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Deep anomaly detection 
of seizures with paired 
stereoelectroencephalography 
and video recordings
Michael L. Martini1, Aly A. Valliani1, Claire Sun1,2, Anthony B. Costa1, Shan Zhao3, 
Fedor Panov1, Saadi Ghatan1, Kanaka Rajan2* & Eric Karl Oermann4,5,6* 

Real-time seizure detection is a resource intensive process as it requires continuous monitoring of 
patients on stereoelectroencephalography. This study improves real-time seizure detection in drug 
resistant epilepsy (DRE) patients by developing patient-specific deep learning models that utilize a 
novel self-supervised dynamic thresholding approach. Deep neural networks were constructed on over 
2000 h of high-resolution, multichannel SEEG and video recordings from 14 DRE patients. Consensus 
labels from a panel of epileptologists were used to evaluate model efficacy. Self-supervised dynamic 
thresholding exhibited improvements in positive predictive value (PPV; difference: 39.0%; 95% CI 
4.5–73.5%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.03) with similar sensitivity (difference: 14.3%; 
95% CI − 21.7 to 50.3%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.42) compared to static thresholds. 
In some models, training on as little as 10 min of SEEG data yielded robust detection. Cross-testing 
experiments reduced PPV (difference: 56.5%; 95% CI 25.8–87.3%; Wilcoxon–Mann–Whitney 
test; N = 14; p = 0.002), while multimodal detection significantly improved sensitivity (difference: 
25.0%; 95% CI 0.2–49.9%; Wilcoxon–Mann–Whitney test; N = 14; p < 0.05). Self-supervised dynamic 
thresholding improved the efficacy of real-time seizure predictions. Multimodal models demonstrated 
potential to improve detection. These findings are promising for future deployment in epilepsy 
monitoring units to enable real-time seizure detection without annotated data and only minimal 
training time in individual patients.

Epilepsy is among the most common neurological disorders worldwide with an estimated 5 million people 
diagnosed each year1. Epileptic seizures are characterized by pathological electrical activity in regions of the 
brain that manifest as functional disturbances that may be transient2. Although first-line treatment to control 
seizures consists of antiepileptic drugs, more than 30% of patients are pharmacoresistant and at high risk for 
premature mortality3–5. Stereoelectroencephalography (SEEG) is a method for localizing epileptogenic foci in 
patients with drug resistant epilepsy (DRE) involving placement of macroelectrode depth electrodes into the 
brain, followed by continuous monitoring in a specialized epilepsy monitoring unit (EMU)6–8. Epileptologists 
must quickly recognize abnormal SEEG waveforms, and EMU staff must monitor patients for signs of clinical 
seizures around the clock, making this is a highly time- and resource-intensive process.

Deep learning-based approaches are promising solutions to automated seizure detection, but they are not 
without limitations9–13. Previous studies have: (1) used algorithms engineered to classify previously recorded 
EEG sequences without a framework for real-time event detection, (2) required large training datasets, extensive 
annotations, and a pre-screening for artifacts to achieve adequate results, and (3) produced high false positive 
rates, commonly due to static thresholding methods applied in the decision function. This limits clinical util-
ity, particularly in the context of large-scale data produced by continuous in-hospital recordings. Furthermore, 
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acquiring large, annotated datasets and screening for artifacts is time- and cost-prohibitive which diminishes util-
ity unless the pre-trained models are exceptionally well-generalizable. Given the variety of waveforms, dynamic 
noise, and other idiosyncrasies often present in patient recordings, seizure detection remains challenging.

We present our results from training individually tailored, self-supervised Long Short-Term Memory (LSTM) 
deep neural networks on continuous in-hospital multichannel SEEG and video recordings with no explicitly 
labeled data (Fig. 1). Here, we define seizure detection as the task of anomaly detection in high-dimensional 
sequences. A dynamic thresholding method, developed by NASA for use on the Mars Rover, was adapted to 
improve detection sensitivity and mitigate false positives, suggesting feasibility as a new, more dynamic paradigm 
for real-time anomaly detection in video and electroencephalographic data14.

