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Abstract

We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)

based brain-computer interfaces (BCIs) that does not require the user to choose a feature 

extraction method or channel set. Instead, the classifier uses multiple feature extraction methods 

and channel selections to infer the SSVEP and relies on majority voting to pick the most likely 
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target. The classifier extends the window length dynamically if no target obtains the majority 

of votes. Compared with existing solutions, our classifier: (i) does not assume that any single 

feature extraction method will consistently outperform the others; (ii) adapts the channel selection 

to individual users or tasks; (iii) uses dynamic window lengths; (iv) is unsupervised (i.e., does 

not need training). Collectively, these characteristics make the classifier easy-to-use, especially 

for caregivers and others with limited technical expertise. We evaluated the performance of our 

classifier on a publicly available benchmark dataset from 35 healthy participants. We compared 

the information transfer rate (ITR) of this new classifier to those of the minimum energy 

combination (MEC), maximum synchronization index (MSI), and filter bank canonical correlation 

analysis (FBCCA). The new classifier increases average ITR to 123.5 bits-per-minute (bpm), 47.5, 

51.2, and 19.5 bpm greater than the MEC, MSI, and FBCCA classifiers, respectively.

Keywords

Brain-computer interface; steady-state visual evoked potentials; minimum energy combination; 
filter bank canonical correlation analysis; maximum synchronization index

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) are devices that enable people to control computer 

systems using brain activity [1]. Because they require little to no voluntary motor control, 

BCIs can help people with severe motor deficits (e.g., locked-in syndrome) to communicate 

[2]. They may also have applications for healthy people [3]–[6].

Steady-state visual evoked potential (SSVEP)-based BCIs for text-entry (i.e., SSVEP-based 
spellers) are one common type of BCIs [7]. In these systems, users are presented with a 

set of stimuli, each flashing at a unique frequency. Attention to one of these stimuli elicits 

changes in brain activity at the fundamental and higher harmonic frequencies of the flashing

—an SSVEP—that can be measured using electroencephalography (EEG). These changes in 

EEG can be quantified and allow a classifier to infer the stimulus the user is attending to 

(i.e., the target that the user wants to select) [8]. Each stimulus is mapped to one or more 

characters; sequential selection of targets allows users to input text [7].

The design of the classifier is critical to the performance of SSVEP-based spellers. Ideally, 

the classifier correctly infers the target (i.e., has perfect accuracy) immediately (i.e., with 

zero delay) after the user starts attending to it. In actual practice, SSVEPs are small and 

embedded in EEG signals that are contaminated with noise from multiple sources (e.g., 

movement, muscle activity, etc.) [9], [10]; classifiers often misidentify targets and input 

incorrect text. Users have to correct these mistakes, decreasing text-entry rates. Improving 

the performance of an SSVEP-based speller requires designing a classifier that identifies 

targets as accurately and as quickly as possible. This entails many design choices, including:

• Feature-Extraction Method: There are many ways to identify SSVEPs embedded 

in noisy EEG signals; each works in a slightly different way. The minimum 

energy combination (MEC) method minimizes the signal-to-noise ratio (SNR) of 

nuisance signals [11]; the maximum synchronization index (MSI) maximizes the 
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synchronization index between a template of an SSVEP and set of EEG signals 

[12]; and canonical correlation analysis (CCA) finds the maximum possible 

correlation between templates of an SSVEP and a set of EEG signals [13]. 

Although filter bank CCA (FBCCA) (a CCA variant [14]) generally performs 

better than other methods, no single method uniformly outperforms the others 

(See Fig. S5).

• Channel Selection: SSVEP-based BCIs generally include EEG signals recorded 

from as many as 128 electrodes placed at different locations on the scalp. The 

goal of channel selection is to find the set of EEG signals that Maximizes the 

performance of the classifier. Adding more channels does not always improve 

performance [15] (Fig. S1); thus, the best set of channels is often determined 

through offline analysis [14], which itself has limitations, including the inability 

to produce a global solution due to inter-subject differences (especially in those 

with injuries or illness), and the failure to account for changes in the scalp 

distributions of SSVEPs that can occur during a task [16].

• Window Length: The window length defines the number of samples to collect 

before making a classification. When choosing a window length, there is a trade

off between classification accuracy and classification delay. Longer window 

lengths improve classification accuracy, but also increase classification delay. 

There are two approaches to balancing this trade-off. Fixed window-length 

classifiers collect the same number of samples before making a classification. 

