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Abstract
This study aimed to investigate the presence and abundance of antibiotic resistance genes (ARGs) in bacterial and phage 
DNA fractions from sediment samples collected from the Onyar River, both before and after its passage through the urban 
area of Girona (northeast Spain). Genes conferring resistance to β-lactams, fluoroquinolones, macrolides, sulfonamides, and 
tetracyclines were quantified using quantitative PCR. Our findings showed that ARGs are present in both bacterial and phage 
DNA fractions, with a higher abundance in the bacterial fraction. Notably, our analysis revealed an increased abundance 
of the sulfonamide resistance gene sulI in the phage DNA fraction when comparing samples collected before and after the 
river’s passage through the city. Although similar trends were observed for other ARGs (e.g., qnrS and sulII), these differ-
ences were not statistically significant (p > 0.05). These findings emphasize the importance of phages as potential reservoirs 
or vehicles for ARGs in environmental settings. Further research is needed to elucidate the factors that influence gene transfer 
dynamics and the persistence of ARGs within phages.
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The growing prevalence of antibiotic resistance represents a 
major challenge to antibiotic therapy, as it compromises the 
efficacy of prescribed treatments and poses a critical threat 
to public health worldwide [1]. Recent estimates suggest that 
approximately 1.3 million deaths occur annually as a direct 
consequence of antibiotic resistance [2], and current trends 
indicate that this number could rise to 1.91 million attrib-
utable deaths and 8.22 million associated deaths by 2050 
[3]. These data highlight the urgent need for coordinated, 
comprehensive, and sustained efforts to contain the spread of 
antibiotic resistance and mitigate its impact on global health.

Addressing this challenge requires the implementation 
of strategies guided by the One Health approach, which 
recognizes the interconnectedness of human, animal, and 
environmental health. Within this framework, aquatic eco-
systems are increasingly recognized as critical environments 

that contribute to the emergence, persistence, and dissemina-
tion of antibiotic resistance across both environmental and 
clinical settings [4].

Although antibiotic resistance is a naturally occurring 
phenomenon in bacterial populations, the widespread and 
continuous discharge of antibiotic residues into aquatic envi-
ronments, including untreated and treated domestic waste-
water, agricultural runoff, and industrial discharges, has 
significantly exacerbated the problem. These residues exert 
selective pressure on microbial communities, promoting 
the survival, proliferation, and dissemination of antibiotic-
resistant bacteria, including clinically relevant pathogens.

Urban rivers, in particular, are continuously exposed 
to a wide range of chemical and biological contaminants, 
including antibiotic residues, heavy metals, and antibiotic-
resistant bacteria from anthropogenic sources [5]. These 
conditions create environments that are highly favorable for 
the exchange of genetic material among bacterial communi-
ties, including antibiotic resistance genes (ARGs).

A key mechanism driving the spread of these ARGs is 
horizontal gene transfer (HGT), which enables bacteria to 
acquire foreign genetic material both intra- and interspe-
cifically [6]. This process is mediated by mobile genetic 
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elements (MGEs), such as insertion sequences, trans-
posons, plasmids, genomic islands, and bacteriophages 
(phages). Among the different mechanisms of HGT, con-
jugation is widely recognized as the primary pathway for 
the dissemination of ARGs, due to its high frequency and 
its capacity to mediate plasmid transfer across a broad 
spectrum of bacterial species [7, 8]. Despite their ubiq-
uity, the role of phages in the environmental dissemination 
of ARGs remains poorly understood. Phages, viruses that 
infect and replicate within bacterial cells, are widespread 
and highly abundant in diverse ecosystems [9]. Through 
their interactions with bacterial hosts, phages play a cru-
cial role in bacterial evolution and ecology [10–12], posi-
tioning them as potential vehicles for the dissemination 
of ARGs.

