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A B S T R A C T   

Purpose: To describe the association between Sars-CoV-2 infection and small fiber neuropathy in the cornea 
identified by in vivo corneal confocal microscopy. 
Methods: Twenty-three patients who had overcome COVID-19 were recruited to this observational retrospective 
study. Forty-six uninfected volunteers were also recruited and studied as a control group. All subjects were 
examined under in vivo confocal microscopy to obtain images of corneal subbasal nerve fibers in order to study 
the presence of neuroma-like structures, axonal beadings and dendritic cells. The Ocular Surface Disease Index 
(OSDI) questionnaire and Schirmer tear test were used as indicators of Dry Eye Disease (DED) and ocular surface 
pathology. 
Results: Twenty-one patients (91.31%) presented alterations of the corneal subbasal plexus and corneal tissue 
consistent with small fiber neuropathy. Images from healthy subjects did not indicate significant nerve fiber or 
corneal tissue damage. Eight patients reported increased sensations of ocular dryness after COVID-19 infection 
and had positive DED indicators. Beaded axons were found in 82.60% of cases, mainly in patients reporting 
ocular irritation symptoms. Neuroma-like images were found in 65.22% patients, more frequently in those with 
OSDI scores >13. Dendritic cells were found in 69.56% of patients and were more frequent in younger 
asymptomatic patients. The presence of morphological alterations in patients up to 10 months after recovering 
from Sars-CoV-2 infection points to the chronic nature of the neuropathy. 
Conclusions: Sars-CoV-2 infection may be inducing small fiber neuropathy in the ocular surface, sharing symp
tomatology and morphological landmarks with DED and diabetic neuropathy.   

1. Introduction 

Infection with the Sars-CoV-2 virus is the cause of COVID-19 disease, 
which induces a wide variety of pathological signs in the body, even in 

patients with mild disease. A significant number of patients experience 
chronic pathological conditions after they overcome the infection, such 
as reduced respiratory capacity, vasculopathy or chronic fatigue [1]. 
Various neurological manifestations confirm the existence of the virus’s 
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impact on the central nervous system (CNS) [2,3]. Infection of the ol
factory receptors in the nasal cavity is assumed to be related with the 
spread of viral infection to the CNS [4,5]. Olfactory nerve neuropathy 
produces anosmia and ageusia, neurological symptoms that have 
become relevant due to their uniqueness to and frequency in patients 
with mild COVID-19 [6]. 

In the eye, the conjunctival mucosa has also been studied as a route 
of entry of the virus into the body. Epithelium cells at the conjunctiva 
and the cornea express ACE2 and TMPRSS2 specific Sars-CoV-2 re
ceptors [7]. However, conjunctivitis associated with viremia caused by 
Sars-Cov-2 is not severe and reverted within 10 days [8]. 

Another proposed route of entry for the virus into the body and into 
the CNS is through the sensory nerves [4,9]. Dorsal root ganglion from 
patients who have died from COVID-19 showed the expression of 
TMPRSS2 and ACE2 receptors in somata of sensory neurons, where viral 
RNA was also found [10]. Neuropilin receptors 1 and 2 (NRP1 and 
NRP2) have been also described as alternative receptors for Sars-Cov-2 
[10–12]. NRP1 and NRP2 are important molecules for nerve growth 
and axon guidance and are expressed in peripheral nerves [13]. It is also 
believed that NRP1 and NRP2 receptors may be expressed in sensory 
nerve endings and that they may serve as a gateway for the virus. 

The most densely innervated surface of the human body is the cornea 
of the eye [14–16]. Sensory axons from the ophthalmic branch of the 
trigeminal nerve account for more than 80% of the nerve fibers in the 
cornea [14] and are essential for the maintenance of the homeostasis of 
the cornea [17–19]. Corneal nerves show expression of NRP1, NRP2 and 
ACE2 receptors, making them suitable to Sars-CoV-2 infection [10]. 
Severe COVID-19 infection with hypoxemia has been associated with 
systemic neuropathic symptoms and widespread sensory dysfunction in 
patients with diabetes [20], including loss of sensitivity, alteration of 
tissue homeostasis and the generation of epithelial ulcers [21]. In the 
cornea, neuropathy of subbasal axons has been related with altered 
sensitivity, pain and the onset of dry eye disease (DED) [17,18,22,23]. 

