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A B S T R A C T   

Although breakthroughs have been made in the treatment of non-small cell lung cancer, there are only a few 
choices for advanced-stage or recurrent lung squamous cell carcinoma (LUSC) patients. In our study, we iden-
tified 7 major cell types in thedepicted the immunolandscape of LUSC microenvironment using single-cell RNA 
sequencing. We found that an immunosuppressive receptor, T cell immunoglobulin and immunoreceptor 
tyrosine-based inhibitory motif domain (TIGIT), was highly expressed by regulatory T cells (Tregs) and 
exhausted CD8+T cells, suggesting that upregulation of TIGIT might promote an immunosuppressive microen-
vironment and inhibit the cytotoxic ability of CD8+T cells. We also identified tumor-associated neutrophil (TAN), 
characterized by CXCR2, CSF3R and CXCL8, in the tumor region, and TANs upregulated the expression of 
interleukin 1 receptor antagonist (IL1RN) which suggested that TAN might exert an immunosuppressive role via 
expressing IL1RN. Furthermore, the number of SPP1+ macrophages(SPP1+M) significantly increased in tumor 
microenvirnment, which was correlated with the poor survival of patients. Additionally, regulatory networks 
based on SPP1+M revealed that the disparities of several ligand-receptor pairs existed between tumor and normal 
tissues. Among these pairs, SPP1-CD44 showed the most interactions between SPP1+M and other cell types. Our 
results provided deep insight into the immune landscape of LUSC and an essential resource for drug discovery in 
the future.   

Introduction 

Lung cancer is one of the most common cancers worldwide and has 
been the leading cause of cancer-related mortality [1]. Non-small cell 
lung cancer (NSCLC) is mainly categorized as lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC), and LUSC accounts 
for approximately 30% of new NSCLC cases [2]. However, unlike LUAD, 
patients with inoperable LUSC only have a few choices to prolong their 
lifetime. 

The tumor microenvironment (TME) is an interactive and co- 
evolving dynamic environment composed of tumor cells, immune 
cells, stromal cells, and extracellular matrix, and takes an essential part 
in oncogenesis and tumor progression [3]. Lung cancer is characterized 
by its high variations of the TME, which determines the responsiveness 

and tolerance of immunotherapy [4]. The emergence of single-cell RNA 
sequencing (scRNA-seq) provided an unprecedented view of how 
various cells consist of heterogeneous and phenotypically diverse pop-
ulations within tumors. Compared with conventional ‘bulk’ 
RNA-sequencing, scRNA-seq profiles the gene expression pattern at the 
single-cell level, and provides deep insights into the TME as well as 
cell-cell interactions, which may facilitate discovering the potential 
targets of novel cancer therapies [5]. Several studies deeply investigated 
the TME and depicted cell atlases of lung adenocarcinoma [6–9]. 
However, few studies tried to reveal the TME of LUSC and draw a 
blueprint of TME [9]. 

In our study, we extracted single-cell RNA sequencing data from 
LUSC patients deposited in GEO datasets to characterize the TME and 
drew a comprehensive blueprint of the immuno-landscape. We aimed to 
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investigate molecular features, signaling pathways, and cell-cell in-
teractions that contribute to tumor progression in primary LUSC. 

Materials and methods 

Human tumor specimens for immunohistochemical staining and 
immunofluorescence 

Human tissue specimens were obtained from the Renmin Hospital of 
Wuhan University under an approved Institutional Review Board pro-
tocol, and all participants provided written informed consent. A total of 
65 samples of primary I-IIIA LUSC patients (without radiotherapy, 
chemotherapy, or immunotherapy before surgery) were included in our 
study from 2013-2015 at the Renmin Hospital of Wuhan University 
(Supplementary Table 1). Follow-up was performed through telephone 
interviews. Recurrent free survival (RFS) was the primary endpoint, 
which was defined as the interval between the date of the resection and 
the date of recurrence. 

Single-cell sequencing data 

RNA-sequencing data of LUSC patients were extracted from the 
GSE127465 [10] and GSE117570 [11] in the GEO database and 
E-MTAB-6149 and E-MTAB-6653 in ArrayExpress database [8]. This 
included 6 LUSC tissue samples (1from GSE117570, 2 from GSE127465, 
3 from E-MTAB-6149 and E-MTAB-6653) and 9 normal tissue samples (3 
from GSE127465 and 6 from E-MTAB-6149 and E-MTAB-6653). 

The raw data was obtained, and processed by the Seurat (v 4.0.4) 
[12] R package for downstream analysis. Quality control was performed 
to remove the low-quality cells according to the criteria (unique mo-
lecular identifiers (UMIs) and gene count) reported in the original paper. 
Additionally, cells that have over 15% UMIs derived from the mito-
chondrial genome and 40% derived from the ribosomal genome were 
discarded. 

Dataset integration and joint analysis 

After filtering, all datasets were combined for further analyses. The 
“IntegrateData” function was performed potential batch effect, and 
then, batch-corrected integrated data was obtained [12]. Then, the 
“ScaleData” function was performed to ensure that the expression of all 
genes was given equal weight in the downstream analyses and that 
highly expressed genes were not dominant. Next, principal component 
analysis (PCA) was performed for 50 principal components. 

Pathway analysis 

High variable genes of cell subgroups were calculated by the “Fin-
dAllmarkers” function in the Seurat package. Gene set variation analysis 
(GSVA) and gene set enrichment analysis (GSEA) analysis was per-
formed with the GSVA and GSEA package, respectively, on a matrix of 
functional genes downloaded from the MSigdbd database (http://softwa 
re.broadinstitute.org/gsea/index.jsp). Differences in pathways between 
different cell groups were calculated with a linear model offered by the 
Limma package. 

Cell-cell interaction network 

CellPhoneDB 2 [13,14] was used to establish the receptor-ligand 
pairs onto our cell subsets within tissues of each origin to identify 
cell-cell interactions. CellPhoneDB 2 is a Python-based computational 
analysis tool, which enables the analysis of cell-cell communication at 
the molecular level. 

