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Abstract

Glucocorticoid receptors (GRs) shuttle from the cytoplasm (cy) to the nucleus (nu) when

bound with glucocorticoids (i.e. GR internalization) and alter transcriptional activity. GR acti-

vation within the fear circuit has been implicated in fear memory and post traumatic stress

disorder (PTSD). However, no study to date has characterized GR internalization within the

fear circuit during fear memory formation or examined how traumatic stress impacts this pro-

cess. To address this, we assayed cy and nu GR levels at baseline and after auditory fear

conditioning (FC) in the single prolonged stress (SPS) model of PTSD. Cy and nu GRs

within the medial prefrontal cortex (mPFC), dorsal hippocampus (dHipp), ventral hippocam-

pus (vHipp), and amygdala (AMY) were assayed using western blot. The distribution of GR

in the cy and nu (at baseline and after FC) was varied across individual nodes of the fear cir-

cuit. At baseline, SPS enhanced cyGRs in the dHipp, but decreased cyGRs in the AMY. FC

only enhanced GR internalization in the AMY and this effect was attenuated by SPS expo-

sure. SPS also decreased cyGRs in the dHipp after FC. The results of this study suggests

that GR internalization is varied across the fear circuit, which in turn suggests GR activation

is selectively regulated within individual nodes of the fear circuit. The findings also suggest

that changes in GR dynamics in the dHipp and AMY modulate the enhancing effect SPS

has on fear memory persistence.

Introduction

Glucocorticoid receptors (GRs) are ligand-gated transcription factors. Upon binding with glu-

cocorticoids they leave the cytoplasm (cy) and enter the nucleus (nu) as dimers (i.e. GR inter-

nalization) where they bind to GREs to regulate transcription [1–4]. GRs can also enter the

nucleus as monomers and interact with other transcription factors (e.g. AP-1) to indirectly

regulate transcriptional activity [2].

Glucocorticoid release during fear conditioning (FC) has been implicated in fear memory

consolidation [5–8] and specifically GR activation in the basolateral amygdala (BLA) and
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dorsal hippocampus (dHipp) are critical for fear memory consolidation [9–12]. Changes in

GR function have been consistently implicated in post traumatic stress disorder (PTSD) with

an enhancement in GR levels (inferred via hormonal experiments or direct measurement on

lymphocytes) being reported [13–20]. Given the role of GRs in fear memory consolidation, it

is reasonable to infer that enhanced GR expression in PTSD contributes to persistent traumatic

fear memory that is characteristic of PTSD [21–23]. However, other studies have shown that

administration of glucocorticoids shortly after trauma prevent the development of PTSD [24,

25] and can enhance the efficacy of exposure therapy in treating PTSD [26]. Thus, it is cur-

rently unclear how GRs contribute to PTSD symptoms. Indeed characterization of GR inter-

nalization across the fear circuit during fear memory formation and how this process is

affected by traumatic stress is lacking.

Single prolonged stress (SPS) refers to serial exposure to restraint, forced swim, and ether

and is a validated animal model of PTSD [27–29]. SPS exposure increases GR expression in

the dHipp and mPFC [30–33] and leads to the formation of fear memory that is difficult to

extinguish (i.e. persistent fear memory) [31, 32, 34–37]. These two symptoms are characteristic

of PTSD [18, 20, 38–40]. Thus, SPS is an appropriate animal model to examine how traumatic

stress might lead to changes in GR internalization in the fear circuit. In this study we used

western blot to assay cy and nu GRs in the medial prefrontal cortex (mPFC), amygdala

(AMY), dHipp, and ventral Hipp (vHipp) at baseline and after FC (see Fig 1).

These substrates were selected, because they are critical nodes of the fear circuit [41–45].

Results suggest that distribution of GRs in the cy and nu at baseline and after FC was varied

across these nodes of the fear circuit. The effects of SPS on cy and nu GR levels at baseline and

after FC was restricted to the dHipp and AMY. SPS increased cyGR levels in the dHipp at base-

line, but decreased cyGR levels in the dHipp after FC. SPS decreased cyGR levels in the AMY

at baseline, but increased cyGR levels in the AMY after FC. SPS also disrupted GR internaliza-

tion in the AMY brought on by FC.

