
Epidemiology and Infection

cambridge.org/hyg

Original Paper

Cite this article: Fernández-Salinas J, Aragón-
Caqueo D, Valdés G, Laroze D (2021). Modelling
pool testing for SARS-CoV-2: addressing
heterogeneity in populations. Epidemiology
and Infection 149, e9, 1–7. https://doi.org/
10.1017/S0950268820003052

Received: 22 September 2020
Revised: 21 November 2020
Accepted: 17 December 2020

Key words:
Coronavirus; modelling; pool testing; public
health; strategy

Author for correspondence:
Javier Fernández-Salinas,
E-mail: javier.fernandez@alumnos.uv.cl

© The Author(s), 2020. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

Modelling pool testing for SARS-CoV-2:
addressing heterogeneity in populations

Javier Fernández-Salinas1 , Diego Aragón-Caqueo1 , Gonzalo Valdés2

and David Laroze3

1Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile; 2Departamento de Ingeniería Industrial y de
Sistemas, Universidad de Tarapacá, Casilla 7D, Arica, Chile and 3Instituto de Alta Investigación, CEDENNA,
Universidad de Tarapacá, Casilla 7D, Arica, Chile

Abstract

Amplifying the testing capacity and making better use of testing resources is a crucial measure
when fighting any pandemic. A pooled testing strategy for SARS-CoV-2 has theoretically been
shown to increase the testing capacity of a country, especially when applied in low prevalence
settings. Experimental studies have shown that the sensitivity of reverse transcription-
polymerase chain reaction is not affected when implemented in small groups. Previous models
estimated the optimum group size as a function of the historical prevalence; however, this
implies a homogeneous distribution of the disease within the population. This study aimed
to explore whether separating individuals by age groups when pooling samples results in
any further savings on test kits or affects the optimum group size estimation compared to
Dorfman’s pooling, based on historical prevalence. For this evaluation, age groups of interest
were defined as 0–19 years, 20–59 years and over 60 years old. Generalisation of Dorfman’s
pooling was performed by adding statistical weight to the age groups based on the number of
confirmed cases and tests performed in the segment. The findings showed that when the pool-
ing samples are based on age groups, there is a decrease in the number of tests per subject
needed to diagnose one subject. Although this decrease is minuscule, it might account for
considerable savings when applied on a large scale. In addition, the savings are considerably
higher in settings where there is a high standard deviation among the positivity rate of the age
segments of the general population.

Introduction

Testing for early recognition of infection sources and cutting off transmission forms the
cornerstone of any public health response to emerging outbreaks [1]. Increasing a country’s
testing capacity to identify infected individuals and to contain the spread of the virus is a cru-
cial strategy [1, 2]. Most countries have been ramping up their testing capacity to different
degrees; some are doubling it in a matter of weeks, while others are steadily increasing their
capacity in a more linear pattern [3]. However, amplifying the testing capacity is still an
ongoing task to face the pandemic. To improve the use of limited resources and to obtain
the most out of each testing kit, implementing a pool testing strategy has been proposed [4].

The foundational work for this strategy dates back to 1943, based on Dorfman’s pooling,
who first introduced the concept of pooling clinical specimens to save on testing resources
[5]. This strategy could potentially increase worldwide testing capacity many times over [6],
if used correctly, in the right segment of the population and under the specific historical preva-
lence of positive results [7, 8] and test sensitivity [9]. It has also shown promising results as a
screening tool in clinical practice [10, 11], and it has been implemented on a large scale to test
asymptomatic individuals, showing a considerably increased throughput in testing coverage
while maintaining test sensitivity [12]. In addition, the WHO has recently established that
group testing for SARS-CoV-2 is a feasible strategy that can increase testing capacity and
can be applied in low prevalence settings. However, it does not recommend routine pooling
in laboratories or using pooled samples for contact tracing purposes [13].

Several pooling strategies have been proposed [14, 15]. One that adapts to the clinical reality
and could potentially be implemented in the healthcare setting establishes that multiple
samples are grouped in a pooled sample, and a single reverse transcription-polymerase
chain reaction kit is used to test that unified sample. If the test comes out negative, then
the infection is ruled out in all of the individuals included in the pooled sample. If the test
comes out positive, then all of the individuals in that group have to be retested individually
[5, 6]. This strategy has been previously implemented to test for other pathogens before an
outbreak. Examples include HIV [16, 17], chlamydia [18], influenza [19], cytomegalovirus
[20] and many others, concluding that it is a cost-saving strategy that increases overall testing
capacity in a clinical context where the prevalence of the pathogen is low. Since the peak of the

https://www.cambridge.org/hyg
https://doi.org/10.1017/S0950268820003052
https://doi.org/10.1017/S0950268820003052
mailto:javier.fernandez@alumnos.uv.cl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0224-9902
https://orcid.org/0000-0001-7233-960X
https://orcid.org/0000-0001-6170-0818
https://orcid.org/0000-0002-6487-8096


pandemic has already passed in most countries [21], positivity
rates remain relatively low. This scenario makes it especially suit-
able for the pool testing strategy to be implemented since, in the
context of a low prevalence, this approach is more efficient.

