∈ {0, 1}. Iij = 1 indicates that the rating is observed, or Iij = 0
otherwise. � denotes the Hadamard product [33] of the matrices.

3. Problem Formulation

3.1. Definition of User-Preference Matrix

Let Dl with l ∈ (1, L) be the user-preference matrix with response to l-th domain. Then, the
entries of Dl which are denoted by (Dl)ij indicate the ratings of the i-th user for the j-th items of set Dl .

By U we denote the set of all users that exist in multiple domains:

U = {UD1 ,UD2 , . . . ,UDL}, (3)

where UDl is the sets of users in l-th domain. Although these matrices are overlapping or
nonoverlapping, the matrix V, which is built from the consolidation of matrices D1, D2, ... DL has the
number of rows given by |U |. Given a user Uu, u ∈ {1, 2, . . . , |U |} in U , the matrix Dl can be rewritten
as follows:

Dl = [(dDl
1 )T , . . . , (dDl

u )T , . . . , (dDl
|U|)

T ]T , (4)

where the row vector dX
u , X ∈ {D1, D2, DL}, contains the corresponding rating values of all items in

X ∈ {D1,D2,DL}, voted by user Uu. Clearly, dX
u = 0, if Uu ∈ U\UX .

For generality, all the user’s ratings can be described by the following matrix V:

V = [D1 D2 . . . DL]. (5)

Matrix V is the expandable matrix since its dimensionality increases when adding new items and
users to the data. We denote the transpose matrix of V by VT .
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A column vector b is given as

b =


b1

b2
...

bn

 , (6)

where n denotes the number of rows (the number of users) of V. Each entry bi is the inverse of a square
root of the element aii in the VVT diagonal. Therefore, bi is as follows:

bi =
1√
aii

. (7)

Then it is possible to write formula (6) in the following form

b =


1√
a11
1√
a22
...
1√
ann

 . (8)

By bT we denote the transform matrix of b, and matrix B = bbT . In this regard, a similarity
matrix S can be written as follows:

S = (VVT)� B. (9)

This operator is a Hadamard product, in which each element p, q in S is the product of elements
p and q of the original two matrices (VVT) and B. After this operator, S will be the symmetric matrix
with rows and columns being users, in which each element Sij is the cosine of the angle between two
vectors ui and uj, where ui and uj are the i-th and j-th rows of V, respectively.

Remark 1. By considering the preference vectors ui and uj, i 6= j, the similarity between i-th and j-th users is
properly given by Sij; i.e.,

Sij = cos(ui, uj) =
uiuT

j

||ui||2.||uj||2
. (10)

Given by the i-th row and j-th column entry of matrix, VVT is equal to uiuT
j , with the

corresponding entry Bij of matrix B equivalent to

Bij =
1

||ui||2.||uj||2
. (11)

Therefore, (9) is considered as a generalized formulation to derive the similarity matrix among
users with respect to all items.

Similarly, we can find the item-similarity matrix as follows.

K = (VTV)� C, (12)

where C = ccT , c is a row vector c = [c1, c2 . . . , cm] with cm denoting the inverse of a square root of the
element dmm in the VTV diagonal of V. Therefore, cm is as follows:

cm =
1√
dmm

. (13)
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Now we will factorize matrix V. As mentioned in the previous Section, the user n gives a rating
to the item m that can be approximated as ymn = xT

mwn. However, the actual ratings have biases for
users or/and items, since users tend to rate the items according to their rating behaviors, resulting in
ratings that may be larger or smaller than the actual values the items receive. We use bias to overcome
this problem. By µm and µn, we denote biases for item m and user n, respectively. Then the rating is
approximated by

ymn ≈ xmwn + µm + µn + µ, (14)

where µ is median value of all ratings.
Therefore, the loss function (2) can be written as

L(X, W, µm, µn) =
1
2s

N

∑
n=1

M

∑
m=1

(xmwn + µm + µn + µ− ymn)
2+

+
λ

2
(||X||2F + ||W||2F + ||µm||2F + ||µn||2F).

(15)

In the previous works, this loss function is solved by optimizing one of the pairs (X, µm) and
(W, µn) respectively, while fixing the other pair. This process is repeated until the loss function
converges. This push–pull [34] gradient method will get a sub-optimal solution [35]. In contrast with
the earlier investigations, we will solve this loss function by optimizing (X, W, µm, µn) simultaneously.