Material and methods

Animals

Eighty-eight male Sprague-Dawley rats (~ 150–250 g upon arrival) obtained from Charles

River Inc. were used in this study. Upon arrival, rats were housed in pairs during a five day

acclimation period with ad libitum access to food and water. Following SPS and control proce-

dures, rats were individually housed and restricted to 23g/day of standard rat chow per the

manufacturer’s recommendation (LabDiet St. Louis MO) with ad libitum access to water.

Experiments commenced following the animals’ acclimation period. The rats were on a 12

0-min

SPS
or

Con

7 days

Baseline

FC

30-min 60-min

Fig 1. Experimental design used in this study.

https://doi.org/10.1371/journal.pone.0205144.g001
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hour light/dark cycle and all experimental procedures were performed in the animals’ light

cycle between the hours of 9:00 am and 2:00pm. All experiments were approved by the Univer-

sity of Delaware Institutional Animal Care and Use committee following guidelines established

by the NIH.

SPS and behavioral procedures

All rats were randomly assigned to the SPS or control stress group prior to SPS. SPS was con-

ducted as previously described [33, 46] and consisted of two hours of restraint, followed by 20

minutes of forced swim, then ether exposure until general anesthesia was induced. Control

rats were placed into a novel room in their home cages while SPS occurred. A post-stress incu-

bation period of seven days was allowed to elapse prior to experimental testing, because this is

necessary to observe SPS effects [32, 33].

SPS and control rats were randomly assigned to one of four groups: baseline, FC0, FC30, or

FC60. Rats in the baseline treatment were removed from the housing colony and immediately

euthanized in order to determine baseline GR levels. All other rats were removed from the

housing colony and subjected to FC. FC sessions were conducted as previously described [32,

34] using six MedAssociates (Fairfax VT) operant boxes. Briefly, FC consisted of five presenta-

tions of a 10 second auditory conditioned stimulus (CS, 2 kHz, 80dB) that co-terminated with

a 1 second, 1mA footshock unconditioned stimulus (UCS). All FC sessions began with a 210s

baseline period and had inter-stimulus intervals (ISIs) of 60s. All rats subjected to FC were

removed from the operant boxes and euthanized either immediately (FC0), 30 minutes

(FC30), or 60 minutes (FC60) following the cessation of FC. These time points were selected,

because previous studies have shown that corticosterone levels are elevated immediately after

FC, sustained for approximately 30 minutes, but after this time point begins to decrease [47–

49]. As a result, these time points are appropriate for examining changes in GR internalization

induced by enhanced adrenal corticosterone release.

All animals were euthanized via rapid decapitation and their brains were immediately

extracted and flash frozen in isopentane chilled on dry ice. Brains were then stored in a -80˚C

freezer until further processing. To dissect brain regions, brains were thawed to -13˚C cryostat

(Leica CM1350) and 300 μm coronal sections through the mPFC, AMY, dHipp, and vHipp

were taken and these brain regions dissected out and placed into 1.5 mL microtubes. Dissected

brain regions in microtubes were then stored in a -80˚C freezer.

Western blot

All brain sections were treated to separate cy and nu fractions using a method described by

Spencer et al., [50]. We empirically tested this protocol to ensure it was successful at separating

cy and nu fraction (see Appendix). Dissected brain regions were homogenized in 250 μL of

buffer (50mM Tris buffer, 10% sucrose, 1mM EDTA, 0.5mM DTT, 1mM benzamidine,

0.3mM PMS Fl) by a motor-driven homogenizer (Fisher Scientific, PowerGen125). The

homogenate was then then centrifuged (2,000 x g) for five minutes at 4˚C to obtain a superna-

tant and rough pellet. The supernatant was centrifuged at 14,800 x g for 45 minutes at 4˚C and

the supernatant treated as the cy fraction of brain tissue.