Regarding SARS-CoV-2, experimental studies suggest that
pooling nasopharyngeal samples under a 10% prevalence of posi-
tives translates into considerable savings [22], with no decrease in
sensitivity in groups of five samples [6]. Additionally, other stud-
ies have shown that a single positive can be detected in groups of
up to 32 samples [23]; however, there is a 10% margin of error.
Moreover, the viral load might play a decisive role in the sensitiv-
ity of the pooled samples [24], and targeting two genes of
SARS-CoV-2 might increase the efficiency of the detection of
positive samples in minipools of 5–10 samples [25]. However,
since the pooling of specimens might reduce the test sensitivity
due to pooling dilution, the optimal group sizes should be
thoughtfully estimated [26, 27]. In addition, it is crucial to estab-
lish guidelines for efficient and accurate pooling algorithms that
will ensure maximum throughput of the strategy when implemen-
ted in the clinical context [28].

Previous models for estimating the optimum group size based on
the historic positive prevalence have been proposed [5, 7, 9, 27].
Nevertheless, since the calculations are based on historical preva-
lence, they assume a homogeneous distribution of the population
contained in that prevalence, and it is clear based on the clinical
context that this does not hold true. Taking into account the distri-
bution of confirmed cases among age groups, it can be observed
that some countries have the majority of their confirmed cases in
the young adult population, while other countries have it among
the elderly population [29]. Therefore, it becomes prudent to
explore how the particular distribution of confirmed cases among
age groups might play a role in the problem of pooling optimisation.

The aim of this study is to explore whether there is any
improvement in test savings based on Dorfman’s probabilistic
model for estimating the group size when individuals are
separated by age groups when grouped into equally sized pooled
samples among the age categories.

Materials and methods

The groundwork for this generalisation is Dorfman’s pooling [5],
which has been applied for SARS-CoV-2 [7]. In this model, the
estimation of optimum group size (n) for the implementation of
pool testing was performed based on the historical prevalence of
positives (x) as the input. This model estimated group sizes that
ranged from 11 to 3 subjects, for a prevalence of positives
from 1% to 30%. It predicted a 40.6% saving of tests for a prevalence
of 10%, using groups of 4, and a 17.9% saving for a prevalence of 20%
with groups of 3. The model flattens when the prevalence reaches or
exceeds 30%, and the strategy is no longer useful compared to indi-
vidual testing. Themain findings provide a relationship for the num-
ber of tests per subject needed to diagnose one subject (z) using a
pool testing strategy, which is denoted by z = z(n, x), where n stands
for the optimum group size and x stands for the historical prevalence
of positive tests in a particular context. In particular, z can be further
derived in the following form:

z(n, x) = 1− ((1− x)n(n− 1)− (1− (1− x)n))
n

= 1− (1 − x)n + 1
n

(1)

We remark that n can be estimated using the global minimum at a
given x. However, as mentioned above, using x as an input assumes
a homogeneous distribution of the infected individuals, which differs
from the clinical reality. Therefore, adding statistical weight to differ-
ent epidemiological features known to date and addressing how
those features may fit the individual who is being included in the
pooled sample further optimises the estimation of n. For this particu-
lar case, we will explore how age groups might affect the n and z that
the model predicts. Knowing that x is a function of many factors that
are included together to represent an apparent homogeneous distri-
bution, to isolate how pooling by age might affect the overall per-
formance of the pool testing strategy, a statistical weight is added
to the age segments of interest. This weight is estimated based on
the portion of testing that each age group receives, which is defined
as an empirical parameter. The reason for this is because this gener-
alisation assumes that the distribution of testing among the age
groups is not proportional to the age distribution of the general
population under study, thus implying that some groups receive a
greater proportion of the available tests than others.

Let us remark that this model is developed so that the preva-
lence of positives in each age segment is proportional to the over-
all prevalence of positives; thus, the generalisation is governed by
the global prevalence of positives rather than the particular preva-
lence in each segment of interest. In this way, the pool sizes
estimated are the same throughout the segments.

Note that the efficiency of pooling and group sizes predicted
by this model is compared here to two other models. First,
we used standard Dorfman’s pooling and second, we used
Dorfman’s pooling separated by age groups, using the prevalence
of each age segment individually.

Generalisation: addressing heterogeneity

In this case, we consider that there are different population
segments to account for. That is, we now consider that the gener-
alised function of Eq. (1) becomes a linear combination of z
functions weighted by constants, εi, where i = 1, …, N, such
that N represents the number of segments. This generalisation
is intended to capture the heterogeneity between the population
segments. This heterogeneity arises from the different positivity
rates among the age segments, unequally represented in the
total tests. Therefore, different segments show up weighing differ-
ently in the optimisation problem. The involved friction captured
by the heterogeneity parameter, εi, could be related to age groups,
demographic segregation, sampling time mismatch and many
others, but for this case, it will be related to age groups.