They are simpler to implement and typically determine the best window length 

using offline analysis [17], [18]. On the other hand, dynamic window-length 

classifiers adjust the window length over time [19]–[21]. For example, the 

classifier introduced by da Cruz et al. [20] increased or decreased the window 

length by analyzing the number of times the participant used the “delete” 

character. Classifiers that use dynamic window lengths are more complicated 

to implement but may provide a better trade-off between classification accuracy 

and classification delay.

In this paper, we introduce a new classifier that does not require the user to choose a feature 

extraction method, channel selection, or window length. Instead, it uses voting to determine 

the target based on multiple feature extraction methods and many different channel sets. 

Individual votes are obtained by using every permutation of the feature extraction method 

and channel selection to infer the target. The classifier then identifies the target as the 

stimulus with the majority of the votes. If, however, none of the stimuli receives the majority 

of the votes, the classifier dynamically extends the window length until this requirement is 

met.

Our classifier has multiple advantages over existing SSVEP-classifiers: (i) it does not 

assume that any single feature extraction method will uniformly outperform all the others; 

(ii) it adapts its channel selection depending on the individual user and the task; (iii) its 

window length is dynamic; and (iv) it is unsupervised (i.e., does not require any offline 

training). Collectively, these characteristics make our classifier particularly advantageous for 
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clinical applications, where there is neither the time nor the technical expertise to precisely 

tune the classifier.

The rest of this paper is organized as follows. Section II describes our classifier. Section 

III describes the experiments we completed to compare our classifier with three existing 

classifiers, and Section IV provides the results of these experiments. We then discuss the 

results (Section V) and present our conclusions (Section VI).

II. CLASSIFIER

To describe our classifier, we first explain how we perform feature extraction and channel 

selection in Section II–A and Section II–B. We then describe how we dynamically adjust 

the window length in Section II–C. Finally, we provide the algorithm for our classifier in 

Section II–D.

A. Feature Extraction

Let E be the set of Ne ∈ ℕ EEG signals. A feature extraction method Φ(E) uses the EEG 

signals in E (typically, by linearly combining them) to extract features. For a given set E 

and its power set P(E) (assume P(E) excludes the empty set), let Ei
Φ ⊆ P(E) be the set of all 

subsets of E that lead to the selection of target i (i.e., a vote for target i) using the feature 

extraction method Φ. For target i, we define ψi(Φ, E) as:

ψi(Φ, E) =
Ei

Φ

P(E) =
Ei

Φ

2Ne − 1
, (1)

where |·| is the set cardinality operator. We observe that 0 ≤ ψi(Φ, E) ≤ 1 for all i’s and 

∑iψi(Φ, E) = 1. As a numerical example, if EEG signals are collected using eight electrodes 

(indexed from one to eight), then Ne = 8. In this case, there are at most 255 (i.e., 28 – 

1) possible channel selections. Assume that only channel selections {1, 2, 3} and {7, 8} 

result in a vote for target i using feature extraction method Φ. Thus, Ei
Φ = 1, 2, 3 , 7, 8 . 

Consequently, Ei
Φ = 2 and ψi(Φ, E) = 2/255.

Equation (1) can be applied to virtually all feature extraction methods (e.g., MEC, MSI, 

CCA, and FBCCA). Additionally, it can be generalized into multi-dimensional spaces, 

enabling users to avoid the design decision for the selection of a feature extraction method.

Let = [Φ1,Φ2, … ,ΦK ] be a vector of K different feature extraction methods (or the same 

feature extraction method but with different parameters). We can use Eq. (1) to compute ψi 

(Φ, E) = [ψi(Φ1, E), … ,ψi(ΦK, E)]. For these K-feature extraction methods, we define the 

extracted feature of target i as:

ψi(Φ, E) = 1
K × Ψ(Φ, E) ℓ

2
, (2)

where ‖ · ‖ℓ is the ℓ-norm operator. Herein, we use the Euclidean norm.
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B. Dynamic Channel-Selection

In the standard 10–10 EEG electrode placement system, 21 electrodes cover the occipital 

and parietal regions of the scalp. For a set E that includes all of these electrodes, |P(E)| 

= 221–1 (excluding the empty set). Hence, computing ψi(Φ, E) per Eq. (1) becomes 

computationally prohibitive. Instead, we estimate ψi(Φ, E) as follows:

Ψi(Φ, E) =
Ei

Φ

PR(E)
, (3)

where PR(E) is computed by randomly selecting R elements of P(E) with equal probability. 