Concurrent SEEG and video signals, totaling over 2000 h across all patients and channels analyzed, were 
processed by adapting previously described methods (“Signal processing”)15,16. LSTMs and convolutional LSTM 
autoencoders were trained for each patient as described in “LSTM training and parameters”. Dynamic threshold-
ing was compared to conventional static thresholding, crossover experiments (Figs. 2, 3) were performed to char-
acterize models’ patient-specificity, and joint models incorporating SEEG and video detection were constructed 
to assess the added benefit of multimodal detection. Model outputs were compared to ground truth anomalous 
sequences agreed upon by three fellowship-trained epileptologists who were blinded to the results of the model. 
The positive predictive value (PPV), sensitivity, and F1 scores were compared between models. Mean absolute 
percent error and minimal duration of recording data to train each model were also noted.

Results
Dynamic vs. static thresholding.  The dynamic threshold with error pruning was compared to a baseline, 
fixed threshold, label-free anomaly detection approach. Inspection of the threshold demonstrated that the math-
ematical optimization in each window found localized levels that effectively categorized anomalies in real-time 
(Fig. 4A,B). Compared to static thresholding, dynamic thresholding did not improve sensitivity significantly 
(difference: 14.3%; 95% CI − 21.7 to 50.3%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.42) but did significantly 
increase PPV (difference: 39.0%; 95% CI 4.5–73.5%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.03). Addition-
ally, F1 scores were significantly higher for the dynamic threshold (difference: 0.31; 95% CI 0.1–0.61; Wilcoxon–
Mann–Whitney test; N = 14; p = 0.04).

Figure 1.   Overview of the workflow for continuous monitoring with video and SEEG and real-time analysis 
in the epilepsy monitoring unit. Patients with DRE receive continuous monitoring of their intracranial SEEG 
leads (red) and simultaneous video recording in their hospital beds (blue). A convolutional LSTM autoencoder 
(CNN + LSTM) was applied to the video recordings to calculate a regularity score for each frame over time. This 
regularity score time series and the SEEG time series (green sequence, bottom left) were then separately fed into 
an LSTM network to reconstruct their signals (blue sequence, bottom middle) and calculate a reconstruction 
error (red sequence, bottom right) which was then subjected to a self-supervised dynamically thresholding 
method to identify anomalous events in real-time.
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Figure 2.   Design of crossover experiments to assess patient-specificity of models. LSTM models were trained 
on recordings from one patient and tested on recordings from another patient.

Figure 3.   Crossover testing produces a large increase in the number of false positive results. This indicates that 
trained models are attuned to the unique electrical signal of a given patient. Green shading refers to prediction 
mismatches that correspond to correctly identified anomalies whereas red shading refers to prediction 
mismatches that correspond to false positives.
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Figure 4.   Self-supervised error thresholding for real-time detection of anomalies in SEEG and video data. An 
LSTM network is trained to predict the next window of values in the test time series sequence (A, blue). These 
values are compared to the actual values (A, orange), and a smoothed error is calculated for each value in the 
sequence (B, red sequence). Prediction mismatches (A, purple) manifest as higher errors. A self-supervised 
dynamic threshold (B, magenta line) enables effective local classification of true anomalous sequences (B, green 
bar) while omitting many of the false positives (B, red bars) that result from traditional static thresholding 
methods (B, blue line). Concurrently acquired video recordings for each patient were considerably noisier and 
signal reconstruction was not as robust, demonstrated by the higher reconstruction errors (C, red sequence). 
While video sequences captured all of the true seizure events in the study population (C, middle, green bar), 
they also captured several false positive events, such as nurse visits (C, far right, red bars).
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Crossover experiments.  Crossover experiments assessed whether the learned features from each patient 
training model generalized to testing sequences derived from different DRE patients (Figs. 2, 3). With six dis-
tinct crossover combinations, anomaly detection sensitivity remained comparable to the non-crossover experi-
ments (difference: 4.8%; 95% CI − 38.4 to 47.9%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.82), but PPV (dif-
ference: 56.5%; 95% CI 25.8–87.3%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.002) and F1 scores significantly 
declined (difference: 0.38; 95% CI 0.08–0.67; Wilcoxon–Mann–Whitney test; N = 14; p = 0.02). After training on 
continuous data from a given patient, testing the network on an unseen sequence derived from the same patient 
resulted in high fidelity of predicted sequences, with most of the prediction mismatches (Fig. 3, left, top, green 
circle) corresponding to true anomalies (Fig. 3, left, bottom, green bar). Testing this same model on an unseen, 
normalized sequence derived from a different patient produced considerably more prediction mismatches 
(Fig. 3, right, top, red and green circles), resulting in higher false positive rates (Fig. 3, right, bottom, red bars).