Therefore, it is necessary to account for this heterogeneity in x
and remove the assumption from the basic model in which a
homogeneous distribution across segments was assumed. Then,
let us consider that for each segment, the prevalence is also
weighted by factors γi. Therefore, the new objective function,
znew, represents the generalisation idea explained before and can
be explicitly written as:

znew =
∑
i

1i z (n, gi x) (2)

This means there is a distribution across segments characterised
by xi = γix such that the whole population’s historical prevalence
of positive tests is x. From this, the prevalence of positives in a
segment can be defined as a function of the global prevalence,
thus facilitating the generation and comparison of various
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heterogeneous scenarios with different global positivity but, even-
tually, with a proportional distribution of cases. In other words,
this generalisation implies that there is a population parameter
x that is the resulting linear combination of the segment’s specific
parameters xi. Since we know the statistical measure for the whole
population’s historical prevalence of positive tests, x, we construct
a distribution around that known value to characterise the vari-
ability of prevalence among the groups. Certainly, it is possible
to define this distribution in other ways as well. From these, εi
is determined as the test performed in the segment, divided by
the total tests performed, while γi, as mentioned before, is defined
as the prevalence in the segment (xi) divided by the global
prevalence (x).

Next, let us analyse the case of N = 3. For this purpose, we
assume that three groups of interest are established, which will
later be defined as age groups from 0 to 19, 20 to 59 and >60.
To provide closure of the linear superposition, we can assume
that the total statistical weight should be one; this implies that∑

i 1i = 1. On the contrary, the total prevalence remains a global
parameter

∑
i gi1i = 1 . Therefore, at N = 3, when (εi, γi) are

established for the first two groups of interest, the third closing
group should meet the following conditions: ε3 = 1− ε1− ε2,
γ3 = (1− γ1ε1− γ2 ε2)/(1 − ε1− ε2), such that ε1 + ε2≠ 1. To
quantify heterogeneity in the possible combinations of the para-
meters, the standard deviation (σ) of the prevalence of positives
can be calculated as follows:

s =
��������������������������������������������
11(1− g1)

2 + 12(1− g2)
2 + 13(1− g3)

2
√

(3)

From Eq. (2), two numerical experiments appear to be interesting.
The first is related to evaluating z and n for different country
scenarios, as each country will have a particular combination of
εi and γi for each age segment. The second considers assessing
whether there is a formula describing the variation of z as a func-
tion of heterogeneity σ.

Determining empirical values for ε and γ

As mentioned before, when generalising Dorfman’s pooling for
evaluating how pooling by age groups might affect the overall per-
formance of the strategy, three age groups of interest arise. The
first segment will be defined as individuals between the ages of
0 and 19 years old who, due to the closure of schools, are likely
to have stayed at home. The second group will be defined as
working-class adults, ranging from 20 to 59 years of age. Finally,
and represented by the closing function, the third group of inter-
est will be defined as the older adult population of 60 years old
and above. This is because they are probably no longer part of
the working population and are also likely to stay at home.

Unfortunately, a testing distribution by age group data is not
available for most countries. Most epidemiological reports usually
report the total number of tests performed and the number of con-
firmed cases. The confirmed cases are then further classified into
age groups. However, out of all of the tests performed, there is
no report on the age groups among the population getting tested.

Nevertheless, publicly available information published by the
Australian state of New South Wales (NSW) [30] and information
obtained via the Transparency Law from two Chilean hospitals,
Hospital Calvo Mackenna, Santiago and Hospital Grant
Benavente, Concepción, were used as references. Let us remark
that the samples reported by the Chilean hospitals included in

this study group the processing samples of both the hospital itself
and all of the primary care centres across the territory that the
hospital covers. The NSW state reported between the 9th of
March and the 24th of April 2020 a total of 193 716 tests, from
which 2943 were positive, yielding an overall prevalence of posi-
tives of 1.5%. On the contrary, the Hospital Calvo Mackenna
reported 14 586 tests performed up to the 16th of July, with
5730 being positive, yielding an overall positivity rate of 39.3%.
Finally, the Hospital Grant Benavente reported up to the 26th
of July 35 068 tests performed, of which 5205 were positive, yield-
ing an overall prevalence of positives of 14.8%. From these, the
estimated ε and γ values are summarised in Table 1.

It is important to add that γ3 and ε3 arise from the closing
function but are shown in the table for a better comprehension
of the scenarios described.

Generalisation of z according to heterogeneity (σ)

To evaluate whether there is a determined relationship between
the optimal z as a function of heterogeneity (σ) and between
the percentage decrease of the optimal z with respect to the z
obtained in the initial model (1) (where σ is assumed to be 0),
a scatter plot of (1) as a function of σ for six different prevalences
(5%, 10%, 15%, 20%, 25% and 30%) will be presented. In case a
trend is observed, the function of best fit describing this trend
will be calculated through nonlinear regression.

The data composing these scatter plots will correspond to 149
pairs of z and σ for each of the six analysed prevalences (x) that
arise from solving Eq. (2) for five different combinations of ε1 and
ε2 (0.1–0.2, 0.1–0.3, 0.2–0.6, 0.3–0.4, 0.3–0.5) and 30 γ combina-
tions (γ1 varying from 0.4 to 0.8, and γ2 varying from 0.9 to 1.4,
both with intervals of 0.1). Finally, ε3 and γ3 will be determined in
each case by their closure function. It is important to mention
that a combination was discarded since it presented a negative
γ3, which is not possible in reality.