The rough pellet from the initial centrifuge treatment was used to obtain the nu fraction

from dissected brain regions. The pellet was washed twice in 400 μL of buffer and then resus-

pended in 150 μL of buffer that had a high concentration of NaCl (50mM Tris buffer, 0.5M

NaCl, 10% sucrose, 1mM EDTA, 0.5mM DTT, 1mM benzamidine, 0.3mM PMS Fl). Samples

were placed on a fixed speed vortex mixer and the suspension was incubated in ice for 1 hour

with frequent shaking. Following incubation, samples were centrifuged at 8,000 x g for 15
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minutes at 4˚C. The supernatants from these samples were treated as the nu fraction of brain

tissue.

The protein concentration of cy and nu fractions were increased using protein concentrator

columns (GE Healthcare, Vivaspin 500). Protein assay was then performed on each sample per

manufacturer’s directions (Pierce BCA Protein Assay Kit). 0.5X Laemmli sample buffer was

mixed with approximately 15 μg of protein from each sample. These samples were stored in a

-80˚C until western blot. Protein samples were heated at 70˚C for 7 minutes before being

loaded into 10% Tris-HCl polyacrylamide gels and separated by SDS polyacrylamide gel elec-

trophoresis. Separated proteins were electrophoretically transferred from gels to nitrocellulose

membranes. The membranes were subsequently left to dry for 30 minutes at 37˚C followed by

rehydration washes in 0.5 M Tris-buffered saline (TBS). Blots were blocked for 1 hour at room

temperature in TBS containing 5% non-fat milk. Nitrocellulose membranes were probed for

GR and β actin (reference protein) by incubating overnight at room temperature with a poly-

clonal rabbit GR antibody (1:50, Santa Cruz Biotechnology, M-20) and a mouse β-actin anti-

body (1:2000, Cell Signaling Inc. 8H10D10) in TBS. After 18–20 hours, the membranes were

subjected to several washes in 0.5 M TBS with 0.1% Tween-20 then a 3 hour incubation at

room temperature with polyclonal goat anti-rabbit (800CW) (1:500, Li-COR) and anti-mouse

IgG (680RD) (1:5000, Li-COR) secondary antibodies in 0.5M TBS containing 0.1% Tween and

5% non-fat milk. Nitrocellulose membranes were then washed in TBS and scanned in the Li-

cor Odyssey Clx scanner under the following settings: resolution– 169 μm, quality–lowest,

focus offset– 0.0 mm.

Data and statistical analysis

Freezing behavior was analyzed using ANY-maze (Stoelting Inc.) as previously described [32].

Fear-conditioned freezing was averaged in trials that consisted of a CS and respective ISI (e.g.

CS1 and ISI1) and analyzed using a stress (SPS vs. control) × trial (baseline, trials 1–5) factor

design, with trial being a repeated measure. The condition factor was pooled because rats in

the FC0, FC30, and FC60 levels were treated in an identical manner during FC.

In order to reduce variability in western blot data, representative rats from each indepen-

dent factor (i.e. stress and condition) were always included in each protein assay and western

blot. The integrated intensity (I.I.) of GR and β-actin protein bands were scored using ImageS-

tudio. The profile curves of all bands were inspected to ensure that there was significant I.I. sig-

nal above the background within each lane in every western. For all statistical analyses cyGR

or nuGR were expressed relative to cyβ-actin or nuβ-actin to yield relative GR/actin ratios. We

also divided relative nuGR/actin ratios (nuGR/nuAct) into relative cyGR/actin ratios (cyGR/

cyAct) to yield a single measure of GR internalization (i.e. nGR/cGR internalization ratios) in

all brain regions.

A stress x fraction (cy vs. nu) factor design was used to examine the effect of SPS on relative

cyGR and nuGR levels at baseline, with fraction being a repeated measure. T-test (SPS vs. con-

trol) was used to analyze baseline nGR/cGR ratios. A stress x fraction x condition (FC0, FC30,

FC60) factor design was used to examine changes in relative cyGR and nuGR levels after FC. A

stress x condition factor design was used to examine changes in nGR/cGR ratios. To specifi-

cally examine how cyGR and nuGR levels changed after FC, relative cyGR, nuGR, and nGR/

cGR ratios in the condition factor were expressed as a percent change from baseline (i.e. hous-

ing control animals). These normalized values were subjected to separate stress x condition

factor designs.