Multimodal detection.  Joint models incorporating self-supervised anomaly detection in video and SEEG 
recordings were constructed to determine the potential added benefit of multimodal detection (Fig. 4C). Mul-
timodal detection significantly improved sensitivity (difference: 25.0%; 95% CI 0.2–49.9%; Wilcoxon–Mann–
Whitney test; N = 14; p < 0.05) over dynamically thresholded SEEG recordings, but decreased PPV, though not 
significantly (difference: 21.3%; 95% CI − 10.3 to 52.9%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.17). Rela-
tive to video detection alone, the combined workflow also improved the PPV (difference: 28.5%; 95% CI 4.6–
52.4%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.02) and F1 scores (difference: 0.22; 95% CI − 0.01 to 0.44; 
Wilcoxon–Mann–Whitney test; N = 14; p = 0.06).

Discussion
The study is the first to implement a multimodal self-supervised deep learning workflow for intracranial seizure 
detection in DRE patients. While previous studies have used bedside recordings to classify hypermotor seizures, 
few have jointly evaluated video and electroencephalographic feeds to detect seizures17,18. This study provides 
a novel proof-of-concept in this arena by demonstrating the potential of self-supervised anomaly thresholding 
to improve the sensitivity and PPV of automated seizure detection on continuous multimodal recordings in 
real-time. Because error residuals in anomaly detection are often non-Gaussian, the nonparametric dynamic 
thresholding method for error classification used in this study overcomes a major limitation of prior studies using 
parametric thresholding methods which assumed a distribution that does not fit the residuals.

The pipeline presented in this work utilizes a LSTM network and a convolutional LSTM autoencoder to 
enable real-time detection of anomalous events in high-resolution SEEG and video data, respectively, making 
them valuable in a prospective setting. Models were trained on only 5–10 min of SEEG recordings which did not 
necessarily include a seizure event and labeled data was not required, thereby reducing time and cost of analysis. 
Crossover studies suggested the self-learned representations of SEEG recordings are patient-specific, which 
provides confidence in the ability of our algorithm to identify clinically relevant features given the diversity of 
signal properties between patients. Taken together, clinical translation of this work could personalize the care of 
patients and augment the workflow of staff in the EMU. By ingesting a few initial minutes of a patient’s recording, 
this pipeline would enable continuous long-term monitoring of ictal events and reduce frequent false alarms 
in the context of subtle environmental changes, which would otherwise be time intensive and cost prohibitive.