Correlation to TCGA data 

Bulk RNA sequencing data, as well as corresponding clinical infor-
mation in TCGA LUSC databases, were also obtained from UCSC XENA 
(https://xena.ucsc.edu/). Survival endpoint inTCGA: overall survival 
(OS), which is defined as the period from the date of diagnosis until the 
date of death from any cause, and disease-specific survival (DSS), which 
is defined as the period from the date of diagnosis until the date of death 
due to LUSC. 

To estimate the relative abundance of the cell subclusters identified 
in single-cell profiles for LUSC, CIBERSORTx [15] was performed ac-
cording to the tutorials on the website (https://cibersortx.stanford. 
edu/). 

Immunofluorescence and immunohistochemistry staining 

Patient tissue samples were collected after the tumor resection. And 
it was fixed in 10% formalin, and then embedded in paraffin. Thereafter, 
4-µm-thick sections were prepared. 

The following antibodies were used to detect specific proteins: anti- 
CD4 (rabbit, 1:200, Abcam, ab183685, Cambridge, UK), anti-TIGIT 
(rabbit, 1:200, Abcam, ab243903, Cambridge, UK), anti-FoxP3 (rabbit, 
1:200, Servicebio, GB11093, Wuhan, China), anti-LAG3 (rabbit, 1:100, 
Abcam, ab254578, Cambridge, UK), and anti-CD8 (rabbit, 1:100, 
Abcam, ab217344, Cambridge, UK), anti-S100A8 (rabbit, 1:300, Pro-
teintech, 66853-1-Ig, Wuhan, China), anti-CD68(mouse, 1:50, Santa, 
SC-20060, Texas, USA), anti-CD206(rabbit, 1:100, Proteintech, 18704- 
1-AP, Wuhan, China), anti-CXCR2(rabbit, 1:100, Abcam, ab225732, 
Cambridge, UK), and anti-CSF3R(rabbit, 1:100, Cusabio, PA860321, 
Wuhan, China), anti-IL1RN(rabbit, 1:100, GeneTex, GTX106490, Cali-
fornia, USA), anti-PDGFRB (rabbit, 1:100, Invitrogen, PA1-30317, Cal-
ifornia, USA), anti-RGS5 (rabbit, 1:50, Proteintech, Cat. No.11590-1-AP, 
Wuhan, China), anti-osteopontin(rabbit, 1:50, Proteintech, Cat. No. 
22952-1-AP, Wuhan, China) and anti-SMA(rabbit, 1:50, Proteintech, 
Cat. No. 14395-1-AP, Wuhan, China). And the corresponding secondary 
antibodies used in our study, including Alexa Fluor ® 488 goat anti- 
Mouse IgG (H&L, 1:1000), Alexa Fluor ® 488 goat anti-Rabbit IgG 
(H&L, 1:1000), Alexa Fluor ® 555 goat anti-Mouse IgG (H&L, 1:1000), 
Alexa Fluor ® 555 goat anti-Rabbit IgG (H&L, 1:1000), Alexa Fluor ® 
680 goat anti-Mouse IgG (H&L, 1:1000), Alexa Fluor ® 680 goat anti- 
Rabbit IgG (H&L, 1:1000). 

Immunohistochemical staining analysis was performed by two 
experienced pathologists. They independently analyzed the expression 
of markers, and scored the intensity of expression(color of staining) [0 
(no expression), 1 (weak expression (faint yellow)), 2 (moderate 
expression(claybank)) or 3 (strong expression(tan))] as well as the dis-
tribution of expression [0-5% (cells stained), 1 (5-25% of cells stained), 
2 (26-50% of tumor cells stained), 3 (51-75% of tumor cells stained) or 4 
(>75% of tumor cells stained)]. According to the total score (multi-
plying the intensity score by the distribution score), each patient was 
classified into one of four groups: negative (0), weak-positive (1-4), 
positive (5-8) group, or strongly positive group (9-12). 

Parts of immunohistochemistry images in the study were obtained 
from the human protein atlas (HPA) (https://www.proteinatlas.org/), 
which provided large amounts of transcriptomics and proteomics data in 
specific human tissues [16]. 

Results 

Analysis of single-cell transcriptomic profiling from LUSC and normal 
tissues 

A total of 15 samples which originated from 13 individuals, 
including 9 normal and 6 tumor tissue samples, were obtained for an-
alyses, and other detailed clinical characteristics were also presented in 
Supplementary Table 2. After being batch-corrected, we integrated the 
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single-cell transcriptomic data for a tSNE-based cell clustering analysis. 
Overall, we obtained 39,574 single-cell transcriptomic profiles which 
were cataloged into 28 distinct cell clusters (Fig. 1a). Of these, 10,810 
were derived from primary tumor tissue and the rest from normal lung 
tissues (Fig. 1b). Subsequently, according to established canonical 
marker gene expression (Supplementary Fig. 1 and Supplementary 
Table 3), we annotated these clusters as epithelial(EPCAM, SFTPA1, 
AGER, and KRT18), endothelial(PECAM1 and VWF), fibroblast 
(COL1A2), B/plasm (CD79A and IGHG1), mast(MS4A2), myeloid (CD68 
and LYZ) and lymphocyte (T)/natural killer (NK) (CD3D, TRBC1, 
FCGR3A and KLRD1) cells (Fig. 1c). The frequency and proportion of 
each group from tumor and normal tissues were presented in Fig. 1d–f. 
Importantly, when comparing between patients, the proportion of each 
cell sub-cluster was of high variation (Fig. 1d, e). We also found that 
myeloid and T/NK cells were the most prevalent cell types in LUSC and 
normal lung tissues. 

T-cell transcriptome profiles suggested promising immunotherapy targets 
for LUSC 

T cell was the executors of the immune response, which was crucial 
important for immunotherapy. To delineate a detailed landscape of T/ 
NK subclusters, 13,877 identified T/NK cells (accounting for .35.1% of 
all cells) were re-clustered, and 9 distinct cell clusters were obtained 
(Fig. 2a). According to established markers (Supplementary Table 3 and 
Supplementary Fig. 2A and B), C0 cluster was identified as CD4+/ 
CD8+T, C1 as naïve CD4+T, C2 and C7 as CD8+effector T, C3 as 
exhausted CD8+T, C4 as HAVCR2+NK, C5 as regulatory CD4+T(Treg), 
C6 as proliferating T and C8 as XCL1+NK (Fig. 2c). Fig. 2b and 2d 

presented the frequency and proportion of each cell sub-cluster in tumor 
and normal tissues, respectively. 