Ei
Φ is the set of all channel selections in PR(E) that result in a vote for target i using the 

feature extraction method Φ. Computing Ψi(Φ, E) per Eq. (3) only requires R (vs. 2Ne − 1) 

votes.

If target i is the correct target (i.e., the target the user is attending to), then Ψi(Φ, E) measures 

the probability of selecting the (often non-unique) channel selection that leads to a vote for 

the correct target using feature extraction method Φ. For example, if no channel selection 

results in a vote for target i (i.e., Ψi(Φ, E) = 0), the probability of selecting the correct 

channel selection is zero. Likewise, if all possible channel selections result in a vote for 

target i, then the probability of selecting the correct channel selection is one. More likely 

scenarios fall between these two extreme cases. Because the correct target is unknown 

during classification, we assume the target with the largest Ψi(Φ, E) is the correct target.

C. Dynamic Window Length

The feature Ψi(Φ, E) ∈ [0, 1] represents the ratio of votes for target i. Our classifier 

dynamically increases the window-length until one of the targets obtains the majority of 

votes. The classifier uses pre-defined threshold values (denoted by τ ∈ [0, 1]) to determine 

whether a target has obtained the majority of votes (e.g., τ = 0.5 instructs the classifier 

to select the target that collects 50% of votes. If no target has enough votes, the classifier 

extends the window length).

D. Algorithm

The algorithm for our classifier has six steps:

1. The classifier receives the number of targets N, K different feature extraction 

methods, a vector of threshold values τ (one threshold for each window length), 

and the number of additional samples W that it collects when extending 

the window length. The classifier also chooses R different random channel 

selections.

2. It then classifies the signal using each channel selection and each feature 

extraction method. A counter vector (V) of size K × N keeps track of the number 

of votes that each target receives.
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3. After iterating through all K × R cases, the classifier normalizes V by dividing its 

elements by R.

4. The classifier uses Eq. (2) to obtain ψi(Φ, E) for each i ∈ {1, 2, … , N}.

5. If ψi(Φ, E) ≤ τ for all i, the classifier collects W more samples and goes to step 

2. Else;

6. The classifier returns target i* as the output of the classifier such that:

i * = argmax
i

ψi(Φ, E) . (4)

Algorithm 1 shows the algorithm of our classifier.

III. METHOD

This section describes how we implemented the classifier explained in Section II.

Algorithm 1

The Algorithm of Our Classifier. The Procedure classify(Φk, e) Invokes the Feature 

Extraction Method Φk to Classify Signals Recorded by Electrodes e and Output the Selected 

Target.

Input: Signal sets PR(E), Feature extraction method Φ, Threshold vector τ, The difference between two consecutive 

window lengths W, Maximum signal length Smax

Output: Classification Output i*,

1: N = number of targets

2: K = number of feature extraction methods

3: V = K × N zero vector

4: S = number of samples

5: γ = 0, j = 0

6: while γ ≤ τ[j] do

7:  for k in 1 … K do

8:   for signals set e in PR(E) do

9:    target = classify(Φk, e)

10:    V[k, target] = V[k, target] + 1

11:   end for

12:  end for

13:  V = V / R

14:  for n in 1 … N do

15:   psi[n] = (1/K) × norm(V[:, n], 2)

16:  end for

17:  [γ, i*] = max(psi)

18:  S = S + W

19:  j = j + 1
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20:  if S > Smax then

21:   break

22:  end if

23: end while

24: return i*

A. Dataset

We use the benchmark dataset for SSVEP-based BCIs [22] for all our experiments. This 

dataset contains data from 35 healthy participants (S1, S2, … , S35) who use a 40-target 

SSVEP speller. Each target flashes at a unique frequency f ∈ {8.0, 8.2, … , 15.8}Hz and 

a (non-unique) phase ϕ ∈ {0, π/2, π, 3π/2}. Each participant’s data contains 240 (40 × 

6) trials, where every target is selected exactly six times. Sixty-four channels of EEG were 

recorded at a sampling rate of 1000Hz (down-sampled to 250Hz).