Generalisation: addressing specific scenarios

Having introduced all of the parameters that will come into play
when estimating n when the pool groups are separated by age,
specific simulations based on the state and hospital data can be
established. Since γ2 accounts for the age segment of individuals
from 20 to 59, with the highest number of confirmed cases world-
wide [25], it will vary from 0.8 to 1.2 in the intervals of 0.2
because, as seen in Table 1, this is the range of possible values
that γ2 might take.

Table 1. Different ε and γ values obtained in specific scenarios

New South
Wales state

(AUS) (n = 193
716)

H. Calvo
Mackenna (CHL)

(n = 14 586)

H. Grant
Benavente (CHL)

(n = 35 068)

ε1 0.101 0.196 0.129

ε2 0.691 0.626 0.692

ε3 0.208 0.178 0.179

γ1 0.396 0.582 0.789

γ2 0.941 1.082 1.090

γ3 1.489 1.171 0.804
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Finally, let us comment that all of the computations were
performed with software Wolfram Mathematica, along with
Microsoft Excel 365 for the nonlinear regressions [31, 32].

Ethical aspects

It is important to mention that no approval from an Ethics
Committee is necessary since the information from the NSW is
publicly available on its website, while the data from Chile are
subject to the Transparency Law, where each institution providing
the information guarantees that the data provided do not com-
promise/detract the anonymity of the patients and is also consid-
ered information in the public domain.

Results

z in particular countries

Optimal values were observed in scenarios of a low prevalence of
positives, ranging from 0.05 to 0.3 regardless of the country. The
global minimum indicates where the optimal value of z is as a
function of n at a given x. Figure 1 shows the local minima
obtained in the model adapted to Australia, specifically for the
New South Wales state, since it had the most complete and avail-
able data and thus serves as the scenario in which the model bet-
ter adapts to a specific reality.

Chile and Australia (as shown in Fig. 1) showed their last local
minimum at a prevalence of 0.3. From then on, the model
becomes undefined, the curve tends to flatten or fall, and there
is no global minimum. As mentioned earlier, ε stands for the spe-
cific statistical weight for a given age group. These remain reason-
ably fixed or change little over time. However, since γ represents
the relative risk for a particular group and is heavily influenced by
the newly confirmed cases that come up every day, this parameter
is rather dynamic; thus, it needs to be varied across possible values
that it could take as the pandemic progresses.

Table 2 summarises the main results that arise from varying γ2
across the segments from 0.8 to 1.2, which are the possible values

that γ2 might take at different historical prevalences based on the
specific context of each country included in the simulations.

Generalisation of z values in the function of σ

On the contrary, as shown in Figure 2a, it can be observed that for
all values of x, the optimum value of z decreases as the heterogen-
eity of the tested population increases (σ). However, this decrease
is not equal for all cases, showing a more significant reduction at
the higher prevalence spectrum. For a 30% prevalence of positives,
there is a net decrease of 0.065 in Zop when it goes from zσ=0 =
0.99 to zσ=0.614 = 0.925. On the contrary, for a low prevalence,
the case that varies the least is for a 5% positivity, showing a
decrease of 0.008 in the Zop from zσ=0 = 0.426 to zσ=0.614 =
0.418. This translates into an additional benefit compared to the
classic pool testing strategy, where σ is assumed to be 0. This
benefit ranges from 1 extra test every 14.1 tests for a 30% preva-
lence to 1 extra test every 22.2 tests for a 5% prevalence at the
highest spectrum of σ.

The optimal value of z can be obtained as a function of σ for
different prevalences. It can be expressed through the following
second-degree polynomial regressions:

zop ≈ a0 + a1s+ a2s
2, (4)

where the constant {aj} is a function of the prevalence. In
Figure 2b, the percentage decrease of the optimum z, PDz, as a
function of σ with respect to the optimum z estimated for σ = 0,

Table 2. Summary of the main findings for n and z from varying γ2 across
different scenarios

γ2 x

New South
Wales (AUS)

H. Calvo
Mackenna
(CHL)

H. Grant
Benavente

(CHL)