To investigate the role of the sub-clusters identified in the present 
study, CIBERSORTx [15] analyses were performed to predict the frac-
tion of each cell sub-cluster in samples from the TCGA LUSC cohort 
(Supplementary Fig. 3A–C). We found that tumor tissues showed higher 
infiltration levels of Tregs and exhausted CD8+ T cells compared to 
normal tissues in the TCGA cohort (Fig. 2e), which suggested an 
immunosuppressive TME in LUSC. Compared with other 
immune-suppressive markers, T cell immunoglobulin and immunor-
eceptor tyrosine-based inhibitory motif domain (TIGIT) seemed to be 
more commonly expressed by Treg and exhausted CD8+T cells (Sup-
plementary Fig. 2B). ScRNA-seq data showed the expression of TIGIT 
was higher in tumor tissues compared with normal tissues(Fig. 2f). 
Furthermore, bulk-data from the TCGA showed similar results (Fig. 2g). 
Notably, the expression of TIGIT was positively correlated with the 
proportion of Treg and exhausted CD8+T in tumor region (Supplemen-
tary Fig. 2C). Immunohistochemical (IHC) staining of tumor tissues 
showed strongly positive staining, while normal tissues showed weak 
positive staining (Fig. 2h). Immunofluorescence (IF) staining confirmed 
that TIGIT was expressed by Tregs and exhausted CD8+T cells in LUSC 
tissues (Supplementary Fig. 2D). We also found that higher protein 
expression of TIGIT predicted a higher probability of recurrence after 
surgery in an independent cohort(P=0.018) (Fig. 2i). All the results 
suggested that TIGIT may be the potential target for prolonging the 
lifetime of LUSC patients. 

Fig. 1. Overview of the 39,574 single cells from lung squamous cell carcinoma (LUSC) and normal lung samples. a. Visualization of single-cell RNA-seq data of 
39,574 cells clustered by t-SNE plot. b. t-SNE plot of single cells colored by the types of sample origin. c. t-SNE plot of single cells colored by the associated cell types 
according to gene expression pattern. d. t-SNE plot of single cells colored by patient origins. e. For each of the 7 major cell sub-clusters (left to right): the fraction of 
cells originating from the normal and tumor samples, and the number of cells from each sample. f. The frequency and proportion of each group of cells from 
malignant and normal tissues. 
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Tumor-associated neutrophils (TANs) act as an immunosuppressive 
contributor in TME 

Myeloid cells were re-clustered into 17 distinct sub-clusters (Fig. 3a), 
which were further classified as FABP4+macrophages (FABP4+M)(C0, 
C2, C6 and C16), mono/macrophage (C4 and C5), monocyte(C8 and 
C12), SEPP1+ macrophages(SEPP1+M) (C1), SEPP1+macrophages 
(SPP1+M) (C3), neutrophil (C11), CD141− CD1C− DC (C10), CD1C+DC 
(C9), CLEC9A+DC(C13), GZMB+ DC(C14) and LAMP3+DC(C15) based 
on gene their markers expression (Supplementary Fig. 4A-B and Sup-
plementary Table 3). 

We identified a cell population of neutrophils, characterized by the 
expression of CXCR2, CSF3R CXCL8, and S100A8 (Fig. 3c, Supplemen-
tary Figs. 4A, B and 5A). We observed that almost all the neutrophils 
originated from tumor tissues (Fig. 3b and 3d), and CXCR2 was exclu-
sively expressed by neutrophil (Supplementary Fig. 5A). Existing neu-
trophils were validated by IF and IHC stainings(Supplementary Fig. 5B, 
C). To delineate the roles of neutrophils played in TME, GO enrichment 
analysis was performed. As depicted in Supplementary Fig. 5D, cellular 
response to interferon-gamma, neutrophil degranulation and I-kappa B 
kinase/NF-κB signaling was enriched in neutrophils from normal tissues, 

while negative regulation of inflammatory responseand negative regu-
lation of inflammatory response were enriched in neutrophils originated 
from tumor tissues. The proportion of neutrophils significantly 
increased in tumor tissues compared with normal tissues in the TCGA 
LUSC cohort (Fig. 3e). Moreover, neutrophils from tumor tissues showed 
lower module scores of inflammatory response and reactive oxygen 
species pathway and higher scores of TGF-β signaling and N2 phenotype 
neutrophil (Fig. 3f and Supplementary Table 4). Similar to macrophages 
classified into pro-tumor and antitumor properties, neutrophil was also 
categorized into two subtypes, anti-tumor(N1) and pro-tumor(N2) 
phenotype in TME [17]. N2 neutrohpoils, also known as tumor associ-
ated neutrophil (TAN),were involved in immune-suppressive TME [18], 
epithelial-mesenchymal transitions (EMT) [19], nuclear extracellular 
trap (NET) formation [20], which facilitate immune escape, tumor 
initial, growth, and metastasis [21,22]. Thus, we annotated the neu-
trophils from tumor tissues as TAN. In addition, we demonstrated that 
the cell abundance of TAN showed a significant correlation with the 
expression of CXCL8 and CXCR2, respectively (Fig. 3g). CXCL8 was a 
potent chemokine for neutrophils and recruited neutrophils into TME by 
CXCL8/CXCR2 axis [23,24]. CXCL8 was upregulated in tumor tissues 
compared with normal tissues (Supplementary Fig. 5E). Thus, we 