Even in cases where COVID-19 related conjunctivitis was resolved in 
a few days, patients at the ophthalmology clinic reported increased 
ocular surface discomfort, irritation, and symptoms of DED between 2 
and 10 months following Sars-CoV-2 infection. To date, there is no 
published evidence of sensory alterations in the cornea after Sars-CoV-2 
virus infection. We used in vivo confocal microscopy (IVCM) to evaluate 
the morphological changes on the sensory subbasal plexus of the cornea 
after Sars-CoV-2 infection. To our knowledge, this is the first report of 
signs of corneal neuropathy in patients that have overcome COVID-19. 

2. Methods 

This observational retrospective study was conducted between 
January 1 and February 25, 2021. It follows the Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE) reporting 
guideline and the tenets of the Declaration of Helsinki. Data and images 
were obtained after informed consent explaining the objective of the 
study and the procedures was read and signed by the subjects. 

The study involves 23 patients of both genders (18 women, 5 men) 
who had overcome Covid-19 between March and December 2020. 
Exclusion criteria included ocular surface surgery procedures; previous 
ocular infectious disease, such as bacterial keratitis, adenovirus, herpes 
virus, or acanthamoeba; and other ocular diseases that can affect corneal 
integrity indirectly (glaucoma, macular degeneration, etc.). Patients 
with systemic diseases that could cause alterations in corneal innerva
tion, i.e., diabetes and fibromyalgia, were also excluded. A cohort of 46 
uninfected gender and age-matched volunteers were recruited and 
studied as a control group (verified by an antigen test and/or antibody 
analysis, and a negative qPCR result). 

2.1. In vivo confocal microscopy (IVCM) 

Patients were examined using a Heidelberg® Retina Tomograph 3 

confocal microscope equipped with the Rostock Cornea Module (Hei
delberg Engineering, Heidelberg, Germany) with a 670 nm wavelength 
Helium–Neon diode laser, using a 63× objective (N.A. = 0.9). Topical 
anesthetic (Tetracaine 0.1% + Oxibuprocaine 0.4%; Alcon Cusí) and 
artificial tears (Lipolac, Carbomer 2 mg/g) were applied to the eye 
before testing. A sterile cap (TomoCap©, Heidelberg Engineering) was 
attached to the lens of the microscope and a drop of high viscosity gel 
(Recugel®, Bausch + Lomb) was used as a bonding agent between the 
cap and the lens. 

Images of the corneal nerves of each eye were obtained, using the 
section mode, in the central and paracentral cornea in a total of 5 non- 
overlapping areas. Examination of the full thickness volume of the 
epithelium to stroma region was conducted to ascertain the complete 
morphology at the subbasal nerve fiber level. The size of the images 
obtained was 384 × 384 pixels, which corresponds to an area of 400 ×
400 μm. 

The images were analyzed and quantified automatically with ACC
Metrics software (MA Dabbah, Imaging Science and Biomedical Engi
neering, Manchester, UK) [24,25]. The following seven parameters were 
calculated: 1) corneal nerve fiber density (CNFD), the total number of 
nerves/mm2; 2) corneal nerve branch density (CNBD), the number of 
second order branches emanating from primary axons/mm2; 3) corneal 
nerve fiber length (CNFL), the total length of all nerve fibers and 
branches (mm/mm2); 4) corneal nerve total branch density (CTBD), the 
total number of branches/mm2; 5) corneal nerve fiber area (CNFA), the 
total nerve fiber area (mm2/mm2); 6) corneal nerve fiber width (CNFW), 
the average nerve fiber width (mm/mm2); and 7) corneal nerve fractal 
dimension (CNFrD), which is an indicator of the structural complexity of 
the corneal nerve [26]. 