n z n z n z

0.8 0.05 5 0.421 5 0.42 5 0.422

0.1 4 0.582 4 0.58 4 0.585

0.15 4 0.705 4 0.702 3 0.709

0.2 3 0.798 3 0.795 3 0.804

0.25 3 0.878 3 0.873 3 0.887

0.3 3 0.946 3 0.941 3 0.959

1.0 0.05 5 0.425 5 0.425 5 0.426

0.1 4 0.591 4 0.59 4 0.593

0.15 3 0.716 3 0.715 3 0.719

0.2 3 0.816 3 0.814 3 0.82

0.25 3 0.903 3 0.901 3 0.91

0.3 3 0.98 3 0.977 3 0.988

1.2 0.05 5 0.424 5 0.425 5 0.424

0.1 4 0.589 4 0.59 4 0.589

0.15 4 0.714 3 0.715 3 0.713

0.2 3 0.812 3 0.814 3 0.811

0.25 3 0.898 3 0.901 3 0.896

0.3 3 0.972 3 0.977 3 0.97

Fig. 1. z as a function of n for different prevalences (x) ranging from 0.05 to 0.4 for the
particular case of New South Wales state, Australia. Horizontal axis: group size of a
pooled sample (n). Vertical axis: number of tests per subject needed to diagnose
one subject (z). Different colours represent different prevalences. Input: ε1 = 0.101,
ε2 = 0.691, ε3 = 0.208, γ1 = 0.396, γ2 = 0.941 and γ3 = 1.489.
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can be observed. Similar to what is mentioned above, there is a
relative decrease in z for a larger σ. This decrease is greater at a
higher prevalence. For a prevalence of 5%, the maximum decrease
in z observed is 1.8% when σ = 0.614 with respect to the same par-
ameter when σ = 0 (as assumed in Dorfman’s pooling). On the
contrary, for a prevalence of 30%, z decreases up to 6.6% when
σ = 0.614 with respect to when σ = 0. This percentage decrease of
z, PDz, can be expressed by a power law, PDz≈ bσ2, such that
the value of b depends on the prevalence. We remark that the
value of R2 in the regression varies from 0.998 to 1.0. Table 3 sum-
marises the function that best fits the respective optimal value of z
and PDz for different values of the prevalence.

Variations in optimum group size (n)

In the initial model (1) (which assumes σ = 0), the optimum n
when x = 0.05 is 5, when x = 0.1 it is 4, and when x is equal to
0.15, 0.2, 0.25 and 0.3 it is 3. In a model that considers heterogen-
eity, for x = 0.05 and x = 0.1, the optimum n was 5 and 4, respect-
ively, in 149/149 combinations with σ from 0.068 to 0.614. For
x = 0.15, the optimum n was 3 in 140/149 combinations, with
σ from 0.068 to 0.465, while for the nine combinations with a
higher σ, from 0.49 to 0.614, the optimum n was 4. For x = 0.2,
the optimum n was 3 in all 149 combinations. For x = 0.25, the
optimum n was 3 in 148/149 of the combinations between σ
values of 0.068 and 0.614, with the only exception being the com-
bination of σ = 0.525 (the third highest), where the optimum n
was 4. For x = 0.3, the optimum n was 3 for the 141 combinations
with the lowest σ, from 0.068 to 0.49, while of the remaining eight

combinations, with σ between 0.49 and 0.614, the optimum n was
4 for five of them and 3 for the remaining three.

Standard Dorfman’s pooling, Dorfman’s pooling by prevalence
in age segments and pooling by age segment based on the
general prevalence

As mentioned before, three strategies arise when pooling based on
prevalence (x). The first scenario is standard Dorfman’s pooling,
where group sizes are calculated by the global prevalence. The
second scenario is when samples are separated by age group
and pool sizes are calculated based on the prevalence of that spe-
cific age segment, which in turn will yield different pool sizes
across the segments. The final scenario, and as this model pro-
poses, is to separate by age groups but calculate group sizes in pro-
portion to the global prevalence, which will yield equally sized
pools across the segments. Table 4 summarises the different n
and z values predicted by each strategy in the different scenarios.

Let us add that Global 1 represents the overall efficiency of
Dorfman’s pooling separated by age groups. Global 2 represents
the overall efficiency of pooling as proposed in this model.
Finally, Global 3 represents the efficiency of pooling based on
prevalence, without separation into age groups.

To facilitate comparisons between strategies, the prevalence
and the z values obtained were expressed in their percentage form.

Note that the values for n and z presented in Table 4 for the
strategy proposed in this model (Global 2) are under σ values
of 0.298, 0.209 and 0.135, respectively. These are the values
empirically observed for σ in each setting and account for a
PDz of 0 to 0.29%. In contrast, for the other strategies (Global 1
and Global 3), σ is assumed to be 0.

Discussion

As described in the ‘Results’ section, when distributions present
higher heterogeneity, better z values are observed. A lower value
of z means greater test savings, since fewer tests are needed to
diagnose one subject, and a greater portion of the population
can be covered. This inverse relationship between heterogeneity
and z implies that the limits of the usefulness of the strategy
can potentially be stretched to work on an even higher prevalence
of positives in a context where the heterogeneity of the population
is high and pooling of the samples is separated by age groups.

Fig. 2. (a) Optimum z as a function of σ for different
prevalences colour-coded, from 0.05 to 0.3.
Horizontal axis: heterogeneity of the population (σ).
Vertical axis: optimum number of tests needed to
diagnose one subject (z) based on the optimum
group size previously calculated. (b) Relative percent-
age decrease of the optimum z as a function of σ with
respect to the optimum z estimated for σ = 0
expressed in logarithmic form. Horizontal axis: het-
erogeneity of the population (σ). Vertical axis: per-
centage decrease of the optimum z as a function of
σ with respect to the optimum z estimated for σ = 0.