Fig. 2. TIGIT was highly expressed by Tregs and exhausted CD8+ T cells. a. Re-clustering of T/NK cells by t-SNE plot. b. t-SNE plot of T/NK cells colored by the types 
of sample origin. c. t-SNE plot of T/NK cells colored by the types of cell subtypes. d. The frequency and proportion of each cell subtype from malignant and normal 
tissues. e. The abundance proportion of Tregs, CD8+ effector T and exhausted CD8+ T cells in the tumor and normal tissues from the TCGA cohort, respectively. 
(Difference between normal and tumor tissues was estimated by Wilcoxon-test). f. Violin plot showed the expression of TIGIT in T/NK cells from scRNA-seq data 
(Colored by sample origin). g.. immunohistochemical (IHC) stainings showed the expression of TIGIT in tumor and normal tissues. h. A higher expression level of 
TIGIT was correlated with worse recurrence-free survival from an independent cohort (Difference in recurrence-free survival between patients with high TIGIT 
expression and patients with low TIGIT expression was determined by log-rank test.). 
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Fig. 3. Single-cell transcriptomic analysis reveals the transcriptome of myeloid cells in the microenvironment of LUSC. a. tSNE plot of myeloid cells color-coded by 
their associated clusters. b. tSNE plot of myeloid cells color-coded by their associated sample origins. c. tSNE plot of myeloid cells color-coded by cell subtypes 
established by marker genes. d. The frequency and proportion of each cell subtype from tumor and normal tissues. e. The boxplot showed the proportion of neu-
trophils in tumor and normal tissues, respectively, in the TCGA LUSC cohort. (The difference between normal and tumor tissues was calculated by Wilcoxon-test). f. 
Module scores of genes related to inflammation and N2 signature of neutrophil cluster from tumor and normal tissues, respectively. g. Correlation between neutrophil 
and expression level of CXCR2(top)/CXCL8(bottom) in TCGA LUSC cohort, respectively (The correlation coefficient and difference were calculated by Pearson-test). 
h. Heatmap shows the difference in pathway activities scored by GSVA per cell between different monocyte/macrophage groups. i. The boxplot showed the pro-
portion of SPP1+M, SEPP1+M and FABP4+M from tumor and normal tissues, respectively, in the TCGA LUSC cohort. (Significance of difference between tumor and 
normal tissues was calculated by Wilcoxon-test). j. Association between cell abundance and patient survival from TCGA LUSC cohort (P value was calculated with 
log-rank test). 
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postulated that CXCL8 secreted by TANs recruited more neutrophils into 
the tumor region, and neutrophils polarized into TANs to promote tumor 
progression in TME. 

In addition, we found that the expression of interleukin 1 receptor 
antagonist (IL1RN) was more commonly expressed by TANs from 
scRNA-seq data and was higher in tumor tissues compared to that in 
normal tissues from the TCGA LUSC cohort (Supplementary Fig. 5F–G). 
It was reported that IL1Ra counteracted the activation of pro- 
inflammatory signaling induced by IL-1β and acted as a potent medi-
ator to inhibit the inflammatory response [25,26]. IHC staining from the 
human protein atlas (HPA) showed a higher expression of IL1Ra in 
tumor tissues compared with normal tissues (Supplementary Fig. 5H), 
and there was a significant correlation between the expression of IL1RN 
and the abundance of TAN in the TCGA LUSC cohort (Supplementary 
Fig. 5I). IF staining confirmed the existence of IL1Ra expressed by TANs 
in tumor tissues (Supplementary Fig. 5J). These results suggested that 
neutrophils might act as an immune-suppressive mediator via express-
ing IL1RN in TME. 

Tumor-associated macrophages (TAM) was associated with worse survival 

There are several subtypes of monocyte/macrophages identified in 
our study, namely FABP4+ macrophage (FABP4+ M) (CD68, LYZ, 
MARCO, APOC1 and FABP4), SEPP1+ macrophage (SEPP1+ M)(CD68, 
LYZ, MARCO, APOC1 and SEPP1), SPP1+macrophage (SEPP1+ M) 
(CD68, LYZ, MARCO, APOC1 and SPP1), monocyte (LYZ, VCAN, 
S100A8, S100A9 and S100A12) and mono/macrophage (CD68, LYZ, 
MARCO, VCAN, S100A8, S100A9). Mannose receptor C-type 1(MRC1), 
also known as CD206, was highly expressed by FABP4+M, SEPP1+M, 
and SPP1+M (Supplementary Fig. 4C). CD206, a marker of tumor- 
associated macrophage (TAM), played pivotal roles in immunosup-
pressive TME and contributed in different ways to the various phases of 
carcinogenesis [27]. To further explore the potential roles of these 
sub-clusters, gene set variation analysis (GSVA) was performed. And we 
found that inflammatory response and TNF-α signaling via NF-ΚB were 
enriched in monocyte, while these enrichment scores were lower in 
FABP4+M, SEPP1+M and SPP1+M cells (Fig. 3h). Therefore, FABP4+M, 
SEPP1+ M and SPP1+ M might contribute to an immunosuppressive 
TME in LUSC. The proportion of SEPP1+M and FABP4+M decreased in 
tumor tissues compared with that in normal tissues, while the propor-
tion of SPP1+M increased in tumor tissues (Fig. 3i). 

In survival analysis from the TCGA cohort, the higher infiltration 
levels of SPP1+M cells were positively associated with shorter OS and 
DSS (Fig. 3j). We found that secreted phosphoprotein 1 (SPP1), encoding 
osteopontin, was highly expressed in the SPP1+M from tumor tissues, 
while the levels of SPP1 expression were relatively low in SPP1+M from 
normal tissues(Supplementary Fig. 6A), and bulk sequencing data from 
TCGA LUSC cohort showed a higher expression of SPP1 in tumor 
compared with that in tissues(Supplementary Fig. 6B). IHC staining 
confirmed higher expression of osteopontin in tumor tissues than normal 
tissues (Supplementary Fig. 6C), and IF staining confirmed that osteo-
pontin was expressed by SPP1+M in LUSC tissues (Supplementary 
Fig. 6D). Recently, tumor-associated macrophage (TAM) was reported to 
be involved in tumor angiogenesis, extracellular matrix (ECM) receptor 
interaction, and tumor vasculature pathways [28]. In our study, we 
observed that TGF-β signaling and angiogenesis pathways were enriched 
in SPP1+M in TME. Thus, SPP1+M might act as TAM to contribute to the 
formation of immunosuppressive TME and tumor progression in LUSC. 
All the findings suggested that targeting TAM might be the potential 
therapeutics for LUSC. 