Main and simple effects were analyzed using analysis of variance (ANOVA), while main

and simple comparisons were analyzed using independent, paired sample, or one sample t-test

Stress, GR, fear conditioning
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with a Bonferroni correction applied where appropriate. The reference value for all one sample

t-tests was set to 100. Statistical significance was assumed with p< .05 for all statistical tests.

Results

Behavior

There was a main effect of trial [F(5,125) = 127.615, p< .001], which suggested all rats acquired

fear memory. There was also a significant stress x trial interaction [F(5,125) = 2.669, p = .036].

This was driven by enhanced freezing in SPS rats during FC trial 1 of FC in comparison to

control rats [t(25) = 2.268, p = .032]. However, at the end of FC all animals had equivalent levels

of freezing (p> .05), which suggests SPS did not alter acquisition of FC; a finding consistent

with previous studies [31, 32, 34]. These results are illustrated in Fig 2.

Western blot

vHipp. Sample western is shown in Fig 3A.

Relative baseline GR/actin and nGR/cGR ratios were unaffected by stress and baseline

cyGR/actin and nuGR/actin ratios were equivalent (Fig 3B, ps > .05). However, there was a

rise in cyGR/actin ratios, relative to nuGR/actin ratios, after FC. This was revealed by a main

effect of fraction [F(1,48) = 11.149, p = .001; Fig 3C]. There were no stress or condition effects

on GR/actin or nGR/cGR ratios after FC (Fig 3C; ps > .05). There was no effect of stress on

normalized GR/actin ratios after FC (p> .05). However, there was an enhancement in both cy

and nu GR/actin ratios brought on by FC across all time points (i.e. 0’, 30’, 60’). This was

revealed by significant one-sample t-test [cyGR—t(53) = 2.831, p = .014; nuGR—t(53) = 2.525,

p = .03]. Normalized nGR/cGR ratios were unaffected by stress (p> .05), but were signifi-

cantly lower after FC in comparison to baseline [t(53) = 4.976, p< .001]. This suggests GR

internalization in the vHipp was decreased after FC. These results are illustrated in Fig 3D.

dHipp. A sample western is shown in Fig 4A.

There was a main effect of fraction [F(1,20) = 57.529, p< .001] for GR/actin ratios at base-

line. This reflected enhanced cyGR/actin, relative to nuGR/actin, in the dHipp. There was also

Fig 2. Effect of SPS on acquisition of fear conditioning (FC). Even though SPS enhanced conditioned freezing

during trial 1 of FC, SPS did not affect acquisition of FC. SPS = 15, control = 12.

https://doi.org/10.1371/journal.pone.0205144.g002
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a significant stress x fraction interaction [F(1,20) = 7.345, p = .013], which was driven by SPS

enhancement of cyGR/actin relative to nuGR/actin. This assertion was supported by signifi-

cant t-test when comparing difference scores between relative cy and nu GR/actin ratios (i.e.

cyGR–nuGR) for SPS vs. control rats [t(20) = 2.71, p = .013]. Independent t-test for baseline

nGR/cGR ratios was not significant (ps > .05). These results are illustrated in Fig 4B.

CyGR/actin ratios were higher when compared to nuGR/actin ratios [main effect of frac-

tion: F(1,48) = 27.056, p< .001] after FC. There were no significant effects of stress and/or con-

dition (ps> .05). There were no stress and/or condition effects for nGR/cGR ratios after FC

(ps> .05). These results are illustrated in Fig 4C. There was a main effect of stress for normal-

ized cyGR/actin ratios[F(1,48) = 5.707, p = .021] that was driven by lower levels of cyGR/actin

in SPS rats. This effect was pronounced at the FC60 time point. Significant one sample t-test

for SPS rats [t(26) = 3.624, p = .001], but not control rats (p> .05), also supported the assertion

that cyGR/actin ratios were decreased in SPS rats after FC. There were no significant stress

and/or condition effects on relative nuGR/actin or nGR/cGR ratios after FC (ps > .05). These

results are illustrated in Fig 4D.