Earlier methods in inpatient epileptic seizure detection have traditionally relied more on constant monitor-
ing of patient recordings by trained personnel. This is available in approximately 56–80% of EMUs, whereas 
automatic online EEG warning systems are present in only 15–19% of EMUs19. While clinical seizure semiol-
ogy provides some critical information to help elucidate the zone of onset and propagation pathways, periictal 
behavioral assessments facilitate an even more comprehensive understanding of these details. Most algorithms 
for EEG-based seizure detection in clinical settings center around multiple-channel analyses rather than single-
channel19. Following data acquisition by the electrodes, these systems typically employ a method for artifact rejec-
tion followed by an algorithm for event detection usually involving analysis of the electrographic changes during 
seizures in terms of amplitude, frequency, or rhythmicity. Methods for these analyses in previous algorithms 
for patient-specific seizure detection have included both linear and nonlinear time–frequency signal analysis 
techniques20–22. More recent studies focusing on automated seizure detection have relied on other machine 
learning techniques, including support vector machines, k-nearest neighbors, and convolutional neural net-
works, which require complete electroencephalograms before determining whether anomalies are present23–25. 
Such properties limit the application of these approaches primarily to retrospective data. Furthermore, unlike 
deep learning methods which learn the best features to implement to achieve optimal performance, these older 
methods require manual feature extraction and careful programming of the network to obtain acceptable results. 
Other work has focused on developing large pre-trained models with the goal of successful generalization to other 
patients26. Of note, there are several generalized, commercially-available seizure detection algorithms currently 
on the market, including Persyst-Reveal27, IdentEvent28, BESA29, and EpiScan30. The primary limitation of these 
methods, however, is that they may not generalize well to other patients given the wide variety of signal charac-
teristics that may exist as a result of recording quality, patient disease and electrophysiological characteristics, 
or other uncontrollable factors. This, in turn, may limit clinical efficacy. In contrast, as described previously, the 
workflow presented in this study could be rapidly deployed in clinical settings to create patient-specific models 
with improved adaptability for prospective prediction.

Limitations.  This study’s limitations include using retrospective data for training and a relatively small 
patient cohort, which could introduce selection bias. While overfitting is always a concern in deep learning, we 
controlled for this by holding out data for validation for each patient and using early stopping criteria during 
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model training (“LSTM training and parameters”). Additionally, although incorporating videos improved sen-
sitivity, it also increased false positives. Developing more sophisticated tiered or weighted systems for escalating 
anomalies detected in concurrent multimodal recordings could reduce false positives in this workflow. Future 
work is underway to adapt these methods to a prospective, randomized format to confirm the utility of self-
supervised dynamic thresholding for seizure detection in a clinical setting.

Conclusions
Self-supervised dynamic thresholding of patient-specific models significantly improves the PPV of seizure detec-
tion in continuous SEEG recordings from DRE patients compared to traditional static thresholds. Incorporating 
concurrent video recordings into multimodal models significantly improved sensitivity, but reduced PPV, though 
not significantly. The characteristics of these models are promising for future deployment in clinical settings to 
improve the speed, precision, and cost-effectiveness of epilepsy monitoring, which may ultimately improve the 
safety profile of SEEG monitoring for our patients.

Methods
Study protocol.  Patients with drug resistant epilepsy (DRE) at an academic medical center were retro-
spectively enrolled in the study. Subjects with significant progressive disorders or unstable medical conditions 
requiring acute intervention, those taking more than three concomitant antiepileptic drugs (AEDs) or with 
changes in AED regimen within 28 days, and patients with onset of epilepsy treatment less than two years prior 
to enrollment, were excluded from the study. In total, 14 consecutive DRE patients underwent surgical implanta-
tion of 10–18 multichannel SEEG leads from 2018–2019 as per standard hospital protocols (average: 15 leads, 
147 channels) and subsequent in-hospital video and SEEG monitoring for 4–8 days (average: 6 days). Patients 
were 16–38 years old (average: 24.5 years), 57% were female, and 71.4% were taking AEDs during the record-
ing period. All patients had recordings with at least one epileptiform event (Table 1). This study was approved 
by the Mount Sinai Health System Institutional Review Board (IRB). Informed consent was waived by the IRB 
with oversight from the Program for the Protection of Human Subjects Office. All methods were performed in 
accordance with their relevant guidelines and regulations.