Five types of DC were identified in LUSC 

Five types of dendritic cell (DC) were identified in our study, CD1C+

DC cells (CD1C, CLEC10A, and FCER1A), LAMP3+DC (LAMP3, IDO1, 
CCR7 and FSCN1), GZMB+ DC (GZMB, CXCR3, IRF4 and CLEC4C), 

CLEC9A+DC and CD141− CD1C− DC (Supplementary Fig. 5 and Supple-
mentary Table 3). 

First, we found that the proportion of CD1C+DCs, GZMB+DCs and 
CLEC9A+ DC were significantly higher in tumor tissues, while 
LAMP3+DCs and CD141− CD1C− DCs showed no significant difference 
between tumor and normal tissues (Fig. 4a). We found that the signa-
tures of LAMP3+DC and CLEC9A+DC were associated with the signa-
tures of Tregs (Supplementary Fig.7), which suggested that LAMP3+DCs 
and CLEC9A+DCs recruited Tregs into the tumor region. Survival ana-
lyses showed that the high abundance of GZMB+ DC and CD141-CD1C- 
DC predicted poor OS and DSS in the TCGA LUSC cohort (Fig. 4b). To 
further explore the roles the five subtypes of DCs played in TME, GO 
enrichment analyses were performed. All the DCs were involved in the 
immune response. However, CD141− CD1C− DCs were characterized by 
regulation of interleukin-6 production and mast cell degranulation and 
GZMB+ DCs were characterized by regulation of response to endo-
plasmic reticulum stress and ubiquitin-dependent endoplasmic reticu-
lum mediated degradation pathway (Fig. 4c). 

Follicular B cells may contribute to immunosuppressive TME in LUSC 

In our study, 2418 B lymphocyte and plasm cells were re-clustered 
(Fig. 5a), and five distinct clusters were identified. C0 was defined as 
IGHGP+ plasm (IGHGP, IGHG1, CD79A) and C3 as TXNDC5+ plasm 
(TXNDC5, JCHAIN, IGHG1 and CD79A). C2 was characterized as 
follicular B (CD79A, MS4A1, CD69 and CD24) (Fig. 5b, 5c and Supple-
mentary Fig. 8A). C4 and C5 can not be defined due to their low quality. 
Fig. 5d showed the frequency and fraction of each cell subtype. 

GO enrichment analyses were performed to investigate the functions 
of follicular B and plasm cells. We found that antigen processing and 
presentation of exogenous peptide antigen, response to interferon-γ and 
immune response activating cell surface receptor signaling were 
enriched in follicular B cells (Supplementary Fig. 8B). For plasm cells, 
humoral immune response mediated by circulating immunoglobulin 
was enriched in both IGHGP+ and TXNDC5+plasm cells. However, 
TXNDC5+plasm cells were characterized by protein N-linked glycosyl-
ation via asparagine. In the TCGA cohort, the proportion of follicular B 
and TXNDC5+ plasm cells significantly increased in tumor tissues 
compared with that in normal tissues (Fig. 5e). In addition, the signa-
tures of follicular B were correlated with the signatures of Tregs and 
LAMP3+ DCs (Supplementary Fig. 8C), which suggested that follicular B 
may contribute to immunosuppressive TME in LUSC. However, the roles 
of plasm cells played in TME needed to be further validated. Trajectory 
analysis by monocle revealed that follicular B cells were located at the 
begin of the differentiation trajectory, while IGHGP+ and TXNDC5+

plasm cells were mianly located at the mid-terminal differentiation 
trajectory (Fig. 5f–5i). We could also found that “S4” state cells were 
tumor specific, which might be different from “S1” state cells. To explore 
it, we compared the follicular B cells derived from “S1” and “S4” state, 
and found that Interferon-γ response was enriched in follicular B cells 
derived from “S1” state and TGF-β signaling was enriched in follicular B 
cells derived from “S4” state (Supplementary Fig. 8D). All the results 
suggested follicular B cells were reprogrammed in TME and contributed 
to the formation of the immunosuppressive TME. 

Composition of the stromal microenvironment of LUSC 

The stomal cells were re-clustered, and several distinct clusters were 
obtained (Fig. 6a). And according to the marker genes, we identified 
EDN1+endothelial (C0, C3, C4 and C5), EDNRB1+endothelial(C1 and 
C6), CCL21+endothelial(C10), PDGFRA/B+ fibroblast(C2 and C8), 
myofibroblast(C11), and fibroblast cells(C7 and C9) (Fig. 6c and Sup-
plementary Fig. 9A). Fig. 6b, d presented the distribution and the pro-
portion and frequency of each subtype. To investigate the potential role 
of various subtypes of fibroblast, survival analyses were performed. We 
found that higher infiltration levels of myofibroblast were closely 
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associated with poor OS and DSS (Fig. 6e), and there was a significant 
defference in myofibroblast abundance between normal and tumor tis-
sues (Fig. 6f). Then, GO enrichment analysis revealed that extracellular 
matrix organization, regulation of angiogenesis, integrin-mediated 
signaling pathway, endothelial cell migration, TGF-β receptor 
signaling pathway and mesenchymal cell differentiation were enriched 
in myofibroblast (Supplementary Fig. 9B). Furthermore, we also found 
that there was a significant positive correlation between the infiltration 
levels of myofibroblast and EDN1+ or EDNRB+ endothelial (Supple-
mentary Fig. 9C), all of which suggested that myofibroblast was 
responsible for angiogenesis and stromal remodeling. IF stainings 
confirmed the existing myofibroblast in LUSC and normal tissues (Sup-
plementary Fig. 9D) Tractory analysis revealed a tumor specific branch, 
which was mainly located at the end of differentiation tractory and 
could also be assigned as “S5” state cells (Fig. 6g–i). Various subtypes of 
fibroblast cells from normal tissues were mainly at the begin of differ-
entiation tractory. To investigate the difference between fibroblast cells 
from normal tissues and fibroblast cells from tumor tissues, we found 
that pathways of allograft rejection, oxidative phosphorylation and graft 
versus host disease were enriched in fibroblast cells from normal tissues 
while ECM receptor interaction, inositol phosphate metabolism and 
pathways in cancer were enriched in fibroblast cells from tumor tissues 
(Supplementary Fig. 9E), all of which suggested that fibroblast cells 
were reprogrammed into tumor-promoting phenotype in TME. In 

addition, myofibroblast cells were mainly located at the middle of dif-
ferentiation tractor (Fig. 6a and 6j), which suggested that myofibroblast 
was differentiated from otherfibroblast subtypes, and the process was 
known as fibroblast-to-myofibroblast transition (FMT) [29,30]. Butti 
et al. [30]. demonstrated that FMT was involved in increasing breast 
cancer aggressiveness. 