3.2. Algorithm for Prediction Error Minimization

In this section, we investigate the following joint design problem for prediction error
model minimization:

minimize
X,W,µm ,µn ,t

L =
1
2s

N

∑
n=1

M

∑
m=1

t2
mn +

λ

2
(||X||2F + ||W||2F + ||µm||2F + ||µn||2F), (16)

where t , [tmn], ∀m ∈ {1, . . . , M}, ∀n ∈ {1, . . . , N}, with tmn satisfying the following constraint:

xmwn + µm + µn + µ− ymn ≤ tmn. (17)

Although the objective function in (16) is a quadratic representative, which is convex, constraint
(17) is still non-convex. To efficiently solve this problem, we derive a successive convex program based
on an inner approximation method [36] as follows:

It is observed that (17) is equivalent to the convex constraint:

K

∑
k=1

u2
mnk ≤ tmn − µm − µn − µ + ymn (18)

with the following constraint imposed

xmkwnk ≤ u2
mnk. (19)

However, constraint (19) is still non-convex. Inspired from ([37], Lemma 1), (19) can be
approximated as

w̄nk
2x̄mk

x2
mk +

x̄mk
2w̄nk

w2
nk ≤ u2

mnk, (20)
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which is convex as a second order cone constraint. Here, x̄mk and w̄nk are respectively the values of
xmk and wnk at the previous iteration. Therefore, the successive convex program is formulated as

minimize
X,W,µm ,µn ,t,u

L =
1
2s

N

∑
n=1

M

∑
m=1

t2
mn +

λ

2
(||X||2F + ||W||2F + ||µm||2F + ||µn||2F) (21a)

subject to (18), (20). (21b)

It is realized that the problems in (21) can be efficiently solved per iteration by the existing solver
(e.g., SPDT3 [38], MOSEK [39], or SeDuMi [40]), so that we obtain at least a locally optimal solution at
the convergence. The algorithm for solving problem in (21) is briefly described in Algorithm 1.

Algorithm 1: Iterative algorithm for the prediction error optimization.

1 Initialization: Set Lmin := +∞, (x∗, t∗, w∗, u∗) := 0
2 for each k ∈ K do {solving subproblem (19)}
3 Generating an initial points: Set k:= 0 and solve (20) to generate (x(0), µ

(0)
m , w(0), µ

(0)
n ).

4 repeat
5 Solve (21) to obtain (x∗, µ∗m, w∗, µ∗n) and L(k+1).

6 Update (x(k+1), µ
(k+1)
m , w(k+1), µ

(k+1)
n ):=(x∗, µ∗m, w∗, µ∗n).

7 Set k = k + 1.
8 until Convergence
9 if L(k) < Lmin then

10 Update Lmin := L(k) and (x∗, µ∗m, w∗, µ∗n):=(x(k), µ
(k)
m , w(k), µ

(k)
n ).

11 end if
12 end for

In Algorithm 1, we use the implicit update technique to increase the convergence speed. The initial
values of x and w are random. For the practical implementation, Algorithm 1 terminates upon reaching
L(k+1) −L(k) < ε after a finite number of iterations [41].

4. CDRS Framework

In this section, we propose a conceptual framework for a cross-domain recommender system
that applies the proposed method [42]. When businesses launch multiple products or services, a mass
number of data are processed to make the recommendations to clients. These data are heterogeneous
and imbalanced, since their sources are from different domains. Data from users, such as ratings,
number of likes, and website surfing history, are collected, clustered, and stored into the database.
The cross-domain recommendation system engine will process these data to build the model. A set
of parameters could be adjusted at this stage to obtain the best accuracy. The system output is the
user-preferences prediction that is used to recommend items to the customers.

Particularly, according to the Figure 2, multiple datasets from various domains are preprocessed
in a knowledge transfer module. Here, these data will have similarities identified and latent features
extracted, and we will perform knowledge transformation. Then in the next phase, the prediction
model will analyze all the information exported from the preprocessing phase in order to apply
the appropriate algorithms for training and prediction generation. In this phase, most parameters
are turned repeatedly to choose the best set for maximizing the whole system’s accuracy. By this
workflow, a CDRS can deal with heterogeneous input data and produce recommendation items in
various scenarios.
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Figure 2. Conceptual framework for cross-domain recommendation system.

5. Experiments

In this section, we report experiments done to evaluate the recommendation quality of the
proposed recommendation model against some baseline state-of-the-art recommendation techniques.