B. Performance Metrics

The information transfer rate (ITR) is the primary measure by which we compared 

classifiers. ITR formulates the trade-offs among classification delay, window length, and 

the number of targets. ITR is defined as:

C = 60
T × log2N + P ⋅ log2P + (1 − P ) ⋅ log2

1 − P
N − 1 , (5)

where C is the ITR in bits-per-minute (bpm), T is the window-length in seconds, N denotes 

the number of targets, and P is the probability of correct classification (with the convention 

that 0 log 0 = 0). In this work, we include in T the 0.5 s pre-stimulation period.

High ITR spellers are of limited practical interest unless they can deliver an acceptable 

accuracy (typically ≥ 70%). Hence, whenever relevant, this work also compares the 

performance in terms of accuracy, which is the ratio of the number of correct classifications 

to the total number of classifications.

C. Classifiers Implemented for Comparison

Our implementation of MEC, MSI, and FBCCA uses the same parameters as those used 

by Friman et al. [11], Zhang et al. [23], and Chen et al. [14], respectively (Table I). We, 

however, extend the second cutoff frequency of the band-pass filter (BPF) for MSI to 

50Hz to retain the information of the third harmonic of the highest stimulation frequency 

(15.8Hz).

D. Parameter Selection for Our Classifier

For the experiments, our classifier uses three feature extraction methods (MEC, MSI, and 

FBCCA) and 512 random channel selections (i.e., R = 512). The electrode set E in Eq. (2) 

includes 21 electrodes that cover occipital, posterior, and parietal regions of the scalp: P[7, 5, 

3, 1, Z, 2, 4, 6, 8], PO[7, 5, 3, z, 4, 6, 8], O[1, z, 2], and CB[1, 2]. All other parameters of 

feature extraction methods are set per Table I.
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We configured the classifier to use 15 window lengths from 0.7 s to 2.1 s in 0.1 s increments, 

where time 0 denotes the onset of the stimulation. If no target obtains the majority of votes 

(defined by threshold τ ) at 0.7 s, the classifier dynamically increases the window length to 

0.8 s. If no target has the majority of votes at 0.8 s, the classifier extends the window-length 

to 0.9 s and so on. If the window length reaches 2.1 s, the classifier picks the target with the 

largest number of votes as the classification output, regardless of the value of the threshold 

at that window length.

For determining the threshold values of each window length, we use the prior assumption 

that longer window lengths and more data samples improve the classifier’s accuracy. To 

model this, we choose t equidistant thresholds from [τmin, τmax] interval in descending 
order, where t is the number of window lengths (15 in our implementation), τmin ∈ [0, 1], 

τmax ∈ [0, 1], and τmin < τmax. In this modeling, we use τmin and τmax for window lengths 

of 2.1 s and 0.7 s, respectively. The values set for τmin and τmax control the behavior of the 

classifier. Overall, decreasing τmin and τmax encourages the algorithm to use shorter window 

lengths on average. This is a suitable scenario for applications that are tolerant to low 

accuracies but require high ITR. Alternatively, increasing τmin and τmax improves the overall 

accuracy at the cost of extending the window lengths. Defining τmin and τmax as parameters 

enables users to control the tradeoff between classification speed and classification accuracy. 

Users can avoid making a design choice on the value of τmin and τmax by setting τmin = τmax 

= 0.5, corresponding to a simple 50% majority.

E. Experimental Setup

We implemented all algorithms on MATLAB 2017a (9.2.0) on a remote host that ran 

Oracle® Linux Server (Release 7.7). The host was equipped with Intel® Xeon® E5–2680 

v4 and 256 GB of memory.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our classifier.

A. Overall Classifier Performance

Figure 1 depicts the average ITR of our classifier (See Section II) for different window 

lengths and compares it with MEC [11], MSI [23], and FBCCA [14]. MEC gives a 

maximum ITR of 75.9bpm at the fixed window length of 2.0 s corresponding to an accuracy 

of 72.0%. MSI and FBCCA yield a maximum ITR of 72.2bpm and 104.0bpm for window 

lengths of 2.0 s and 1.6 s and corresponding accuracies of 69.8% and 79.1%, respectively. 

When compared to MEC, MSI, and FBCCA, our classifier increased the maximum average 

ITR by 47.5bpm (p ≤ 0.01), 51.2bpm (p ≤ 0.01), and 19.5bpm (p ≤ 0.01), respectively.

Our classifier uses dynamic window lengths; different pairs of τmin and τmax result in 

different average window lengths. In Fig. 1, we classified the dataset using numerous values 

for τmin and τmax to obtain at least one average ITR for each average window length. We 

then selected the maximum ITR at each average window length to obtain the final result. 