The images were then analyzed using the Cell Counter plugin of FIJI 
image analysis software (ImageJ 1.53c; NIH, USA) in order to quantify 
the incidence of neuromas (total number of neuromas/mm2), beaded 
axons (total number of beaded axons/mm2) and the density of dendritic 
cells (DC) in the center of the cornea (total number of DC/mm2). This 
analysis was performed in a semi-automatic fashion. The operator 
manually selected each parameter on the images and the Cell Counter 
plugin automatically calculated the total numbers. Three independent 
researchers carried out the analysis. The final value used for each 
parameter was the average of the three measurements. 

In order to avoid any mistake in the classification of selected IVCM 
morphological alterations, once we located a possible pathological sign 
(neuroma, DC or axonal beads) we examined the candidate structure in 
detail in order to discount it being any other type of anatomical struc
ture. We examined the whole volume of images of each neuroma to 
differentiate them from points where the stromal nerve penetrated the 
epithelium [22,27]. We also differentiated DC from small sections of 
axon collaterals on the basis of their dendritic morphology and enlarged 
cellular body. Finally, by following the entire thickness of beaded axons, 
we were able to identify and discard local refringent points that might 
interfere with the correct description of axonal beads [22,27]. 

The two types of analysis (using ACCMetrics and ImageJ softwares) 
were applied to each of the five selected images from each subject. The 
average of the five values obtained for each parameter was used for 
statistical analysis. 

2.2. Ocular Surface Disease Index (OSDI) 

The presence of ocular surface pathology symptoms, such as 
discomfort or pain, was evaluated using the Ocular Surface Disease 
Index (OSDI) test [28]. Patients were divided into 3 groups depending 
on their OSDI scores: scores >13; scores from 6 to 12; scores ≤5. 

The Schirmer tear test (Katena) was conducted with all patients and 
healthy volunteers using paper strips placed in the lower lid of the eye. 
Strips with less than 5.5 mm of their length wet were considered as 
indicative of DED. 
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2.3. Statistical analysis 

The SPSS statistical software for Mac, 16.0 (SPSS Inc., Chicago, Illi
nois, USA) was used for data analysis. Values were expressed as mean ±
standard error of the mean (SEM). The Mann–Whitney U test was used to 
compare continuous variables between patients who had overcome 
COVID-19 and healthy control subjects. 

3. Results 

This study involved 23 patients diagnosed with COVID-19 by RT-PCR 
between March and December 2020 and 46 healthy age-matched sub
jects. Table 1 shows the age distribution of patients and healthy controls. 
All were subjected to IVCM examination and answered the OSDI ques
tionnaire, as well as undergoing the Schirmer tear test for DED. 

Only one patient, who was suffering from bilateral pneumonia 
(CURB-0.65 = mild grade) needed to be hospitalized. This was the only 
case in our cohort that could potentially be considered to be complicated 
COVID-19, although the patient’s pneumonia was not considered severe 
and they fully recovered respiratory function and needed no further 
treatment. The rest of the patients showed mild symptoms or were 
asymptomatic and did not need hospitalization. All patients were 
asymptomatic or had mild symptoms such as headache, occasional fever 
or loss of olfactory or taste sensitivity. Two patients took only Paracet
amol. One patient took Paracetamol, dexketoprofen and levofloxacin. 
The rest of the patients needed no treatment. Only 3 out of 23 post- 
COVID19 patients had comorbidities. One had hypertension and high 
cholesterol and the other two had high cholesterol. All 3 were aged 
62–69 years. None of the patients suffered from long-COVID disease or 
post-COVID syndrome according to their Primary Health Care Team. 

3.1. Signs of small fiber neuropathy in patients who had overcome 
COVID-19 

The automatic analysis of IVCM images using ACCMetrics software 
showed evident reductions in CNFD, CNBD, CNFL and CNBT in patients 
overcoming Sars-Cov-2 infection compared with healthy controls. These 
differences were significant for CNFD (p < 0.01) and CNFL (p < 0.05) 
parameters in patients in the 36 to 55 age range (Fig. 1). Also, CNFrD 
was significantly lower in post-COVID-19 patients compared to controls 
in the same age group (p < 0.05). The analysis of CNFA and CNFW 
showed no differences. 

The semi-automatic analysis of IVCM images using FIJI software 
showed that 21 out of 23 patients (91.31%) presented morphological 
alterations of the corneal subbasal plexus (neuroma-like structures, 
beaded axons) and corneal cell infiltration (presence of abundant DC) 
consistent with small fiber neuropathy. On the other hand, images from 
healthy subjects did not show indications of nerve fiber or corneal tissue 
damage, irrespective of age or gender (Fig. 2). 