Signal processing.  High-resolution SEEG recordings sampled at 512 Hz were obtained from the Natus 
NeuroWorks platform, filtered with a one-pass, zero-phase, non-causal 50 Hz low-pass finite impulse response 
filter, and scaled to (− 1, 1). Concurrent video recordings for each patient in the monitoring unit were acquired 
at 480p resolution at 30 frames per second. Videos were segmented into sequential clips, converted to .tiff image 
files using FFmpeg, and fed into a convolutional LSTM autoencoder that was structured to have 2 convolutional 
layers, 3 convolutional LSTM layers, and 2 deconvolutional layers16. A regularity score time series was calculated 
for all video frames by computing the reconstruction error of each frame by summing up all pixel-wise errors, as 
described by Hasan et al.15. Signal processing was conducted using MNE 0.17.1 and SciPy Signal in Python 3.7.

LSTM training and parameters.  A self-supervised training regimen was established where each channel 
from the SEEG recordings and regularity score time series was divided into training and testing sequences using 
variable train:test splits ranging from 20:80 to 50:50. 29% of recordings in the train set had epileptiform events 

Table 1.   Characteristics of the patient population. SEM standard error of the mean.

Demographics

Age (mean ± SEM) 24.5 ± 2.0 years

Female (%) 8 (57%)

Duration of recording in hospital (mean ± SEM) 6.1 ± 0.4 days

Taking antiepileptic drugs (%) 10 (71%)

Targets with leads (total across study population)

Number of leads (total; mean ± SEM) 204; 14.6 ± 0.6

Supplementary motor area (SMA) 8 (4%)

Amygdala 25 (12%)

Cingulate 55 (27%)

Frontal 11 (5%)

Hippocampus 25 (12%)

Insula 10 (5%)

Orbitofrontal 28 (14%)

Parietal 7 (3%)

Premotor 5 (3%)

Temporal 28 (14%)

Thalamus 2 (1%)

Number of channels (total; mean ± SEM) 2055; 146.8 ± 7.6
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whereas 86% of recordings in the test set had such events (Table 2). A LSTM network with 80 hidden layers 
was initialized for each channel and trained on the unlabeled training sequence for up to 35 epochs (or until 
early stopping criteria were met) with a sequence length typically between 250,000 to 750,000 elements, which 
spanned anywhere from 10 to 30 min overall and either did or did not include known anomalies. To mitigate the 
risk of model overfitting, early stopping criteria were used while training each model. These criteria specified that 
training iterations must decrease the loss metric by at least 0.003 to allow additional training iterations to occur. 
Using a training “patience” of 5, up to 5 consecutive training iterations were allowed to occur without decreas-
ing the loss metric by at least 0.003 before model training was stopped early. Each LSTM used a mean-squared 
error loss metric, an Adam optimizer, and a dropout of 0.3. Within the training sequences, 20% of the data was 
set aside as validation before testing. After training, the performance of each model was assessed on the unseen 
test sequences. The network was assessed for its ability to predict future values in real-time (Fig. 4A), compare 
the predictions to the actual values, and compute a smoothed error based on the difference between the actual 
and predicted values (Fig. 4B). LSTMs and convolutional autoencoders were implemented using TensorFlow.

Self‑supervised dynamic thresholding method.  A novel dynamic thresholding approach, devel-
oped by the NASA Jet Propulsion Laboratory to detect real-time anomalies in telemetry data from the Mars 
Rover, Curiosity, was adapted to our models to label anomalies based on the error values from the time series 
predictions14. In contrast to conventional static thresholds frequently used for anomaly detection (e.g. mean ± 2 
standard deviations), this dynamic method uses a sliding window approach to find optimal local thresholds, 
such that the percent decrease in the mean and standard deviation of the smoothed error in the window is 
maximized if values above the set threshold are excluded. To mitigate false positives, an error pruning procedure 
was implemented in which the sequence of smoothed errors was incrementally stepped through, the percent 
decrease between time steps was computed, and steps with a percent change greater than 10% remained anoma-
lies while steps with a change less than 10% were reclassified as normal.

Crossover and multimodal video/SEEG detection experiments.  To evaluate the patient-specific 
nature of the LSTM models, crossover experiments were conducted, in which models were trained on record-
ings from one patient and tested on another, while all other conditions remained identical to previous testing 

Table 2.   Neural network specifications and results. MAPE mean absolute percent error, SEEG 
stereoelectroencephalography, SEM standard error of the mean.