Determining τmin and τmax, however, adds a new design choice to the classifier. To avoid 

making a decision on τmin and τmax, we can set τmin = τmax = 0.5, corresponding to a 

Habibzadeh et al. Page 8

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simple majority vote. Figure 1 shows that for τmin = τmax = 0.5, the classifier had an average 

accuracy of 81.6% at the average window length of 1.5 s, corresponding to an average ITR 

of 114.5bpm. Figures S6–S40 show the classifier’s performance for individual participants.

B. Feature Selection Performance

Figure 2 compares our classifier’s performance for configurations that use single (left) 

and multiple (right) feature extraction methods. For configurations with a single feature 

extraction method, our classifier increased the maximum average ITR to 111.6bpm, 

108.8bpm, and 127.9bpm for configurations with Φ = [MEC], Φ = [MSI], and = [FBCCA], 

respectively (p ≤ 0.01). Among the configurations that used multiple feature extraction 

methods, the configuration that used Φ = [MEC, FBCCA] had the largest average ITR at 

128.2bpm.

C. Dynamic Channel Selection Performance

Figure 3 (left) compares the average ITR of MEC, MSI, and FBCCA with our classifier (for 

three configurations, where (i) Φ = [MEC], (ii) Φ = [MSI], and (iii) Φ = [FBCCA].) To 

evaluate the performance of the proposed channel selection, the classifier used fixed window 

lengths. The proposed channel selection increased the maximum ITR from 75.9 to 96.3bpm 

for MEC, from 72.2 to 93.4bpm for MSI (p ≤ 0.01) but the changes for FBCCA were not 

significant.

Figure 3 (right) averages the ITR of MEC, MSI and FBCCA and compares it with the 

average ITR across the three configurations of our classifier. It shows that on average, the 

dynamic channel selection increases the maximum ITR from 82.7bpm (at the corresponding 

window length of 2.0 s) to 98.3bpm (p ≤ 0.01).

D. Dynamic Window Length Performance

Table II details the classification performance for each permissible window length. The 

results are obtained for Φ = [MEC, MSI, FBCCA] τmin* = 0.135 and τmax* = 0.865. The very 

high accuracy associated with window lengths shorter than ≤ 2.1 s confirms the efficacy of 

the proposed features; 73.02% of the dataset can be classified with the accuracy of 90.25% 

with the average window length of 1.30 s. Around 4.68% of the signals (corresponding to 

393 signals) are classified at the window length of 2.1 s with the accuracy of 45.04%. The 

continuous decrease in overall accuracy for larger window lengths is expected because the 

algorithm defers the classification of only noisy signals to these window lengths.

V. DISCUSSION AND FUTURE WORK

Our classifier has several significant advantages over existing SSVEP classifiers. First, 

because it uses multiple feature extraction methods, it does not depend on the specious 

assumption that one feature extraction method will consistently outperform the others. 

Second, because this classifier uses many channel selections, there is no need to pick a 

specific channel selection for a specific user or specific application. Third, the classifier 

adjusts the window length for each classification. Together, these three properties improve 

the average ITR. Fourth, because it automates choices about feature extraction, channel 
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selection, and window length, the classifier is easy for caregivers and others to use; it does 

not require special expertise. The rest of this section discusses other advantages of this 

classifier and opportunities for improving it.

The classifier uses voting to combine the features extracted by the different methods. While 

conventional normalization techniques can rescale and combine features (e.g., using the 

logistic function to convert features to probabilities), these techniques often lead to loss 

of interpretability because the normalized features represent disparate phenomena (e.g., 

even after normalization, combining correlation with SNR is difficult). On the other hand, 

using voting to combine features satisfies many desiderata of interpretability including 

transparency (i.e., it is clear how the classifier works), trustworthiness (i.e., confidence that 

the classifier performs well), and transferability (i.e., classifier can function in environments 

different from the test environment) [24].

The parameter ψi(Φ, E), as computed per Eq. (1), is the probability that a random selection 

of a channel set and a feature extraction method result in a vote for target i. As ψi(Φ, E) 

approaches one, all possible selections lead to the same result. In these cases, it becomes 

less important to pick one selection over the others. Thus, instead of searching for the best 

selection of channel set and feature extraction method, the classifier dynamically increases 

the window length until all (or most of) the selections result in the same output. For a 

non-target i (i.e., any target other than the one the user intends to selects), it is unlikely 

(although not impossible) to obtain ψi(Φ, E) = 1. This is because non-targets generally have 

smaller SNRs, which makes the classification results more random. This is confirmed by the 

results provided in Table II, where signals with shorter window lengths (and higher ψi) are 

classified with an average accuracy of more than 90%.