The quantification of neuromas in patients who had overcome 
COVID-19 infection and healthy subjects showed a significantly higher 
incidence in COVID-19 patients in all age groups. The occurrence of 
neuromas among healthy individuals was very rare. Indeed, we only 
detected 2 neuromas in the group of healthy subjects, one in the <35 
group, the other in the 56–75 group, while the number of post-COVID- 
19 patients with identifiable neuromas was 15 (65.22% of patients 
across age groups). The proportion of neuromas was linked to age, 
reaching a maximum in the 36–55 group, where neuroma-like structures 
were identified in 80% (7 out of 10) of patients. The difference with 

respect to healthy subjects was significant for all age groups (p < 0.05). 
Beaded axons are characteristic signs of small fiber neuropathy and were 
frequently found in post-COVID-19 patients, affecting 82.60% of cases 
(19 out of 23) in the COVID-19 group and 26.01% of healthy individuals. 
These alterations were significantly more numerous in COVID-19 group 
than in healthy subjects (p < 0.05) for all age groups and were present in 
90% of patients in the post-COVID-19 36–55 group and 71.43% of the 
<35 group. The frequency of beaded axons was also high in patients 
over 56 (83.33%). Finally, DC were found in 69.56% of COVID-19 pa
tients and in 39.13% of healthy subjects. The density of DC in the central 
cornea of COVID-19 group was significantly higher (p < 0.05) in pa
tients younger than 55 compared with age-matched controls. 

3.2. COVID-19 infection increases severity of DED symptoms 

Eight COVID-19 patients scored OSDI >13 after COVID-19 infection. 
Their Schirmer test average was 3.00 ± 0.49 mm and they were thus 
considered to have acquired DED symptoms after COVID-19 infection 
(Fig. 3). Four of them had never experienced DED before their COVID-19 
infection although post-infection they scored 20, 23, 24 and 24 on OSDI. 
The other four were patients with previous ophthalmological exams 
reflecting a non-pathological stage (OSDI scores 7, 9, 11 and 14; the 
latter presenting scores at the limit of mild DED and experiencing low 
grade symptoms but a normal Schirmer test before COVID-19 infection 
and so was not considered medically to have DED). These patients all 
experienced a great increase in symptoms, leading to a clear DED 
diagnosis (OSDI scores of 18, 18, 24 and 24 respectively). All eight 
subjects in this group (100%) showed IVCM signs of subbasal nerve 
lesion (neuromas, DC or beaded axons). A second group of six patients 
had OSDI values between 6 and 12. Such values are not usually 
considered as indicative of ocular dryness pathology, although they do 
represent the occurrence of some signs of ocular surface discomfort. The 
average score of these patients on the Schirmer test was 9.50 ± 1.26 mm, 
and 83% of these patients (n = 5) showed neuromas, DC or beaded 
axons. Finally, nine patients rated OSDI <5 and had no signs of 
discomfort. Their average Schirmer value was 11.25 ± 2.02 mm and the 
percentage of patients with neuromas, DC or beaded axons was 88.89% 
(n = 8). 

Beaded axons were strongly associated with patients reporting 
ocular surface irritation or discomfort, with OSDI values > 13 (87.5% of 
the patients with OSDI >13; Fig. 4). Patients with OSDI values under 12 
showed percentages of beads occurrence between 44.44 and 50% 
(Fig. 4B). Neuroma-like images were more frequent (75%) in patients 
with OSDI values > 13, while patients with OSDI values under 12 
showed percentages of neuroma occurrence between 33.33 and 55% 
(Fig. 4). The presence of DC seemed to be independent of OSDI values, 
the proportion of patients with DC being between 44 and 50% in all 
OSDI value groups (Fig. 4B). Nevertheless, DC were more frequent in 
younger patients (<35 years), most of them (71.43%) having OSDI 
values < 5 (Fig. 4C). 

All healthy age-matched subjects obtained low values on the OSDI 
questionnaire (<12) and the average Schirmer stained length was 10.08 
± 1.31 mm. 