Table 3. Coefficients a0, a1, a2 and b to estimate z and PDz as a function of σ at
different prevalence settings

x a0 a1 a2 b

0.05 0.426 −4.55 −0.0206 5

0.1 0.594 −1.45 −0.0459 8.12

0.15 0.718 9.46 −0.0768 8.26

0.2 0.822 −3.36 −0.0896 11.6

0.25 0.912 −5.9 −0.13 15.3

0.3 0.991 −4.42 −0.182 19
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For most cases, when γ2 varies from 0.8 to 1.2, the group sizes
predicted tend to be equal to the group sizes estimated by
Dorfman’s pooling. However, it is observed that as σ increases,
the group size predicted by this model might vary, tending
towards greater group sizes at a higher prevalence when σ is
high. Let us remark that the z values achieved are lower in any
given context, regardless of the group size estimated, compared
to Dorfman’s pooling. Although the difference between the z pre-
dicted might seem minimal when individually comparing z values
to the efficiency of Dorfman’s pooling, this difference might
account for significance savings in countries that have implemen-
ted mass testing as part of their response strategy. Knowing that
the USA is performing between 650 000 and 750 000 tests daily
[33], this minimal change in the z value might account for signifi-
cant savings on individual test kits.

However, as shown in Table 4, when looking from the perspec-
tive of the three strategies mentioned in this manuscript, the dif-
ferences in z values are rather minimal. Nevertheless, it can be
concluded that pooling by age using Dorfman’s pooling is the
strategy that yields the lowest z values, followed by pooling by
age groups with equally sized pools throughout the segments
and finally standard Dorfman’s pooling.

On the contrary, when looking at the applicability of each
strategy in the healthcare setting, although applying Dorfman’s
pooling by age seems to be the most efficient, using this approach
will yield different pool sizes across the segments. This, in turn,
might signify a greater logistical challenge than separating sam-
ples by age and generating equally sized pools throughout the seg-
ments, as this model suggests. Furthermore, separating samples by
age groups might also signify an additional logistical challenge
than not separating the samples at all. Thus, the logistical difficul-
ties of applying each strategy must be individually weighed to
implement what is best for each centre.

Nevertheless, when σ is taken into account, in settings where
there is a high standard deviation in the prevalence of positives
within age groups, pooling by these age groups can account for
even further savings. When σ was at its highest, these savings
ranged from 1 extra test for every 14.1 tests in high prevalence
settings where the strategy was shown to work, to 1 extra test
every 22.2 tests in low prevalence settings.

Finally, it is essential to highlight that although the model
predicts local minima at a high prevalence (when x ranges
from 0.3 to 0.35) for specific settings (such as Australia), this
has to be correlated with the z value associated with that local
minimum. This is because as z approaches 1, the overall per-
formance of the strategy becomes similar to individual testing.
When z equals 1, the same number of tests will be required to

cover the same population as individual testing (as was observed
for the Hospital Calvo Mackenna), and the strategy is no longer
useful. This is important to consider when interpreting the
group sizes predicted, as the strategy might be counterproduct-
ive, but the model might still show local minima before becom-
ing undefined.

Final remarks

From the model developed above, it is prudent to conclude that
when estimating the optimum number of subjects to include in
a pooled sample, separating samples by age groups is a measure
that could improve the use of resources compared to the estima-
tion of group size based on the overall prevalence of positives.
However, this improvement is minimal when applied on a
small scale. Additionally, when a population has high heterogen-
eity (defined as the standard deviation within confirmed cases
among the age segments), the model predicts better performance
at a high prevalence than populations with lower heterogeneity
under the same prevalence. When compared to standard
Dorfman’s pooling, separating samples by age segments but gov-
erning pool size estimation by the overall prevalence (as proposed
in this model), better outcomes are observed. This is mainly
objectifiable by the lower z values obtained by this method, at
any prevalence where the strategy seems to be useful, regardless
of the heterogeneity of the population. In this sense, the regres-
sion shown in PDz vs. σ might serve as a guide to determine
the composition of the segments, estimating how the maximum
benefit can be obtained and evaluating if this is clinically relevant.
This in turn might have an application in establishing screening
programmes for children and staff returning to classes, as some
schools are starting to reopen. However, for implementing such
measures, specific data describing the population under study
are key. In this way, age groups can be established based on the
possible age ranges that yield the greatest σ. From there, the
implementation of this strategy could be compared to standard
Dorfman’s pooling to determine if there is further saving of tests.

Moreover, it is important to emphasise that when facing
patients with high clinical suspicion, individual testing should
be conducted. Including a highly probable positive case in a
pooled sample could potentially mask all of the other negative
individuals included in the pooled group, making the use of
resources less efficient, as all of the individuals included in
the sample will then likely need to be retested individually.
Additionally, implementing pool testing in clinical practice
might signify a logistical challenge that needs to be addressed to
balance the net savings of tests with the extra sample processing

Table 4. Comparison of the pooled strategies mentioned

Age segment

NSW State (AUS) Hospital Calvo Mackenna (CHL) Hospital Grant Benavente (CHL)

x (%) n z (%) x (%) n z (%) x (%) n z (%)

0–19 0.6 13 15.22 22.85 3 87.41 11.71 4 64.24

20–59 1.43 9 23.27 42.5 1 100 16.18 3 74.44

>60 2.26 7 29.07 46.02 1 100 11.93 4 64.84

Global 1 1.52 13, 9, 7 23.66 39.28 3, 1, 1 97.52 14.84 4, 3, 4 71.41

Global 2 9 23.92 1 100 3 71.47

Global 3 9 23.99 1 100 3 71.57
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times that pooling samples might signify, along with staff avail-
ability and training in the matter.