Given the limited research on the role of phages in mobi-
lizing ARGs in the environment, this study aimed to detect 
ARGs in the Onyar River, an urban river that flows from 
south to north through the city of Girona, in northeast Spain. 
The selection of target genes was based on their clinical and 
environmental relevance, as well as their potential use as 
indicators of antibiotic pollution in the environment [13, 14]. 
The selected genes included those conferring resistance to 
key antibiotic classes: β-lactams (blaCTX-M and blaKPC), fluo-
roquinolones (qnrS), macrolides (ermB), sulfonamides (sulI 
and sulII), and tetracyclines (tetW). These ARGs were then 
quantified by quantitative PCR (qPCR) in both the phage-
derived and bacterial DNA fractions from sediment samples 
for comparative analysis.

Three sediment samples (50 g each) were collected from 
the Onyar River, both before and after its flow through the 
city of Girona. To ensure representative sampling, three 
locations were selected along each transect: one on the right 
bank, one on the left bank, and one in the center of the river. 
The samples were immediately transported to the laboratory, 
resuspended in Ringer’s solution, and vortexed for 15 min. 
The supernatants were subsequently filtered through 0.22-
μm pore-size membranes, allowing phage particles to pass 
into the filtrate while retaining bacterial cells on the filter 
surface. The retained bacterial cells were resuspended in 
Tris–EDTA buffer and digested with lysozyme (40 mg/ml) 
and proteinase K (20 mg/ml) prior to DNA extraction, which 
was carried out using a standard phenol–chloroform method 
[15]. The filtrates containing phage particles were precipi-
tated using polyethylene glycol (PEG 6000), centrifuged at 
14,000 g for 10 min, and the resulting pellets were treated 
twice with DNase (100 U/ml) to remove free DNA outside 
the phage particles. Subsequently, phage DNA extraction 
and purification were performed as previously described 
[16]. DNA concentration was measured using a Qubit 2.0 
fluorometer (Life Technologies; Carlsbad, CA, USA). More-
over, the phage DNA fraction was screened for the pres-
ence of 16S rRNA genes by qPCR [17], as the abundance of 

ARGs in phages can be overestimated due to bacterial DNA 
contamination [18, 19].

The copy number of the target ARGs was determined by 
qPCR. All reactions were performed using a CFX96 Touch 
Real-Time PCR Detection System (Bio-Rad Laboratories; 
Hercules, CA, USA) under previously described conditions 
[20]. To ensure amplification specificity, a dissociation curve 
was generated for each reaction, ranging from 60 to 95 °C. 
The efficiency and sensitivity of the qPCR assays were 
assessed by constructing standard curves from ten-fold serial 
dilutions of synthetic gene fragments at known concentra-
tions (Integrated DNA Technologies; Coralville, IA, USA). 
Nuclease-free water and qPCR master mix were included as 
negative controls, while synthetic ARG sequences were used 
as positive controls to validate the reactions.

The qPCR data were tested for normality using the Sha-
piro–Wilk test and for homoscedasticity using Levene’s test 
(see Supplementary Figure S1). When the assumptions of 
normality and homogeneity of variance were met, mean 
values from three replicates per gene were compared using 
one-way analysis of variance (ANOVA) followed by Tukey’s 
HSD test. When these assumptions were not met, the non-
parametric Kruskal–Wallis test followed by Dunn’s post 
hoc test was applied. These statistical analyses were used to 
assess significant differences (p < 0.05) among DNA frac-
tions from sediment samples. All analyses were performed 
using the ggpubr and rstatix packages in R (v4.4.3; R Core 
Team, 2025).

Although phages can transfer genetic material between 
bacterial hosts via transduction, the extent to which this 
occurs in environmental settings remains controversial, pri-
marily due to concerns about the potential overestimation 
of phage-encoded ARGs caused by bacterial DNA contami-
nation [19, 21, 22]. To address this, all phage DNA frac-
tions were initially screened for the presence of 16S rRNA 
genes to assess possible bacterial contamination. The results 
showed that none of the phage DNA fractions contained 
detectable levels of bacterial DNA contamination, confirm-
ing their suitability for subsequent analysis of ARG abun-
dance. Both DNA fractions were then analyzed by qPCR, 
which demonstrated higher copy numbers of ARGs in the 
bacterial DNA fraction compared to the phage DNA frac-
tion, with statistically significant differences observed for 
some ARGs.