In addition to DED symptoms, the 39.13% of COVID-19 patients 
reported past episodes of anosmia. The presence of anosmia was more 
numerous in young patients without DED symptoms (42.86%; <35 
years; OSDI <5). The presence of neuromas in patients who had over
come COVID-19 was coincident with a 46.15% of anosmia. One 37.50% 
of patients showing DC had suffered also anosmia, while the proportion 
of patients with beaded axons and anosmia was 36.84%. 

3.3. Temporal evolution of corneal COVID-19 symptoms 

We later investigated whether corneal small fiber neuropathy as 
suggested by morphological alterations in patients overcoming COVID- 
19 infection was permanent or improved with time (Fig. 5). We grouped 

Table 1 
Number of patients and control subjects distributed by age intervals.   

<35 years 36–55 years 56–75 years 

COVID-19 7 10 6 
Healthy controls 17 17 12  
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patients on the basis of the time elapsed from their RT-PCR COVID-19 
positive diagnosis to the date of their ophthalmological examination, 
establishing 3 groups: 1) IVCM examination within 3 months of RT-PCR 
positive diagnosis (<3 months group); 2) Patients diagnosed with 
COVID-19 3–6 months before IVCM exam (3–6 months group); 3) Pa
tients diagnosed 6–12 months before IVCM exam (>6 months group). 
The proportion of neuroma-like structures in patients with a recent 
COVID-19 diagnosis (<3 months) was significantly higher in patients 
with OSDI scores >13 compared to those with scores below 12. The 
percentage of neuromas seemed to increase in patients diagnosed longer 
ago (3–6 months and >6 months). 

The percentage of patients with DC was higher in patients with 
longer periods from PCR + to eye exam. Interestingly DC were found in 
larger proportions in COVID-19 patients with lower OSDI scores (<5), 
normally considered non-pathological. 

Subbasal nerve fibers showing beads were found in all temporal 
groups at high levels. The proportion of axonal beads was higher in 
patients with PCR diagnosis more than 3 months earlier and increased 
progressively with severity of OSDI symptoms among patients with 
more recent PCR+ (<3 months). 

4. Discussion 

To date, there is no report in the literature of serious ocular surface 
complications after Sars-CoV-2 infection, perhaps because the ocular 
surface expression level of ACE2 and TMPRSS2 receptors is generally 
low, as is the amount of Sars-CoV-2 RNA collected in ocular samples [29, 
30]. In addition, the ocular surface shows potent antiviral counter
measures that may explain the low prevalence of eye involvements [31]. 

Interestingly, our results demonstrate morphological changes in 
subbasal nerves of COVID-19 group associated with the generation of 
DED symptoms. The severity of morphological changes was related with 
worsening of DED symptoms: discomfort, irritation and mild pain. 
Gambini et al. [32] observed the prevalence of DED symptoms and in
dicators, such as OSDI questionnaire or Schirmer test, in a cohort of 64 
COVID-19 patients, thus supporting thus our findings. 

In this work we described lower CNFD and CNFL measurements in 
patients that have overcome COVID-19 compared with healthy corneas, 
as well as a reduced CNFRd. Also, high number of neuromas and beaded 
axons and high density of DC, all these morphological changes suggests 
clearly small fiber neuropathy [33]. The majority of the morphological 
changes were found in patients from 36 to 55 years of age. A recent study 
by Bitirgen et al. [34] reported also CNFD and CNFL reductions and an 

Fig. 1. Results of the ACCMetrics automatic quantification of subbasal plexus of patients that have overcome COVID-19 infection compared with healthy corneas. 
Significant differences are represented with asterisks (* = p < 0.05; ** = p < 0.01). 
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increase in DC density coincident with our results albeit these changes 
were observed only in relation with persisting systemic neurological 
symptoms in a subset of long COVID-19 patients. 

The neuropathy of cornea nerve endings has been established as a 
determinant for the appearance of pathologies such as DED in mice [17, 
35,36] and in humans [22,23,37]. The degeneration affects the distal 
end of the neuron, altering not only the fiber morphology but also 
modifying the neuron function [38]. 