Finally, regarding the prevalence of positives, since the peak of
the pandemic has already passed in most countries around the
world [21], prevalences over 0.3 are rarely reported. As restrictive
measures are slowly lifted and people begin to return to their nor-
mal lifestyle, pool testing might serve as a useful monitoring tool
to closely monitor the population and quickly detect and isolate
new cases that might arise in the upcoming future.

Acknowledgements. We are thankful to Dr Ricardo Segovia, M.D. (Hospital
Regional de Arica Dr Juan Noé Crevani) for useful discussions and his critical
reading of the manuscript. DL acknowledges partial financial support from
Centers of Excellence with BASAL/CONICYT financing, Grant AFB180001,
CEDENNA, and from AGCID grant under BIL-PER-2020-735. GV acknowl-
edges financial support from Proyecto Mayor de Investigación Científica y
Tecnológica UTA Mayor 2020 (8750-20).

Conflict of interest. The authors have no conflicts of interest to declare.

Data availability statement. The data supporting the findings are openly
available to the public. From the Australian Government it is available at
the NSW webpage, https://data.nsw.gov.au/data/dataset/nsw-covid-19-tests-
by-age-range. From the Chilean Government, it is available upon request,
subject to the Transparency Law, at https://www.interior.gob.cl/solicitud-de-
informacion-ley-de-transparencia/.

References

1. World Health Organization (2020) Laboratory Testing Strategy
Recommendations for COVID-19: Interim Guidance. Geneva,
Switzerland: World Health Organization. Available at https://apps.who.
int/iris/handle/10665/331509 (Accessed 26 June 2020).

2. Studdert D et al. (2020) Disease control, civil liberties, and mass testing –
calibrating restrictions during the Covid-19 pandemic. New England
Journal of Medicine 383, 102–104.

3. Our World in Data (2020) Total COVID-19 test per 1000 people. Oxford
Martin School. Available at https://ourworldindata.org/grapher/full-list-
cumulative-total-tests-per-thousand?time (Accessed 26 June 2020).

4. Mallapaty S (2020) The mathematical strategy that could transform cor-
onavirus testing. Nature 583, 504–505.

5. Dorfman R (1943) The detection of defective members of large popula-
tions. The Annals of Mathematical Statistics 14, 436–440.

6. Seifried E et al. (2020) Pool Testing of SARS-CoV-02 Samples Increases
Worldwide Test Capacities Many Times Over. Frankfurt, Germany:
Aktuelles Aus Der GoetheUniversitt Frankfurt. Available at https://aktuelles.
uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-increases-
worldwide-test-capacities-many-times-over/ (Accessed 26 June 2020).

7. Aragón-Caqueo D et al. (2020) Optimization of group size in pool testing
strategy for SARS-CoV-2: a simple mathematical model. Journal of
Medical Virology 92, 1988–1994.

8. Sinnott-Armstrong N et al. (2020) Evaluation of group testing for
SARS-CoV-2 RNA. MedRxiv. doi: 10.1101/2020.03.27.20043968.

9. Cherif A et al. (2020) Simulation of pool testing to identify patients with
coronavirus disease 2019 under conditions of limited test availability.
JAMA Network Open 3, e2013075.

10. Hogan CA et al. (2020) Retrospective screening for SARS-CoV-2 RNA in
California, USA, late 2019. Emerging Infectious Diseases 26, 2487–2488.

11. De Salazar A et al. (2020) Sample pooling for SARS-CoV-2 RT-PCR
screening. Clinical Microbiology and Infection, 26, 1687.e1–1687.e5. doi:
10.1016/j.cmi.2020.09.008.

12. Ben-Ami R et al. (2020) Large-scale implementation of pooled RNA
extraction and RT-PCR for SARS-CoV-2 detection. Clinical Microbiology
and Infection 26, 1248–1253.

13. World Health Organization (2020) Diagnostic Testing for SARS-CoV-2:
Interim Guidance. Geneva, Switzerland: World Health Organization.
Available at https://apps.who.int/iris/bitstream/handle/10665/334254/
WHO-2019-nCoV-laboratory-2020.6-eng.pdf?sequence=1&isAllowed=y
(Accessed 18 September 2020).

14. Aldridge M (2020) Conservative two-stage group testing. ArXiv. Available
from https://arxiv.org/abs/2005.06617.

15. Eberhardt JN et al. (2020) Multi-stage group testing improves efficiency of
large-scale COVID-19 screening. Journal of Clinical Virology 128, 104382.

16. Boobalan J et al. (2019) Pooled nucleic acid testing strategy for monitor-
ing HIV-1 treatment in resource limited settings. Journal of Clinical
Virology 117, 56–60.

17. Westreich DJ et al. (2008) Optimizing screening for acute human
immunodeficiency virus infection with pooled nucleic acid amplification
tests. Journal of Clinical Virology 46, 1785–1792.

18. Currie MJ et al. (2004) Pooling of clinical specimens prior to testing for
Chlamydia trachomatis by PCR is accurate and cost saving. Journal of
Clinical Virology 42, 4866–4867.

19. Van TT et al. (2012) Pooling nasopharyngeal/throat swab specimens
to increase testing capacity for influenza viruses by PCR. Journal of
Clinical Virology 50, 891–896.