LSTM metrics for SEEG and videos

Train:test ratio (mean ± SEM) 0.41 ± 0.03

Time used to train model (mean ± SEM) 11.2 ± 1.5 min

Train recordings with events (%) 4 (29%)

Test recordings with events (%) 12 (86%)

MAPE for dynamic threshold (mean ± SEM) 0.7 ± 0.2%

MAPE for static threshold (mean ± SEM) 0.7 ± 0.1%

MAPE for crossover experiments with dynamic threshold (mean ± SEM) 2.7 ± 0.8%

MAPE for video recordings (mean ± SEM) 19.9 ± 0.8%

SEEG static thresholding results

Sensitivity (mean ± SEM) 64.3 ± 13.3%

Positive predictive value (mean ± SEM) 34.4 ± 13.9%

F1 Score (mean ± SEM) 0.61 ± 0.12

SEEG dynamic thresholding results

Sensitivity (mean ± SEM) 78.6 ± 11.4%

Positive predictive value (mean ± SEM) 89.6 ± 9.2%

F1 Score (mean ± SEM) 0.92 ± 0.08

SEEG crossover results

Sensitivity (mean ± SEM) 83.3 ± 16.7%

Positive predictive value (mean ± SEM) 15.3 ± 10.6%

F1 Score (mean ± SEM) 0.54 ± 0.11

Video anomaly detection results without SEEG

Sensitivity (mean ± SEM) 100.0 ± 0%

Positive predictive value (mean ± SEM) 19.1 ± 7.1%

F1 Score (mean ± SEM) 0.44 ± 0.07

Combined video + SEEG anomaly detection results

Sensitivity (mean ± SEM) 100.0 ± 0%

Positive predictive value (mean ± SEM) 65.6 ± 9.2%

F1 Score (mean ± SEM) 0.65 ± 0.09
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Pt # Clinical seizure findings EEG seizure findings

SEEG, dynamic 
thresholding (PPV, 
sensitivity)

SEEG, static thresholding 
(PPV, sensitivity)

Video alone, dynamic 
thresholding (PPV, 
sensitivity)

SEEG + video, dynamic 
thresholding (PPV, 
sensitivity)

1
Generalized tonic seizure 
with abduction of both 
arms and extensor postur-
ing of her legs.

Generalized desynchro-
nization of the EEG back-
ground with superimposed 
beta frequency activity.

92.3, 100 9.7, 100 100, 100 100, 100

2
Absence seizures with 
repetitive eye blinking and 
staring.

Generalized, repetitive, 
spikes and polyspikes of 
2 Hz.

50.0, 100 0, 0 50.0, 100 50.0, 100

3
Bilateral motor manifesta-
tions involving extension of 
both arms and legs.

Sentinal spike in the left 
amygdala followed by a 
slow buildup of rhythmic 
theta. Activity spreads 
to left medial temporal, 
parietal, and insular 
regions. Semi-rhythmic 
theta with admixed spikes 
in left anterior and medial 
cingulate.

100, 100 27.7, 100 25.0, 100 88.0, 100

4

Ictal cry with head move-
ments and bilateral clonic 
body movements obscured 
by blankets. Arms are held 
in dystonic posture bilater-
ally with forceful jerking 
movements superimposed.

Starts as low amplitude 
beta activity in the left 
hippocampus with spread 
to left amygdala and left 
medial temporal lobe. 
Evolves to high amplitude 
spiky alpha and spiky theta 
activities. Later spread 
to the medial olfactory 
cortex.

100, 100 0, 0 25.0, 100 25.0, 100

5

Oral and head movements 
with vocalizations and 
bilateral extremity flexion. 
Later progresses to tonic–
clonic.

Continuous atypical, 
generalized spike-and-
wave discharges at 4 Hz in 
bilateral frontal, cingulate, 
and hippocampal regions. 
Subsequent burst of spike 
and wave activity.