5.1. Dataset

To better illustrate our method, this section outlines a small-scale example. There were two
datasets used: Movielens (https://movielens.org/) and Amazon Food (https://www.kaggle.com/
snap/amazon-fine-food-reviews). The statistical information for these datasets is presented in Table 1.

Table 1. Statistics of datasets.

Movielens100k Amazon Food

#user 943 1072
#item 1675 1819

#rating 90,570 113,895
rating range 1–5 1–5

As shown in Table 1, the movielens100k dataset includes 943 users with 90,570 ratings for
1675 items. Therefore, its sparsity is extremely high (0.057%). Similarly, the Amazon food
dataset is sparse, at around 0.058%. This sparsity is natural with respect to real-world situations
in recommendation services [43]. The remaining unknown ratings are a big challenge for the
recommender system to predict.

We chose three other related algorithms to compare with the proposed algorithm:

• The rating matrix generative model (RMGT): [23] one of the most popular algorithms for testing
cross-domain recommended performance.

• The singular value decomposition-based MF (SVD) [44].
• The SVD++-based MF (SVD++) [45] is an extension of the SVD considering implicit ratings.

For each algorithm, we used gradient descent and implicit stochastic gradient descent, respectively,
for optimization.

https://movielens.org/
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
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5.2. Evaluation Metric

We adopt the mean square error (MSE) to measure the accuracy of predicted ratings, which
measures the sum of squared distances between our target ratings and predicted values. MSE is
defined as follows:

MSE =

n

∑
i=1

(yi − yp
i )

2

n
. (22)

Additionally, we use mean absolute error (MAE) which has frequently been used to compare
prediction errors of recommendation methods. This measurement is defined as follows:

MAE =

n

∑
i=1
|yi − yp

i |

n
, (23)

where n denotes the number of tested ratings, yi is real ratings, and yp
i is predicted ratings.

This approach is used because the predicted rating values create an ordering across the items in
which the predictive accuracy can also be used to measure the ability of a recommendation system to
rank items with respect to user preference [46].

We use k-fold cross-validation to split the dataset. A k-fold cross-validation is where a given
dataset is split into a k number of sections/folds where each fold is used as a testing set at some point.
To select a proper k is important since a poorly chosen value may cause a misrepresentation of the
methods. In this experiment, k is set as 10, because 5 and 10 have empirically shown to yield test error
rate estimates that suffer neither from excessively high bias nor very high variance, according to [47].
Here, the dataset is split into ten folds. In the first iteration, the first fold is used to test the model,
and the rest is used to train the model. In the second iteration, the second fold is used as the testing
set, while the rest serves as the training set. This process is repeated until each fold of the ten folds
has been used as the testing set. As we repeat the process k times, we get k times mean square error
(MSE). MSE1, MSE2, . . . MSEk, so k-fold cross-validation error is computed by taking average of the
MSE over k folds.

5.3. Baseline

A matrix factorization method is applied to solve the problem in (15). Eventually, we have to
optimize the loss function L. An optimized method based on the gradient descent algorithm is used to
solve this problem. Notably, four variables will be separated into two pairs. For each iteration, one of
the pairs is kept constant, while the other is optimized [48]. This process repeats sequentially until
convergence is achieved based on the push–pull gradient. After convergence, the sub-optimal solution
can be obtained. This solution is used as a baseline.

5.4. Experiment Parameters

Two optimization methods are used for comparison: gradient descent (GD) and implicit stochastic
gradient descent (ISGD) [49,50]. The set of parameters is presented in Table 2. We have chosen these
parameters based on a series of empirical tests.

Table 2. Experiment parameters.

Parameters Values

Regularization parameter λ 0.01–0.1
K 10–50

Learning rate 50
Initial value of w, x random

Number of iterations 10
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5.5. Evaluation and Discussions

Now we solve the problem in this paper by optimizing all the variables simultaneously.
The implicit stochastic gradient descent (ISGD) method is applied. Firstly, it is necessary to transform
the original problem in (15) into the convex problem [51] formulated in (21). The parameters listed
in Table 2 are the same as the baseline case. To deal with a vast quantity of variables, it is required
to apply some techniques for accelerating convergence rate. Algorithm 1 shows the updating step in
each iteration.

Figure 3 shows the typical convergence behavior of the algorithms for the loss function
minimization problem. As a result, ISGD needs only a few iterations to reach the convergence
value. Moreover, its convergence value is much lower in comparison with the baseline.