In healthy corneas, sensitive nerve ending remodeling is a normal 
process in the corneal epithelium during epithelial cell turnover. Insults 
and diseases may exceed its capacity for regenerative response and the 
damaged corneal nerve endings degenerate causing the neuron loss of 
function [17,19,39,40]. In this case, our results suggest that Sars-Cov-2 
infection is related with corneal nerve degeneration. The presence of 
NRP1 and NRP2 receptors in corneal nerves may explain the generation 
of small fiber neuropathy and the recruitment of DC to central cornea of 
patients that have overcome COVID-19 described in our results. Unlike 
the Sars-CoV virus, which can only infect through interaction with 
ACE2, Sars-Cov-2 also uses NRP1 and NRP2 as alternative receptors in 
tissues with very low or absent ACE2 expression [11,12]. Other factor 
affecting nerve degeneration could be the loss of the neuroprotective 
role of ACE2 on the neurons expressing it [41,42]. The occupation of the 
receptor ACE2 by the spike protein of Sars-CoV-2 virus would contribute 
to the reduction of the survival and regeneration capacity of the axonal 
endings of the sensory neurons of the cornea. 

In our study beaded axons were the most frequent sign of neuropathy 
in post-COVID-19 patients and also indicative of severity of DED 
symptoms, as they were predominantly found in OSDI >13 group. 
Beaded axons were also found in asymptomatic OSDI (<5) even after 
more than 6 months after overcoming the infection, indicating the 
possible chronicity of the neuropathy, as is common in other ocular 
surface viral infections such as HSV, where morphological and func
tional alterations of corneal nerves are still present months after 

overcoming HSV keratitis [43]. One cause of the generation of beadings 
along corneal axons is oxidative stress, as reported in skin sensory nerve 
endings in diabetic patients induced by high glucose concentrations 
[44–46]. The lesion is a distal axonopathy that interrupts axonal vesic
ular traffic and, above all, it is an underlying mitochondrial dysfunction. 
In the cornea, this may be represented by the increased beading of 
subbasal nerves observed in COVID-19 patients, it having been sug
gested that beads observed in peripheral neuropathies, including dia
betic neuropathy, are the result of an accumulation of vesicles and 
mitochondria traveling towards the periphery in regenerating axons, 
resulting in axon swelling [44–46]. Also, the degeneration and loss of 
distal nerve endings in the innervated tissue causes not only a loss of 
sensitivity, but also the alteration of tissue homeostasis and the gener
ation of epithelial ulcers [21]. 

Our results show that neuroma were preferentially found in patients 
reporting severe symptoms of DED (OSDI >13 and Schirmer 3.00 ± 0.49 
mm), although they were also present in patients with a recent COVID19 
diagnosis (less than 3 months after PCR+) and low OSDI (scoring <12). 
Neuromas are presumed to be disorganized neural and/or glial tissue 
caused by unsuccessful attempt to regenerate at the stump of the injured 
nerve [47]. In our work, the identification of neuromas occurred as early 
as 3 months after patients tested PCR+. This is consistent, for example, 
with the period of development of neuromas in postsurgical procedures 
[48]. The lack of neuroma structures in asymptomatic patients and pa
tients with only slight DED symptoms diagnosed with COVID-19 3–10 
months before their ophthalmological examination might suggest the 
worsening of the neuropathy over time. Nerve activity is altered in 
neuromas, mostly due to the accumulation of Na + channels, whose 
expression is upregulated in regenerating neurons. As a result of the 
altered expression of ion channels of neuroma nerve fibers, they lose the 
ability to detect the natural stimuli they use to be sensitive, which 
manifests as reduced sensitivity to stimulation, that is, sensitivity loss 
[18]. In addition, neuroma nerves become hyperexcitable and fire action 

Fig. 2. IVCM captures from healthy subjects and patients that have overcome COVID19 infection, showing typical morphological signs of small fiber neuropathy.  
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Fig. 3. Results of the quantification of morphological signs of small fiber neuropathy (neuroma, beaded axons and dendritic cells) found in patients that have 
overcome COVID-19 infection and in healthy controls. In A we show the percentage of signs of lesions at the basal level of the corneal epithelium in groups of age. In 
B, C, and D, we show the comparison between the amount of neuroma, beaded axons or DC in post-COVID-19 patients and in healthy subjects. Significant differences 
are represented with asterisks (* = p < 0.05; ** = p < 0.01). 