Brain injuries, aging, and other neuroplasticity can change the spatial distribution of 

SSVEPs [25]–[27]. Hence, a fixed channel selection can limit the system’s applicability. 

The uniform selection of random electrode sets, as explained in Section II, mitigates this 

problem [28]. Inherent symmetries of the uniform distribution allow unbiased selection of 

different spatial distributions. Thus, SSVEP detection becomes independent of their spatial 

distribution.

The advantages of our proposed channel-selection technique are obtained at no cost to the 

classifier’s performance. To confirm this, we configured MEC, MSI, and FBCCA to use our 

technique (results in Fig. 3). The technique significantly improved the average ITR for MEC 

and MSI, but not for FBCCA (for most window lengths). We attribute this at least in part to 

the fact that, unlike MEC and MSI parameters, FBCCA’s parameters (Table I) were already 

optimized for our dataset (or at least a subset of our dataset). Hence, Fig. 3 implies that our 

classifier mitigates the deleterious impact of lack of training and parameter optimization. 

If the parameters are already optimized, our classifier does not impair classification. One 

potential way to improve the performance of our classifier is to test the inclusion of different 

feature extraction methods. Possible choices include filter bank MEC [29], deep multi-set 

CCA (DMCCA) [30], and task-related component analysis (TRCA) [31].
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Our classifier is computationally complex. The computational complexity of the classifier 

depends on K R, where K is the number of feature extraction methods in Φ and R is 

the number of channel selections. In our implementation, K = 3 and R = 512. Thus, our 

classifier is roughly 1536 times more computationally complex than a classifier with K = 1 

and R = 1. There are a number of ways to mitigate this added complexity. First, as Fig. S2 

shows, using R = 50 results in similar performance to R = 512. This simple change reduces 

the computational complexity of our classifier by a factor of ten. In addition, our classifier 

is highly parallelizable—every vote can be computed simultaneously. We developed a 

graphics processing unit (GPU)-accelerated version of our classifier to demonstrate its 

parallelizability. As shown in Fig. S3, the run time of the GPU-accelerated version was 0.05 

s, 230× faster than the MATLAB version of our classifier (11.52 s).

Different sampling strategies might improve the channel-selection. Let r be the cardinality 

of a random subset of P(E), where E includes the 21 electrodes discussed in Section III–D 

and all subsets are equally probable. Then, r approximately follows a normal distribution 

r N μ = 10.5, σ2 = 5 . 25 . One possible improvement is to change the expected number of 

channels (μ) by changing window length. This is based on the observation that the number 

of useful channels usually increases with window length, presumably because more data 

reduces noise. Another possible improvement is using a non-uniform spatial distribution to 

select electrodes (instead of a uniform distribution). This could increase the probability of 

selecting certain electrodes (e.g., Oz).

Our classifier works better for some participants than for others. Table II shows that 

classification accuracy was much lower at longer window lengths (45.04% at 2.1 s) than 

it was at shorter window lengths (94.17% at 1.2 s). The majority of the signals (80.9% (See 

Table III)) classified at a window length of 2.1 s came from just nine of the 35 participants. 

Thus, window length might identify people for whom an alternative classification strategy 

might perform better.

Rather than increasing window length, the classifier could use other methods to address low 

classification confidence. For example, it could re-assign flashing frequency and target phase 

to distinguish among the most probable targets (e.g., switching to hierarchical selection only 

when necessary). In the trade-off between classification accuracy and latency, a conservative 

(i.e., high) threshold biases toward accuracy. This benefits applications that have low 

tolerance for error (e.g., wheelchair control).

VI. CONCLUSION

We propose a new dynamic window length SSVEP classifier that uses multiple feature 

extraction methods and channel selections. Because it automatically selects the feature 

extraction method and recording channels for each individual and each application, the 

classifier should be easy for caregivers and others to use.

The classifier evaluates all permutations of different feature extraction methods and channel 

selections, and it uses voting by the permutations to identify the person’s target. The 

classifier dynamically extends the window length until either the number of votes for one 

Habibzadeh et al. Page 11

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target exceeds a pre-determined threshold, or the window length reaches a preset maximum 

value (at which point the target with the most votes is identified).