AMY. A sample western is shown in Fig 5A.

There was a significant main effect of fraction [F(1,14) = 28.224, p< .001] for baseline GR/

actin ratios, which reflected enhanced cyGR/actin relative to nuGR/actin. This effect was atten-

uated in SPS rats, which was suggested by a stress x fraction interaction that approached signif-

icance [F(1,14) = 4.307, p = .057]. There was no effect of stress on baseline nGR/cGR ratios (p>

.05). These results are illustrated in Fig 5B.
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https://doi.org/10.1371/journal.pone.0205144.g003
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CyGR/actin ratios were enhanced, relative to nuGR/actin ratios, after FC in all rats. This

was revealed by a significant main effect of fraction [F(1,31) = 48.734, p< .001]. There were no

effects of stress and/or condition on GR/actin or nGR/cGR ratios after FC (ps > .05). Relative

to baseline, cyGR/actin ratios increased after FC in SPS rats, but not control rats. This was sug-

gested by a stress effect that approached statistical significance [F(1,32) = 3.672, p = .064]. These

results are illustrated in Fig 5C. There were no effects of stress and/or condition on normalized

cy and nu GR/actin ratios (ps> .05). There was a main effect of stress on normalized nGR/

cGR ratios [F(1,31) = 5.607, p = .024], which was driven by a failure to enhance nGR/cGR ratios

after FC in SPS rats. This interpretation was supported by one sample t-test that was significant

for control rats [t(18) = 2.637, p = .034], but not SPS rats (p> .05). These findings suggests that

FC enhanced GR internalization in the AMY and this effect was attenuated by SPS (see Fig

5D).

mPFC. A sample western is shown in Fig 6A.

There was a main effect of fraction [F(1,14) = 10.147, p = .007] for baseline GR/actin ratios,

which reflected enhanced cyGR/actin, relative to nuGR/actin, in the mPFC. There was no sig-

nificant stress effect for baseline GR/actin ratios or nGR/cGR ratios (Fig 6B; ps > .05). CyGR/

actin ratios after FC was enhanced in comparison to nuGR/actin ratios. This was revealed by a

main effect of fraction [F(1,26) = 4.367, p = .047]. There were no stress and/or condition effects

on GR/actin or nGR/cGR ratios after FC (Fig 6C; ps > .05). There was no effect of stress and/

or condition on normalized GR/actin or nGR/cGR ratios after FC (Fig 6D; ps > .05).
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Discussion

By examining changes in GR levels in the cy and nu at baseline and after FC in different neural

substrates that comprise the fear circuit we were able to examine how the distribution of GRs

in the cy and nu (i.e. GR dynamics) changes with SPS exposure and after FC. The results sug-

gest there is selective regulation of GR dynamics within individual neural substrates of the fear

circuit at baseline and with FC. Baseline cyGR was enhanced relative to nuGR in all brain

regions except for the vHipp. FC had no effect on GR dynamics in the mPFC and dHipp, but

increased cy and nu GR levels in the vHipp. In spite of this there was an overall decrease in

vHipp GR internalization after FC. Enhanced GR internalization after FC was only observed

in the AMY. Thus, glucocorticoid release (whether at baseline or stress-induced) does not uni-

formly determine GR trafficking between the cy and nu within the fear circuit.

SPS disrupted GR dynamics in the dHipp and AMY at baseline and after FC, with cyGRs

being sensitive to SPS in both brain regions. SPS enhanced cyGRs in the dHipp, but decreased

cyGRs in the AMY at baseline. These effects were inverted after FC with lower cyGRs in the

dHipp of SPS rats, but enhanced cyGRs in the AMY. The enhancement in GR internalization

in the AMY observed in control rats was disrupted by SPS. A previous study has observed that

systematically inhibiting GR activation during FC exacerbates persistent fear memory induced

by SPS exposure without having any effect on non-stressed rats [35]. Inhibiting GR activation

during FC may further inhibit GR internalization in AMY cells and decrease cyGR activation

in dHipp cells. Via these processes, inhibiting GR activation during FC may enhance persistent
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fear memory in the SPS model. In turn, this suggests that the changes in GR function brought

on by SPS can be adaptive, where GR activation during FC inhibits the development of fear

memory persistence in the SPS model.