Constructing regulatory networks of immune cells in LUSC 

To explore the interaction networks between the cell subpopulations, 
we performed cell-cell communication analyses using CellphoneDB2 
[31]. Notably, SPP1+M, SEPP1+M, PDGFRA/B+fibroblast and 
CD1C+DCs showed the most interactions with other cell types (Fig. 7a). 
And then, the SPP1+M-based regulatory networks were constructed. We 
observed disparities in the cell-cell interactions between normal and 
tumor tissues, such as SPP1-CD44, CD52-SIGLEC10, IL1RN-IL1B and 
CXCL8-CXCR2. Among these pairs, the pattern of the SPP1-CD44 
ligand-receptor complex suggested the most functional interactions be-
tween SPP1+M and other cell types in TME (Fig. 7b). CD44 was a widely 
expressed ligand on the membrane of various types of cells (Fig. 7c, d) 
and was reported to be involved in tumor progression and cancer cell 
metastasis [32,33]. Osteopontin was reported to be involved in the 
proliferation, migration, and invasion of cancer cells [34,35], and 
silencing of SPP1 could suppress the progression of cancer cells [36]. 

Fig. 4. Five types of DC were identified in LUSC. a. The difference in cell abundance of 5 types of DCs between tumor and normal tissues, respectively(The difference 
between normal and tumor tissues was calculated by Wilcoxon-test). b. Association between cell abundance and patient’s survival from TCGA LUSC cohort (P value 
was calculated with log-rank test). c. Enriched GO functions of upregulated genes in 5 types of DCs. 
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Osteopontin could suppress T cell activation via binding CD44 and 
contribute to immune tolerance in colon carcinoma [37]. These results 
suggested that SPP1+M promoted tumor progression and metastasis via 
the osteopontin/CD44 signaling pathway. All these results suggested 
that SPP-CD44 might be the promising target for overcoming LUSC. 

Additionally, the SEPP1+M-based, FABP1+M-based, CD1C+DC- 
based and PDGFRA/B+ fibroblast based regulatory networks were also 
constructed. The disparities of the pair of SPP1-CD44 also exist in the 
SEPP1+M-based, FABP1+M- based, CD1C+DC-based and CD1C+DC- 
based regulatory networks(Supplementary Fig. 9). In PDGFRA/ 
B+fibroblast based regulatory networks, the regulatory patterns of FN1- 
a3b1 complex, COL6A2_a2b1 complex, COL6A3-a2b1 complex, 
COL6A3-a2b1 complex, COL6A1-a2b1 complex, COL1A2-a2b1 com-
plex, COL5A2-a2b1 complex, FN1-a2b1 complex, COL3A1-a2b1 com-
plex and COL1A1-a2b1 were upregulated in tumor tissues versus norml 
tissues. However, the legand-receptor pairs of COL6A3-a10b1 complex, 

COL6A2-a10b1 complex, COL6A2-a10b1 complex, COL1A1-a10b1 
complex, COL3A1-a10b1 complex, FN1-a10b1 complex were donregu-
lated in tumor tissues versus norml tissues. 

Discussion 

Although tremendous progress has been made in immunotherapy, 
there are still many LUSC patients who showed no response to it. Novel 
molecular targets or therapeutic strategies need to be further explored, 
which would be accelerated by a deep understanding of the TME. In our 
study, we analyzed single-cell transcriptome data, and we tried to depict 
a landscape of the cell components and construct the potential regula-
tory networks of immune cells in TME for LUSC. The atlas revealed the 
characteristics of immunosuppressive cells that facilitate the immune 
escape of tumor cells in LUSC. To the best of our knowledge, this pro-
vides the most comprehensive cellular interaction map of LUSC and a 

Fig. 5. Reclustering of follicular B and plasm cells. a. tSNE plot of B/plasm cells color-coded by their associated clusters. b. tSNE plot of B/plasm cells color-coded by 
their associated sample origins. c. tSNE plot of B/plasm cells color-coded by cell subtypes established by marker genes. d. The frequency and proportion of each cell 
subtype from tumor and normal tissues. e. The difference in cell abundance of 3 subtypes of B/plasm cells between tumor and normal tissues. f. Trajectory of 
differentiation predicted by monocle. g-i. Differentiation trajectory coloered by state(g), clusters(h) and sample origin(i), rsespectively. 
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framework for future discoveries of molecular and cellular therapeutic 
targets for LUSC treatment. 