This classifier has four advantages over commonly used classifiers (i.e., minimum 

energy combination (MEC), maximum synchronization index (MSI), filter bank canonical 

correlation coefficient (FBCCA)). First, it does not assume that a single feature extraction 

method is best. Second, it adapts channel selection to the person and the application. Third, 

it uses dynamic window lengths. Fourth, it does not require training for feature extraction or 

channel selection. For 35 participants, the classifier gave an average ITR of 124.1bpm versus 

104.0bpm for the next-best classifier (FBCCA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Average ITR of our classifier compared with the average ITR of MEC, MSI, and FBCCA 

when applied to all 35 participants in our dataset. For our classifier, we set Φ = [MEC, MSI, 

FBCCA] and used a different value for τmin and τmax to obtain the average ITR for each 

average window length. As shown in the figure, we can achieve near-optimal ITR by setting 

τmin = τmax = 0.5, a simple majority voting that does not require any prior selection of τmin 

and τmax. Figure S4 provides a comparison between our classifier and CCA.
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Fig. 2. 
The average ITR of our classifier—with dynamic channel selection and dynamic window 

length—configured to use (left) three individual feature extraction methods and (right) four 

different combinations of feature extraction methods.

Habibzadeh et al. Page 16

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(left) The average ITR for three feature extraction methods MEC, MSI, and FBCCA with 

(dashed line) and without (solid lines) the dynamic channel-selection method discussed 

in Section II–B. (right) The ITR of all three feature extraction methods (MEC, MSI, and 

FBCCA) that use dynamic (dashed) and standard channel selection averaged into a single 

curve (Results from the left plot (greyed-out lines) and are added here for comparison).
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TABLE I

Feature Extraction Parameters. Refer to the Cited References for the Definition of Each Parameter

MEC MSI FBCCA

Nh = 3
/

AR Order = 15
/

P3, O1, P2, OZ, P4, O2

Nh = 3
/

τ = 1
/

BPF: [0.5, 50] Hz*
/

P3, P2, P4, PO7, PO8, O1, OZ, O2

Nh = 5
/

a = 1.25, b = 0.25
/

BPF: [i × 8, 88] Hz
i ∈ {1, 2, …, 7}

/
Pz, PO5, PO3, PO2, PO4, PO6

O1, OZ, O2

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 October 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Habibzadeh et al. Page 19

TABLE II

The Relative Population of Signals Classified at Each Window Length and Their Corresponding Classification 

Accuracy

Window Length (s) Population (%) Accuracy (%)

0.7 0.02 50.00

0.8 0.43 91.67

0.9 2.31 94.33

1.0 5.87 92.70

1.1 9.30 93.60

1.2 11.64 94.17

1.3 12.44 91.58

1.4 11.60 89.12

1.5 10.77 86.74

1.6 8.64 82.64

1.7 7.15 75.37

1.8 6.32 69.87

1.9 5.34 66.15

2.0 3.47 62.33

2.1 4.68 45.04

Mean: 1.45 Average: 6.66 Mean: 83.53
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TABLE III

Performance Summary of All Participants With the Average ITR of Below 100 bpm

Participant ITR (bpm) Relative Share (%) Accuracy @ 2.1s (%)

S11 28.3 25.7 37.6

S29 45.8 9.4 54.1

S16 49.2 3.8 40.0

S21 54.4 0.8 66.7

S33 55.7 16.5 30.8

S7 71.7 1.8 14.3

S19 80.0 16.5 60.0

S8 86.9 3.6 57.1

S18 95.2 2.8 36.4

Summary Average: 63.1 Total: 80.9 Average: 43.4

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 October 07.


	Abstract
	INTRODUCTION
	CLASSIFIER
	Feature Extraction
	Dynamic Channel-Selection
	Dynamic Window Length
	Algorithm

	METHOD
	Algorithm 1
	Dataset
	Performance Metrics
	Classifiers Implemented for Comparison
	Parameter Selection for Our Classifier
	Experimental Setup

	NUMERICAL RESULTS
	Overall Classifier Performance
	Feature Selection Performance
	Dynamic Channel Selection Performance
	Dynamic Window Length Performance

	DISCUSSION AND FUTURE WORK
	CONCLUSION
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	TABLE I
	TABLE II
	TABLE III