When K varies from 10 to 40, as shown in Figure 3. The slope of the ISGD convergence line also
changes accordingly. When K is more extensive, this slope also increases. This leads to the initial value
of the objective function also increasing significantly. The results showed the larger the K selected,
the higher the objective value obtained at the first iteration. When K is larger, the dimensions of x, w
increase accordingly. This leads to an increase in the number of elements in x, w that makes their
values larger. Finally, the value of the objective function will be larger. However, the convergence
value is approximately the same.

1 2 3 4 5 6 7 8 9 10
Number of iterations

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

M
ea

n 
sq

ua
re

 e
rr

or

K=10
K=20
K=30
K=40
data5
data6
data7
data8

ISGD

GD

Figure 3. Typical convergence rate of GD and ISGD with varieties of K.

Let K be 10; the results according to changing the value of λ from 0.01 to 0.1 are shown in Figure 4.
It shows the difference in the convergence rates when we change the regularization parameter λ. When
λ is small, the objective value is obtained as a small value at the first iteration, and the convergence
rate is slow. Nevertheless, with the higher λ is selected, a higher objective value is obtained at the first
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iteration accordingly, and the convergence value is reached faster. When K is increased (e.g., 20, 30, 40)
and λ value is set as the highest value (0.1), the initial objective value is much larger since it is affected
by two factors, and the convergence value is reached faster.

We recognize that the parameter K is used to adjust the approximation process. It acts the role of
the dimension for approximation. The bigger K is the more accurate approximation. Nevertheless,
when K increases, the value of the objective function will increase accordingly. It will be a penalty since
it has a norm of x and w. This leads to a trade-off problem between the MSE and the computation
complexity. K can not be so large, and the MSE has to be as small as possible.

1 2 3 4 5 6 7 8 9 10
Number of iterations

0.5

0.6

0.7

0.8

0.9

1

1.1

M
ea

n 
sq

ua
re

 e
rr

or

K=10

Figure 4. Typical convergence rate of ISGD with varieties of λ.

Regarding convergence time, we have measured the time until convergence between GD and
ISDG. The results are shown in Table 3. In Figure 5, we can notice that the proposed method
shows efficiency in terms of reducing computation time. On average, computation time has been
reduced 15.2%.

Table 3. Computation time comparison (seconds).

K Value GD Method ISGD Method

K = 10 452 389
K = 20 583 476
K = 30 697 595
K = 40 812 699
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Figure 5. Computation time comparison between two methods.

Furthermore, the proposed method shows a significant result regarding prediction accuracy.
Table 4 and Figure 6 show an MAE comparison between our method and other techniques. It shows
that the effect of the method in this paper is better than that of other comparison methods on all tests.
That is, the experimental result shows that using the ISGD technique to optimize the objective function
in MFCF improves the performance of the cross-domain recommendation system.

Table 4. Comparison of MAE with other techniques.

SVD_GD SVD_ISGD SVD++_GD SVD++_ISGD RMGM_GD RMGM_ISGD

MAE 0.7812 0.6019 0.7964 0.5938 0.8211 0.612

SVD SVD++ RMGM
Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

M
AE

GD
ISGD

Figure 6. Comparison of MAE with other techniques.

When K varies from 10 to 40, the implicit update techniques show its efficiency to increase the
convergence time. Unfortunately, the objective function has a norm of x and w, which can lead to
a trade-off problem between the MSE and the computation time. Additionally, our goal is to make
the MSE to be as small as possible, so K can not be so large. This issue will be the limitation of
our paper. We have to make a balance between the accuracy of the recommender system and the
computation time.

6. Conclusions and Future Works

In this paper, we proposed a new method to consolidate multiple matrices from multiple domains
for building a cross-domain recommendation system. After the consolidation, the matrix was factorized
by using MFCF. The problem was to maximize the accuracy of the prediction of unknown ratings of
users. To address the design problem, we transformed the original problem into sub-problems of lower
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dimensions. Then the iterative algorithm was proposed based on the inner approximation method to
solve the sequence of convex programs. We applied the implicit stochastic gradient descent method for
implicit updating each iteration. Our method with realistic parameters monotonically improved the
objective function, and the convergence to a stationery point is guaranteed. Through the experiment,
we demonstrated the usefulness of our approach in improving the accuracy of the CDRS.

As future work, we plan to consider using multiple data that have different distributions and
attributes to test the performance of a cross-domain recommendation system. Based on this way,
we can investigate the appropriate set of parameters for each specific type of data or type of domain
in general.
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