We identified the immune checkpoint TIGIT that was commonly 
expressed by Tregs and exhausted CD8+T cells in tumor tissues, and the 

higer expression of TIGIT was significantly associated with the higher 
proportion of Tregs and exhausted CD8+T cells. Published studies 
showed that TIGIT was associated with impaired function of tumor 
killing of NK, induced production of immunosuppressive cytokines 

Fig. 6. Composition of the stromal microenvironment of LUSC. a. tSNE plot of fibroblast/endothelial cells color-coded by their associated clusters. b. tSNE plot of 
fibroblast/endothelial cells color-coded by their associated sample origins. c. tSNE plot of fibroblast/endothelial cells color-coded by cell subtypes. d. The frequency 
and proportion of each cell subtype from tumor and normal tissues. e. Association between cell abundance and patient survival from TCGA LUSC cohort (P value was 
calculated with log-rank test). f. The difference in cell abundance of myofibroblast between tumor and normal tissues in TCGA LUSC cohort(Significance of difference 
between tumor and normal tissues was calculated by Wilcoxon-test). g. The trajectory of differentiation predicted by monocle. h-j. Differentiation trajectory coloered 
by state(h), sample origin(i) and clusters(j), rsespectively. 
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(TGF-β and IL-10, ect.), affected CD8+T cell priming and differentiation, 
and suppressed cytotoxic CD8+ T cell-mediated tumor killing [38]. 
TIGIT as a promising target for cancer immunotherapy, has been given 
much attention. Several agents targeting TIGIT have been on clinical 
trials [39], and the anti-tumor effects of anti-TIGIT need to be answered 
in the future. The results from the 2020 ASCO meeting showed that 
tiragolumab (anti-TIGIT) plus atezolizumab (anti-PD-L1) achieve 
improved ORR and PFS compared to placebo plus atezolizumab (PA) 
[40]. Recently, however, frustrating news from 2022 ASCO meeting 
pointed out that Atezolizumab(anti-PD-L1)/Tiragolumab (anti-TIGIT) 

did not achieve favorable PFS compared Atezolizumab monotherapy. 
However, another endpoint, OS, is ongoing, and we looking forward to 
satisfying results. 

We also identified another cell population of neutrophil, character-
ized by the expression of CXCR2, CXCL8, CSF3R and S100 A8. Cibersortx 
analysis revealed that the number of neutrophils in TME were signifi-
cantly increased compared with that in normal tissues, which was sup-
ported by evidence from the study of Karg and his colleagues [41]. TAN 
was reported to be involved in tumor development, growth, and 
metastasis [22,42]. CXCR2 and CXCL8 were highly expressed by TANs, 

Fig. 7. Cell-cell communication networks in LUSC TME. a. Heatmap show number of potential ligand-receptor pairs between cell groups predicted by CellphoneDB. 
b. Bubble plots show ligand-receptor pairs of molecules between SPP1+M and other cell groups. c. Violin plot showed the expression of CD44 and SPP1 from scRNA- 
seq data, respectively (Colored by sample origin). d. IHC stainings of CD44 in tumor and normal tissues from HPA, respectively e. Predicted regulatory networks in 
LUSC TME. 
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while CXCL8 was reported to recruit neutrophils to the tumor site via 
binding CXCR2 [43]. We observed that CXCR2+TANs were mainly 
located in the tumor region. Thus, a positive feedback loop may exist in 
TANs, namely TANs secreted CXCL8, and then CXCL8 recruited neu-
trophils to polarize into TANs. TANs were reported to be involved in 
protecting tumor cells from CD8+T and NK cell-mediated cytotoxicity 
[44], recruiting Tregs [45], and promoting tumor cell metastasis [46]. 
Thus, the infiltration of TANs was not only associated with refractoriness 
to immune checkpoint therapy but also tumor metastasis in TME. 

We identified a cell population of myofibroblasts in our study, which 
was correlated with the survival of patients, and we also found that 
myofibroblasts were differentiated from PDGFRA/B+ fibroblasts/fibro-
blasts. The process of fibroblast to myofibroblast transition (FMT) is 
reported to be facilitated by osteopontin in breast cancer, and the 
transition promotes tumor progression [30]. Besides, monocle analysis 
indicated that a branch of tumor-specific fibroblast subgroup cells (“S5” 
state), which were mainly located at end of differentiation tractory. And 
pathways in cancer and ECM receptor interaction were enriched in “S5” 
state cells, while allograft rejection and graft versus host disease were 
enriched in “S1” state cells, which mainly originated from tumor tissues. 
All of these results suggested that fibroblast underwent phenotype 
reprogramming in TME, from participating in the immune response to 
the process of tumor facilitating, which known as cancer-associated 
fibroblast. CAF is recognized as a critical component of TME and is 
involved in ECM remodeling, metastasis, angiogenesis, maintenance of 
cancer stemness, the formation of immunosuppressive TME and drug 
resistance [47,48]. Thus, targeting myofibroblast or fibroblasts might be 
a choice for LUSC treatment. 

Vilchez mercedes and his colleagues redefined the conception of 
“leader cells”, which is responsible for path generation and interacting 
with and coordinating the motion of follower cells via physiological 
mechanisms [49]. TAMs are able to act as leader cells to remodel 
extracellular matrix for invasion of tumor cells depending on secreting 
proteases and TGF-β, to induce genetic instability via producing ROS, to 
promote tumor cell proliferation by generating growth factors, and to 
suppress antitumoral adaptive immunity by expressing suppressive 
soluble and membrane molecules [27,49]. In our study, TGF-β signaling 
and angiogenesis were enriched in SPP1+M, and SPP1+M showed a 
higher expression of CD206 and was correlated with the outcome of 
patients. Thus, SPP1+M contributed to the formation of immunosup-
pressive TME and the growth of tumor, which could be recognized as 
TAM. SPP1 was reported to be involved in mediating macrophage po-
larization [50,51]. TAM upregulated the expression of SPP1, and thus, 
we speculated that TAMs secreted osteopontin in TME and thus osteo-
pontin accelerated the polarization into TAM from monocytes. CD44, 
one of the ligands of osteopontin, is a ubiquitously expressed surface 
glycoprotein [52], and activation of osteopontin/CD44 signaling was 
closely associated with dysfunction of CD8+T cells [37], initiations of 
metastasis [53], and facilitation tumor growth [54]. Moreover, SPP1+M 
from tumor tissues showed high expression of MMP9, MMP12, MMP14 
and MMP19 (Supplementary Fig. 11), which may comtribute to path 
generation for the invasion of tumor cells. Therefore, SPP1+M may act as 
leader cells interacting with other cells and creating low-resistance 
migration tracks for follower cells to promote the tumor progression 
in LUSC TME. 