Fig. 4. Summary of results of ocular surface IVCM biomarkers and DED symptoms developed after COVID-19 infection. In A, OSDI Scores before and after COVID19 
infection (Pt = patient). In B, we show the distribution of IVCM biomarkers (neuroma, beaded axons or DC) attending to DED symptoms severity (OSDI scores). In C, 
we show the proportion of post-COVID-19 patients as a function of DED severity. 
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potentials even in the absence of any stimulation, causing continuous 
pain and discomfort [18,22,27]. As such, patients with corneal 
neuroma-like structures will experience ocular discomfort and pain [22] 
and, at the same time, will have reduced sensitivity to corneal 
stimulation. 

The altered sensitivity of neuropathic fibers we observed in the 
cornea may be equivalent to the loss of chemical sensitivity described in 
patients with anosmia/hyposmia or ageusia/dysgeusia due to the 
altered function of sensory receptors of the olfactory and trigeminal 
nerves in the olfactory and nasal mucosae and in the taste buds [6,49, 
50]. Our study showed high coincidence between the presence of neu
romas at IVCM examination and loss of smell during Sars-Cov-2 infec
tion. While all patients reporting anosmia recovered total olfactory 
functionality, corneal morphological changes remained at least the time 
elapsed between infection and ophthalmological exam. 

Accompanying axon degeneration, we observed significantly high 
density of DC in the cornea of patients who have overcome COVID-19 
disease. They were found in higher proportion in young (<35 years) 
and asymptomatic (low OSDI scores) patients. DC are involved in 
corneal immunoregulation [51] and inflammatory [52] processes. 
Attending to morphological parameters such as dendritic processes 
extension [53], the majority of DC observed was immature DC. Although 
immature DC did not work as antigen presenting cells, they may be 
involved in phagocytic activity in the diseased cornea [53]. In healthy 
corneas, DC were located mostly at the periphery in the corneal 
epithelium, with a decrease in numbers at the center, which accounted 
for less than 20% of the total DC [53]. The presence of DC, regardless of 
whether the patient has symptoms or not, could be explained by the fact 
that several molecules such as CD209, CD26, CD30 and CD66 present in 
DC have been found to be receptors for receptors for SARS-CoV-2 [54, 
55]. 

Our results add new evidence for the use of IVCM technology in the 
diagnosis and follow up of post-COVID-19 syndromes or complications, 
as well as to the study of small fiber neuropathies. Many authors and 
clinicians are promoting the study of the subbasal nerve plexus alter
ations as indicators of peripheral neuropathies associated with systemic 
or neurodegenerative diseases [19,56–58], DED [22,23,33,52,59], or 
associated with an inflammatory reaction [60,61]. The use of IVCM for 
the evaluation of corneal nerves is gaining interest and it is now used as a 
diagnostic marker of diabetic neuropathy [33,56,62,63] and other pe
ripheral neuropathies [64–66], as well as in DED [23,67]. Our work, as 
well as other recent publications [34], show that IVCM can be used to 
study of COVID-19 disease. 

Taken together, our results indicate the induction of a subclinical 

immunopathological scenario upon Sars-CoV-2 infection of the cornea. 
DC were also observed also in patients that had overcome Sars-CoV-2 
infection up to 10 months earlier, suggesting that the immunocompro
mised environment is persistent for a long periods of time, and sup
porting also the hypothesis of the generation of a chronic DED-like state 
on the ocular surface of post-COVID19 patients. 

5. Conclusions 

To our knowledge, this is the first report of Sars-CoV-2 induced 
neuropathy on the ocular surface. Viral infection causes sensory fiber 
axonopathy that became chronic after the patients’ recovery. Morpho
logical alterations found in corneas of COVID-19 patients are similar to 
those found in diabetic corneas and DED, and are accompanied by 
functional loss and alteration in sensitivity. COVID-19 patients suffer 
pain and discomfort consistent with DED symptoms. 
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