All ARGs were detected in the analyzed samples, except 
for the blaKPC gene, which was found exclusively in the 
bacterial DNA fraction from sediment samples collected 
after the river’s passage through the urban area (Fig. 1). 
Moreover, with the exception of the blaCTX-M gene, higher 
copy numbers of ARGs were observed in the bacterial DNA 
fraction from samples collected after the river had entered 
the city, compared to those collected before its passage. 
These findings suggest that the studied river is influenced 
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by anthropogenic pollution. Although the river does not 
receive direct urban wastewater discharges during its pas-
sage through the city, previous studies have indicated that 
surface runoff may contribute to the presence of ARGs, 
thereby facilitating the dissemination of antibiotic resist-
ance [23, 24].

Interestingly, our analyses also revealed a tenfold 
increase in the abundance of sulfonamide resistance genes 
(sulI and sulII) in the phage DNA fraction from sediment 
samples collected after the river’s passage through the city. 
However, statistically significant differences (< 0.001) 
were observed only for the sulI gene. These findings are 
consistent with previous studies, which suggest that sul-
fonamide resistance genes are among the most commonly 
used tracers for assessing ARGs due to their strong cor-
relation with anthropogenic inputs in environmental set-
tings [14, 25]. In contrast, the abundance of the remaining 
ARGs did not exhibit any significant differences in the 
phage DNA fraction between samples collected before and 
after the river’s passage through the city (Fig. 1). While 

there were no significant differences in the abundance 
of genes conferring resistance to β-lactam antibiotics 
(blaCTX-M), fluoroquinolones (qnrS), macrolides (ermB), 
and tetracyclines (tetW) between samples collected before 
and after of the urban area, their presence in phages raises 
environmental and public health concerns. In fact, a 
recent study reported that genes conferring multidrug and 
β-lactam resistance are present in temperate phages from a 
lake entirely replenished with reclaimed water. The study 
also found positive correlations between phages harboring 
ARGs and host pathogens, suggesting the potential emer-
gence of antibiotic-resistant pathogens [26]. Additionally, 
a metagenomic analysis of influent and effluent samples 
from a wastewater treatment plant in China revealed that 
although the treatment process reduced the overall abun-
dance of ARGs, some ARGs remained detectable. Notably, 
certain ARGs were associated with phages, and a higher 
presence of MGEs was observed in the effluent, indicating 
an increased potential for the persistence and spread of 
ARGs within wastewater treatment plants [27].

Fig. 1  Copy numbers of ARGs in bacterial and phage DNA fractions 
from sediment samples (per gram) collected from the Onyar River, 
before and after its passage through the urban area of Girona. Data 
were  log10-transformed prior to statistical analysis using ANOVA or 

the Kruskal–Wallis test, as appropriate. Bar colors represent DNA 
fractions (bacterial or phage). Values are presented as means (n = 3) 
± standard deviation
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A recent study also demonstrated the presence of ARGs 
(blaTEM, blaSHV, blaCTX-M, blaCMY, mecA, vanA, and mcr−1) 
in the phage fraction of urban and hospital wastewater sam-
ples, with bla genes detected at the highest frequency, while 
mecA and mcr−1 were the least frequently observed [28]. 
These findings highlight the role of phages as reservoirs of 
ARGs, with significant public health implications due to 
their environmental stability and persistence.

Taken together, our results demonstrate that phages har-
bor ARGs, although to a lesser extent than bacteria. Thus, 
they can act as potential reservoirs or vehicles for ARGs in 
environmental settings, contributing to their persistence and 
dissemination. Given the global distribution of phages and 
their greater persistence compared to bacteria during disin-
fection processes, their role in the spread of ARGs should 
not be underestimated. These considerations are essential 
for the development and implementation of effective surveil-
lance and mitigation strategies to address the growing global 
crisis of antibiotic resistance.
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