100, 100 100, 100 20.0, 100 90.7, 100

6

Notable eye movement, 
vocalization, and some 
bilateral extremity move-
ments. Eventually tonic–
clonic.

Atypical, generalized 
spike-and-wave discharges 
at 4 Hz in bilateral frontal 
and cingulate regions fol-
lowed by rhythmic spiking 
diffusely.

100, 100 No events detected 20.0, 100 33.3, 100

7

Multiple subclinical 
seizures. Clinically, all 
seizures are hypermotor, 
and begin with a rapid 
movement in the hands.

Slightly different onsets 
but nearly always maximal 
involvement in left lateral 
temporal. Begins with 
spike and wave, or gamma/
beta activity there. Often 
has several minutes of very 
subtle epileptic spasms 
with diffuse slow waves in 
left lateral temporal.

100, 100 100, 100 20.0, 100 60.0, 100

8

Versive head movements 
with right arm flexion and 
extension, followed by 
tonic–clonic movements of 
both arms.

Rhythmic fast activity in 
right medial cingulate and 
temporal areas. Sharply 
contoured theta develops 
in left hippocampus, which 
evolves to spike and slow 
wave morphology and 
spreads to bilateral medial 
cingulate and left temporal 
areas.

100, 100 100, 100 25.0, 100 40.0, 100

9

Oral movements with ictal 
cry and right facial con-
traction. Later generalized 
clonic jerking and postur-
ing before generalized 
tonic–clonic seizures.

Desynchronization with 
superimposed low voltage 
fast beta/gamma activity 
over left medial cingulate. 
Later, ictal discharge of 
repetitive spikes become 
wide spread, involving 
cingulate, temporal, and 
amygdala areas bilaterally.

No events detected No events detected 16.7, 100 16.7, 100

10

Right arm movements 
with subtle leg movements. 
Some head movement with 
eyes looking up and left. 
Later, jerking movements, 
vocalization, and tonic 
posturing.

Rhythmic alpha activity in 
right amygdala and hip-
pocampus that slows to the 
theta range.

No events detected No events detected 16.7, 100 16.7, 100

Continued
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conditions, including the dynamic thresholding and error pruning methods (Fig. 2). Fourteen combinations of 
train and test sequences derived from the study population were randomly selected to conduct the crossover 
experiments.

To assess the added value of multimodal detection, the concurrent video and SEEG recordings for each patient 
were separately fed into the corresponding deep neural networks described previously. The resulting anomalous 
sequence predictions made by the self-supervised dynamically threshold in the LSTM decision function for each 
detection modality was then pooled before comparing the predicted anomaly times with the consensus labels of 
the expert panel of epileptologists. We did not encounter any disagreements among the panel regarding consensus 
labeling within this dataset. The results of model performance on individual patient recordings are detailed in 
Table 3, along with the patient’s clinical and electrophysiologic seizure manifestations.

Metrics for assessing signal reconstruction quality.  We assessed the models for their ability to cap-
ture the underlying signal itself using standard time series metric of mean absolute percentage error (MAPE), 
representing each recording channel that was reconstructed by the LSTM for each patient. The MAPEs ranged 
from 0.15–1.57% for each patient (average: 0.75%; Table 2), suggesting generally excellent reconstruction of the 
SEEG signal by the LSTM. Video regularity score signals were noisier due to diverse events occurring during 
recording, leading to higher MAPEs (average: 19.95%; Table 2).

Statistics.  For continuous variables in this study, the Kolmogorov–Smirnov test was first used to test for a 
normal distribution. Given the lack of a normal distribution in the data of this study, continuous variables were 
compared using the Wilcoxon–Mann–Whitney test. A threshold of p < 0.05 with two-tailed testing was used to 
determine statistical significance. Statistics were conducted using Prism 7.

Data availability
Data from this study are available upon reasonable request. In accordance with institutional policy for data 
protection, a Data Transfer Agreement must be completed between Mount Sinai and the requesting institution.

Code availability
Code for the pre-processing and analysis pipelines in this study are available at: https://​github.​com/​aisin​ai.
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