CellphoneDB analysis revealed that the pair of SPP1-CD44 was 
significantly upregulated in SPP1+M-based regulatory networks in TME, 
and the pair of SPP1-CD44 showed strong interactions with other types 
of cells in TME. The activation of SPP1/CD44 signaling is closely related 
to the dysfunction of CD8+ cytotocic T cells [37], the initiation of 
metastasis [53], and the promotion of tumor growth [54]. It has been 
reported that osteopontin can promote the proliferation and differenti-
ation of B lymphocytes [55]. In addition, the study of Sharon et al. [56] 
showed that osteopontin could induce fibroblast remodeling through 
activating CD44, and knockout of SPP1 inhibited fibroblast activation 
and tumor growth. Therefore, comprehensive regulatory networks were 

conceived based on the above-mentioned results (Fig. 7e). TME is a 
complicated and sophisticated cellular ecosystem. Tumor cells could not 
only escape from attacks by immune cells but also induced reprogram-
ming of macrophages and fibroblasts, in turn, to support themselves. 
Tumor cells can directly or indirectly by “employing” leader cells (TAM, 
CAF, etc.) coordinating with follower cells to promote collective cancer 
invasion. 

Conclusion 

We depicted the landscape of immune cells and constructed the 
regulatory networks in LUSC. The atlas revealed the characteristics of 
immunosuppressive cells that facilitate the immune escape of tumor 
cells in LUSC. To the best of our knowledge, this provides the most 
comprehensive cellular interaction map of LUSC and a framework for 
future discoveries of molecular and cellular therapeutic targets for LUSC 
treatment. Our study provides deep insight into cancer immunology and 
reveals potential therapeutic targets for the treatment of LUSC. 
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Supplementary figure legends 

Supplementary Fig. 1. Feature plot showed the expression of cell 
markers for 7 major sub-clusters. 

Supplementary Fig. 2. A. Featureplot showed the established marker 
genes for each sub-cluster. B. Featureplot showed the immunosuppres-
sive markers for each sub-cluster. C. The correlation between TIGIT level 
and the proportion of Tregs, CD8+effector T and exhausted CD8+ T, 
respectively (Coefficient was calculated with spearman correlation 
analysis). D-E. Immunofluorescence (IF) staining confirmed the exis-
tence of exhausted CD8+T cells and Tregs (n=26), respectively. 

Supplementary Fig. 3. A.Workflow of the estimation of cell abun-
dance established by CIBERSORTx. B. Heatmap of the signature matrix 
created by CIBERSORTx. C.Boxplot showed the abundance of each cell 
population established by CIBERSORTx. 

Supplementary Fig. 4. A. Feature plot showed the expression of 
marker genes. B. Vlnlin plot showed the expression of marker genes. C. 
Violin and feature plot showed expression of MRC1. 

Supplementary Fig. 5. A. Feature plot showed the expression of 
CXCR2 and CXCL8splited by sample origins, respectively. B. IHC stain-
ing of CXCR2 on formalin-fixed and paraffin-embedded slides for the 
independent tumor and normal biospecimens, respectively (n=26). C. IF 
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staining of S100A8, CSF3R and CXCR2 in tumor and normal lung tissues, 
respectively. D. Enriched GO functions of upregulated genes in neutro-
phils from tumor and normal tissues, respectively. E. IHC stainings 
showed expression of CXCL8 from HPA(left) and independent cohort 
(right), respectively. F. Violin plot showed the expression level of CXCL8 
across sample origins from scRNA-seq data. G. Bulk-seq data from the 
TCGA LUSC cohort showed the expression level of IL1RN in tumor and 
normal tissues, respectively(The difference between normal and tumor 
tissues was calculated by Wilcoxon-test). H. IHC stainings showed 
expression of IL1RN from HPA(left) and independent cohort(right), 
respectively. I. The correlation between IL1RN level and the proportion 
of neutrophils in the tumor region. (Coefficient was calculated with 
Spearman correlation analysis). J. IF staining of CXCR2,CXCL8 and 
IL1Ra in tumor and normal lung tissues, respectively. 

Supplementary Fig. 6. A. Violin plot showed expression of SPP1 in 
SPP1+ M from tumor and normal tissues. B. Box plot showed the dif-
ference in the expression of SPP1 between tumor and normal tissues in 
the TCGA LUSC cohort. C. IHC staining showed the expression of 
osteopontin in tumor and normal tissues. D. IF staining confirmed the 
expression of CD68, CD206, and osteopontin in tumor and normal tis-
sues, respectively. (n=26) 

Supplementary Fig. 7. Correlation between Tregs and two types of 
DC(LAMP3+DC and CLEC9A+DC) subgroups in TCGA LUSC cohort, 
respectively. 

Supplementary Fig. 8. A. Feature plot showed the marker genes for 
B/plasm cells. B. Enriched GO functions of upregulated genes in follic-
ular B, IGHGP+plasm and TXNDC5+plasm cells, respectively. C. Corre-
lation between follicular B cells and Tregs (top)and LAMP3+DC(bottom) 
in TCGA LUSC cohort, respectively. D. GSEA analysis of hallmark 
pathways for “S1” state and “S4” state follicular B, respectively. 

Supplementary Fig. 9. A. Feature plot showed the marker genes for 
fibroblast/endothelial cells B. Enriched GO functions of upregulated 
genes in myofibroblast, fibroblast and PDGFRA/B+ fibroblast. C. Cor-
relation between follicular B cells and END1+endothelial (left) and 
ENRB+endothelial cells (right) in TCGA LUSC cohort, respectively.D. IF 
staining confirmed expression of PDGFRB, RGS5 and α-SMA in tumor 
region, respectively(n=26). E. GSEA analysis of hallmark pathways for 
“S1” state and “S5” PDGFRA/B+fibroblast/fibroblast, respectively. 

Supplementary Fig. 10. Bubble plots show ligand-receptor pairs of 
molecules in CD1C+DCs-based, SEPP1+M-based, FABP4+M-based and 
PDGFA/B+fibroblast-based regulatory networks. 

Supplementary Fig. 11. Violin plot showed the expression of MMP9, 
MMP12, MMP14 and MMP19 from scRNA-seq data, respectively 
(Colored by sample origin). 
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