Previous studies have also shown that GR activation in the dHipp and AMY enhance mem-

ory consolidation in non-stressed rats (see Introduction), which at first appears contrary to the

hypothesis that GR activation during FC inhibits persistent fear memory in the SPS model.

One explanation of this apparent discrepancy is that SPS alters GR function in the dHipp and

the AMY such that activation of GRs induce different cellular effects in SPS rats when com-

pared to non-stressed rats. Alternatively, a decrease in GR activation tends to disrupt stress

adaptation [5]. By decreasing GR internalization in the AMY and availability of cyGRs in the

dHipp after FC, SPS may prolong the stress of FC, which renders fear memory more resistant

to the inhibitory effects of extinction. Indeed previous studies have observed that the stress of

FC inhibits the formation of extinction memory [51]. Further research is needed to examine

these possibilities.

Substrate specific regulation of GR dynamics in the fear circuit

How might substrate specific regulation of GR dynamics occur in the fear circuit when the

ligand that activates GRs originates from a single source outside of the central nervous system

(i.e. adrenal cortex)? 11β-hydroxysteroid dehydrogenase types 1 and 2 (11β-HSD1, 11β-

HSD2) are enzymes capable of either converting inert 11-keto forms of glucocorticoids (e.g. 11

dehydrocorticosterone) into active glucocorticoid (11β-HSD1) or metabolizing glucocorti-

coids (11β-HSD2). Via these mechanisms substrate specific levels of glucocorticoids can be
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achieved within the brain [52, 53]. Both enzymes have selective expression in the brain, with

high levels of 11β-HSD1 being restricted to the neocortex, hippocampus, and hypothalamus;

and moderate levels of 11β-HSD2 being expressed in selective neurons in the nucleus of the

solitary tract [54–57]. Interestingly, genetic deletion of 11β-HSD1 results in stress resiliency

[58].

GRS are phosphorylated at various sites, which alters GR function, including GR internali-

zation [1, 59, 60]. Substrate specific changes in GR phosphorylation status is observed with

chronic stress and SPS [61, 62] and could be a mechanism whereby GR dynamics is selectively

regulated within the fear circuit. FKBP5 is a chaperone protein for GR that inhibits GR binding

by interacting with heat shock protein 90 [63–65] and has been implicated in the etiology of

PTSD [47, 63, 66]. These chaperone proteins have the potential to regulate GR dynamics in a

substrate-specific manner by selectively lowering GR binding within neural substrates. In this

study we observed rapid increases in cy and nu vHipp GRs that occurred immediately after FC

and these changes may also be somewhat independent of GR internalization (see Results). Fur-

ther research examining how rapid changes in GR availability might be achieved is needed, as

these processes could be critical for substrate-specific regulation of GR activation in the fear

circuit.

Summary

The results of this study demonstrate that GR dynamics are varied in different neural sub-

strates that comprise the fear circuit. This suggests that basal glucocorticoid release and stress-

enhanced adrenal glucocorticoid release can have varied effects on the fear circuit via local reg-

ulation of GR activation. Furthermore, the effect of traumatic stress on GR dynamics at base-

line and during fear memory formation are restricted to specific nodes within the fear circuit.

Previous studies have shown that glucocorticoid administration shortly after trauma [24, 25]

and during exposure therapy [26] can prevent and treat the development of PTSD. It is very

likely that these treatments do not have homogenous effects on GR dynamics in the fear cir-

cuit. Characterizing how these treatments change GR dynamics at baseline and during emo-

tional memory phenomena (e.g. FC, fear extinction) in animals models of PTSD is needed to

better understand how they work and implement them in the treatment of PTSD.

Supporting information

S1 Fig. Western blot demonstrates successful separation of cytoplasm from nucleus in hip-
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