20. Silva J et al. (2020) Evaluation of saliva pools method for detection of
congenital human cytomegalovirus infection. Journal of Virological
Methods 275, 113759.

21. Institute for Health Metrics and Evaluation. IHME (2020). COVID-19
Projections. Available at https://covid19.healthdata.org/united-states-of-
america (Accessed 21 August 2020).

22. Abdalhamid B et al. (2020) Assessment of specimen pooling to conserve
SARS CoV-2 testing resources. American Journal of Clinical Pathology
153, 715–718.

23. Yelin I et al. (2020) Evaluation of COVID-19 RT-qPCR test in multi-
sample pools. Clinical Infectious Diseases 71, 2073–2078.

24. Wacharapluesadee S et al. (2020) Evaluating the efficiency of specimen
pooling for PCR-based detection of COVID-19. Journal of Medical
Virology 92, 2193–2199. doi: 10.1002/jmv.26005.

25. Torres I et al. (2020) Pooling of nasopharyngeal swab specimens for
SARS-CoV-2 detection by RT-PCR. Journal of Medical Virology 92,
2306–2307. doi: 10.1002/jmv.25971.

26. Pouwels KB et al. (2020) Group testing for SARS-CoV-2: forward to the
past? Pharmacoeconomics Open 4, 207–210.

27. Griesemer BS et al. (2020) Assessment of sample pooling for clinical
SARS-CoV-2 testing. BioRxiv. doi: 10.1101/2020.05.26.118133.

28. Pilcher CD et al. (2020) Group testing for severe acute respiratory
syndrome-coronavirus 2 to enable rapid scale-up of testing and real-time
surveillance of incidence. Journal of Infectious Diseases 222, 903–909.

29. World Health Organization (2020) Coronavirus Disease (COVID-19)
Situation Report – 198. Geneva, Switzerland: World Health Organization.
Available at https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200805-covid-19-sitrep-198.pdf?sfvrsn=f99d1754_2 (Accessed 21
August 2020).

30. New South Wales Ministry of Health, Australia. NSW COVID-19 tests
by age range. Available at https://data.nsw.gov.au/data/dataset/nsw-covid-
19-tests-by-age-range (Accessed 16 June 2020).

31. Wolfram Research. Wolfram Mathematica V 12.1.0 [2019]. Cambridge,
United Kingdom.

32. Microsoft Corporation. Office 365 Microsoft Excel [2019]. New Mexico,
United States.

33. The Covid Tracking Project. US Historical Data –US daily totals. Available
at https://covidtracking.com/data/us-daily (Accessed 20 August 2020).

Epidemiology and Infection 7

https://data.nsw.gov.au/data/dataset/nsw-covid-19-tests-by-age-range
https://data.nsw.gov.au/data/dataset/nsw-covid-19-tests-by-age-range
https://data.nsw.gov.au/data/dataset/nsw-covid-19-tests-by-age-range
https://www.interior.gob.cl/solicitud-de-informacion-ley-de-transparencia/
https://www.interior.gob.cl/solicitud-de-informacion-ley-de-transparencia/
https://www.interior.gob.cl/solicitud-de-informacion-ley-de-transparencia/
https://apps.who.int/iris/handle/10665/331509
https://apps.who.int/iris/handle/10665/331509
https://apps.who.int/iris/handle/10665/331509
https://ourworldindata.org/grapher/full-list-cumulative-total-tests-per-thousand?time
https://ourworldindata.org/grapher/full-list-cumulative-total-tests-per-thousand?time
https://ourworldindata.org/grapher/full-list-cumulative-total-tests-per-thousand?time
https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-increases-worldwide-test-capacities-many-times-over/
https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-increases-worldwide-test-capacities-many-times-over/
https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-increases-worldwide-test-capacities-many-times-over/
https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-cov-02-samples-increases-worldwide-test-capacities-many-times-over/
https://apps.who.int/iris/bitstream/handle/10665/334254/WHO-2019-nCoV-laboratory-2020.6-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/334254/WHO-2019-nCoV-laboratory-2020.6-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/334254/WHO-2019-nCoV-laboratory-2020.6-eng.pdf?sequence=1&isAllowed=y
https://arxiv.org/abs/2005.06617
https://arxiv.org/abs/2005.06617
https://covid19.healthdata.org/united-states-of-america
https://covid19.healthdata.org/united-states-of-america
https://covid19.healthdata.org/united-states-of-america
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200805-covid-19-sitrep-198.pdf?sfvrsn=f99d1754_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200805-covid-19-sitrep-198.pdf?sfvrsn=f99d1754_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200805-covid-19-sitrep-198.pdf?sfvrsn=f99d1754_2
https://data.nsw.gov.au/data/dataset/nsw-covid-19-tests-by-age-range
https://data.nsw.gov.au/data/dataset/nsw-covid-19-tests-by-age-range
https://data.nsw.gov.au/data/dataset/nsw-covid-19-tests-by-age-range
https://covidtracking.com/data/us-daily
https://covidtracking.com/data/us-daily

	Modelling pool testing for SARS-CoV-2: addressing heterogeneity in populations
	Introduction
	Materials and methods
	Results
	Discussion
	Final remarks
	Acknowledgements
	References


